Identify Pairs of Lines and

 Angles"LIFEIS WHAT YOU MAKE IT."-MR. H'S
DAD

Goal

- Students will learn the different ways lines can interact with each other. This included coplanar and non-coplanar lines.
- Students will learn what a transversal is and the different types of angles formed by a transversal.

Parallel and Skew

- Parallel lines-never intersect and are coplanar.
- Skew lines-never intersect and are not coplanar.
- Parallel planes-planes that never intersect and are always the same distance apart.
- Perpendicular lines-lines that intersect at a right angle.
- lllk and $n \perp m$

Postulates

- Parallel Postulate
- If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.
- Perpendicular Postulate
- If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

Questions

- What are the three different names for the interaction of lines?
- Parallel, intersection, or skew.
- If I have a point and a line, how many lines could I draw through the point that would be parallel to my given line?

- Exactly one

- (\mathbf{T} / F Two lines in a plane either intersect or are parallel.

Transversals

- A transversal is a line that intersects two or more coplanar lines at different points.

No transversal

Corresponding Angles

- Angles that are on the same side of the transversal and in the same corresponding positions.

Alternate Interior Angles

- Angles that are on the opposite sides of the transversal and between the two lines.

Alternate Exterior Angles

- Angles that are on the opposite sides of the transversal and outside the two lines.

Consecutive interior Angles

- Angles that are on the same side of the transversal and between the two lines.

Summary

- Students will learn the different ways lines can interact with each other. This included coplanar and non-coplanar lines.
- Students will learn what a transversal is and the different types of angles formed by a transversal.

Example 1

- Which lines or planes match the given description.
- Line(s) parallel to line AD and containing point C $\overleftrightarrow{B C}$
- Line(s) perpendicular to line HD and containing point G
* HG
- Line(s) skew to line EF and containing point H

Example 2

- Name a pair of parallel lines.
- Line AC ll Line BD
- Name a pair of perpendicular lines.
- Line AC \perp Line BC
- Is Line AC^{\perp} Line AD ? Explain.
- Not enough info. It is not marked and no way to determine (yet).

- Please look at Ex. 2 part c in book.

Example 3

- Identify all corresponding angles, alternate interior angles, alternate exterior angles, and consecutive interior angles.

Example 4

Determine what each angle pair is called.

- Angle 1 and angle 2
- Angle 9 and angle 13
- Angle 11 and angle 2
- Angle 9 and angle 4
- Angle 9 and angle 16
- Angle 8 and angle 14
- Angle 6 and angle 7
- Angle 5 and angle 1

Use Parallel Lines and Transversals

"THE GREAT USE OF LIFE IS TO SPEND IT FOR SOMETHING THAT WILL OUTLAST IT."WILLIAM JAMES

Goal

- Students will learn how lines being parallel affects the angles formed by a transversal.
- Students will be able to justify why angles are congruent or supplementary based on their position in a diagram.

Corresponding Angles Postulate

- If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.
- $\angle 1 \cong \angle 5$
- $\angle 2 \cong \angle 6$
- $\angle 3 \cong \angle 7$
- $\angle 4 \cong \angle 8$

Alternate Interior Angles Theorem

- If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.
- $\angle 3 \cong \angle 6$
- $\angle 4 \cong \angle 5$

Alternate Exterior Angles Theorem

- If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.
- $\angle 1 \cong \angle 8$
- $\angle 2 \cong \angle 7$

Consecutive interior Angles Theorem

- If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.
$\angle 3$ and $\angle 5$ are supplementary
$\angle 4$ and $\angle 6$ are supplementary

Summary

- At this point, you should be able to:
- Identify special properties of the four new angle pairs when two parallel lines are cut by a transversal.

Example 1

- Find the unknown angle measures.
- $\mathrm{m} \angle 2=105^{\circ}$
- $\mathrm{m} \angle 5=105^{\circ}$
- $\mathrm{m} \angle 6=105^{\circ}$
- $\mathrm{m} \angle 3+\mathrm{m} \angle 5=180^{\circ}$
- $\mathrm{m} \angle 3=75^{\circ}$
- $\mathrm{m} \angle 1=75^{\circ}$
- $\mathrm{m} \angle 4=75^{\circ}$

- $\mathrm{m} \angle 7=75^{\circ}$

Example 2

- Find the value of x.
- $\mathrm{m} \angle 4=85^{\circ}$
- $\mathrm{m} \angle 4+2 \mathrm{x}+5=180$
- $85+2 x+5=180$
- $2 \mathrm{x}+90=180$
- $2 \mathrm{x}=90$
- $\mathrm{x}=45$

Example 3

- Find the value of x.
- $35^{\circ}+\mathrm{m} \angle 2=180^{\circ}$
- $\mathrm{m} \angle 2=145^{\circ}$
- $\mathrm{m} \angle 2=(7 \mathrm{x}+5)^{\circ}$
- $145=7 x+5$
- $140=7 \mathrm{x}$
- $20=\mathrm{X}$

Example 4

- Find the value of y.
- $3 \mathrm{y}+87=180$
- $3 \mathrm{y}=93$
- $\mathrm{y}=31$

Example 5

- Prove the Alternate Exterior Angles Theorem.
- Given: mlln
- Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1. $m \mathrm{lln} n$	1. Given
2. $\angle 1 \cong \angle 2$	2. Corresponding angles Postulate
$3 . \angle 3 \cong \angle 2$	3. Vertical Angles Congruence Theorem
$4 . \angle 1 \cong \angle 3$	4. Transitive Property

Prove Lines are Parallel

"ONLY THE PERSON WHO HAS FAITH IN HIMSELFIS ABLE TO BE FAITHFUL TO

OTHERS."-ERICH FROMM

Goal

- Students will learn how the angles formed by a transversal can be used to determine that lines are parallel.
- Students will be able to justify why lines are parallel.

