Measures of Position - Quartiles and Percentiles

Position - Used to describe the position of a data value in relation to the rest of the data.

Types:

- Quartiles
- Percentiles
- Deciles

Percentiles: Values of the variable that divide a ranked set into 100 subsets

For example: P30 would be at 30%
Note:

- $\mathrm{Q} 1=\mathrm{P} 25$
- $\mathrm{Q} 2=\mathrm{P} 50=$ Median
- $\mathrm{Q} 3=\mathrm{P} 75$

Quartiles: Values of the variables are divided into quarters - 4 equal parts.

Named:

- Q1 - Lower Quartile
> At most, 25% of data is smaller than Q1.
> It divides the lower half of a data set in half.
- Q2 - Median
> The median divides the data set in half.
> 50% of the data values fall below the median, and 50% fall above.
- Q3 - Upper Quartile
> At most, 25% of data is larger than Q3.
\rightarrow It divides the upper half of the data set in half.

Example:

Find Q1, median, and Q3
3912131517192024

Steps:

- Put data into L1.

- Run "Stat Calc One-variable stats (L1)."
- Scroll all the way down.

Percentile Example:
The 78th percentile means 78% are smaller than the given value. Does making the 80th percentile mean that you made an 80% on the test?

No, the 80th percentile would mean that a person did better than 80% of the students who took the same test.

Unit 3 Notes - Day 1 - Quartiles, Percentiles, Z-Scores, Boxplots with No Oaftensbrot36,0ß013

Value that corresponds to the kth percentile: (this is a position locator formula)

$$
c=\frac{n p}{100}
$$

If C is a decimal:

- round up to the next whole number
- this is the position where you will find your answer

If C is a whole number:

- you must average " c " and " c + 1 "
- this gives you the position of the answer

Example 2

235681012151820
Find p60
$c=\frac{n p}{100}$
$c=\frac{(10)(60)}{100}=6$
Average the numbers in the 6th and 7th positions together (10 \& 12)

$$
\frac{10+12}{2}=11
$$

The answer is 11

Example:
235681012151820
Find P 25 (the number in the 25th percentile position)
$c=\frac{n p}{100}$
$c=\frac{(10)(25)}{100}=2.5$
Round up to the 3rd position
235681012151820 The answer is 5

Example 3:

235681012151820
Find P75 (this is the same as Q3)
$c=\frac{n p}{100}$
$c=\frac{(10)(75)}{100}=7.5$

Round up to the 8th position (15)
The answer is 15

Midquartile: The number halfway between Q1 and Q3.

$$
\text { Midquartile }=\frac{Q 1+Q 3}{2}
$$

Example: If Q1 $=9$ and $Q 3=16.5$, find the midquartile

$$
\frac{9+16.5}{2}=\frac{25.5}{2}=12.75
$$

Unit 3 Notes - Day 1 - Quartiles, Percentiles, Z-Scores, Boxplots with No Oaptensbrot36,0ß013

Z-Scores: represent the number of standard deviations a data value falls above or below the mean.

It is used as a way to measure relative position.
Z-Score Formula:

$$
\begin{aligned}
\text { Z-Score } & =\frac{\text { value }- \text { mean }}{\text { st.deviation }} \\
z & =\frac{x-\bar{x}}{s}
\end{aligned}
$$

Please round z-scores to 2 decimal places.

Example: A student scored a 65 on a math test that had a mean of 50 and a standard deviation of 10 . She scored 30 on a history test with a mean of 25 and a standard deviation of 5 . Compare her relative position on the two tests.

$$
\text { Z-Score }=\frac{\text { value }- \text { mean }}{\text { st.deviation }}
$$

Math: $z=\frac{65-50}{10}=\frac{15}{10}=1.5$
History: $z=\frac{30-25}{5}=\frac{5}{5}=1$
The student did better in math because the z-score was higher.

Example: A sample has a mean of 200 and a standard deviation of 25 . Find the value of x that corresponds to a z-score of 2.35 .

$$
\begin{aligned}
& z=\frac{x-\bar{x}}{s} \\
& 2.35=\frac{x-200}{25} \\
& x-200=(2.35)(25) \\
& x-200=58.75 \\
& x=258.75
\end{aligned}
$$

A positive z-score means that a score is above the mean.

A negative z-score means that a score is below the mean.

A z-score of 0 means that a score is exactly the same as the mean.

Example: Find the z-score for each test and state which test is better.

Test A $x=38 \quad x=40 \quad s=5$

Test B $\quad x=94 \quad x=100 \quad s=10$

Box Plots (Box and Whiskers): A graph of a set of data obtained by drawing a horizontal line from the minimum to maximum values with quartiles labeled in between.

It is a graphical plot of 5 specific values called the 5 -number summary.

5-number summary:

1. minimum
2. Q1
3. median
4. Q3
5. maximum

Unit 3 Notes - Day 1 - Quartiles, Percentiles, Z-Scores, Boxplots with No Oaftensbrot36,0ß013

Steps:

1. Find the 5-number summary (use your calculator).
2. Draw and label a scale of equal intervals.
3. Place dots above the 5 numbers.
4. Put a box around Q1 and Q3.
5. Draw a vertical line through the median.
6. Draw "whiskers" from the minimum to Q1 and maximum to Q3.

Let's draw the box plot by hand:
Min $=23$
Q1 $=29$
Median $=33$
Q3 $=42$
Max $=51$
[^0]Example: Draw a box plot of the following data.

33	38	43	30	29	40	51	27	42	23	31

Remember: You can put the numbers in L1 of your calculator and run "stat calc one-var stats L1" and then scroll down to the bottom to get the 5 -number summary.

Skewed Left (Negative) or Right (Positive)?

Skewed Left（Negative）or Right（Positive）？

芯朝措

Can we figure out the numbers for the 5 －number summary？

[^0]: Skewness:
 If the whisker to the right of the box is longer than the one to the left, there are more extreme values towards the positive end and so the distribution is positively skewed.

 Similarly, if the whisker to the left is longer, the distribution is negatively skewed.