Corresponding Angles ConversePostulate

- If two lines are cut by a transversal and the pairs of corresponding angles are congruent, then the lines are parallel.
- $\angle 1 \cong \angle 5$
- $\angle 2 \cong \angle 6$
- $\angle 3 \cong \angle 7$
- $\angle 4 \cong \angle 8$

Alternate Interior Angles Converse Theorem

- If two lines are cut by a transversal and the pairs of alternate interior angles are congruent, then the lines are parallel.
- $\angle 3 \cong \angle 6$
- $\angle 4 \cong \angle 5$

Alternate Exterior Angles Converse Theorem

- If two lines are cut by a transversal and the pairs of Alternate Exterior Angles are congruent, then the lines are parallel.
- $\angle 1 \cong \angle 8$
- $\angle 2 \cong \angle 7$

Consecutive Interior Angles Converse Theorem

- If two lines are cut by a transversal and the pairs of consecutive interior angles are supplementary, then the lines are parallel.
$\angle 3$ and $\angle 5$ are supplementary
$\angle 4$ and $\angle 6$ are supplementary

Transitive Property of Parallel Lines

- If two lines are parallel to the same line, then they are parallel to each other.
- If $m \mathrm{lln}$ and $n \mathrm{ll} p$, then $m \mathrm{ll} p$.

Summary

- At this point, you should be able to:
- Identify special properties of the four new angle pairs formed when two lines are cut by a transversal that cause lines to be parallel.

Example 1

- Find the value of x that makes $m \mathrm{lln}$.
-105=3x
- $35=\mathrm{x}$

Example 2

- Find the value of x that makes mlln.
- $5 \mathrm{x}=3 \mathrm{x}+60$
- $2 x=60$
$\mathrm{x}=30$

Example 3

- Find the value of x that makes mlln.
- $2 x+x+30=180$
- $3 x+30=180$
- $3 \mathrm{x}=150$
- $\mathrm{x}=50$

Example 4

- Find the value of x that makes mlln.
- $2 \mathrm{x}=\mathrm{x}+30$
- $x=30$

Example 5

For each problem determine if there is enough information to state that $p l l q$.
1)

Example 6

- Prove the Alternate Interior Angles Converse Theorem.
- Given: $\angle 1 \cong \angle 2$
- Prove: mlln

Statements	Reasons
1. $\angle 1 \cong \angle 2$	1. Given
2. $\angle 3 \cong \angle 2$	2. Vertical Angles Congruence Theorem
$3 . \angle 3 \cong \angle 1$	3. Transitive Property
4. mlln	4. Corresponding Angles Converse Postulate

Example 6

- Prove the Alternate Interior Angles Converse Theorem. Use a Paragraph Proof.
- It is given that $\angle 1 \cong \angle 2$. From the diagram $\angle 3 \cong \angle 2$ due to the vertical angles congruence theorem. $\angle 3 \cong \angle 1$ due to the transitive property. Therefore mlln by the corresponding angles converse postulate.

1. $\angle 1 \cong \angle 2$	1. Given
2. $\angle 3 \cong \angle 2$	2. Vertical Angles Congruence Theorem
3. $\angle 3 \cong \angle 1$	3. Transitive Property
4. mlln	4. Corresponding Angles Converse Postulate

Find and Use Slopes of Lines

"A HEROIS NO BRAVER THAN AN ORDINARY MAN (OR WOMAN), BUT HE (/SHE) IS BRAVE FIVE MINUTES LONGER."-RALPH WALDO EMERSON

Goal

You will learn how to find the slope of the line and how the slope of parallel and perpendicular lines relate.

Slope of a line

- Slope can be thought of as the steepness of a line.
- Slope of a nonvertical line is the ratio of vertical change (rise) to horizontal change (run) between any two points on the line.
- $m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Types of slope

- m has negative slope - n has positive slope
- phas zero slope
- q has undefined slope

Slopes of Parallel Lines

- Two nonvertical lines are parallel iff they have the same slope.
- Any two vertical lines are parallel

Slopes of Perpendicular Lines

- Two nonvertical lines are perpendicular iff the product of their slope is $\mathbf{- 1}$.
- Horizontal and vertical lines are perpendicular.

Summary

(O)

- You should be able to describe slope and identify slope of parallel and perpendicular lines.

Example 1

- Find the slope of lines m, p, and n.

Example 2

- Find the slope of lines m, p, and n. Determine if any of the lines are parallel.

Example 3

- Find the slope of a line perpendicular to the line containing the points $(5,-4)$ and $(7,0)$.

Example 4

- A skydiver made jumps with 3 different parachutes. The graph of his jumps are below. Which statement is true?
A) Dive 2 and Dive 3 started at the same height.
B) Dive 1 and Dive 2 lasted the same amount of time.
C) Dive 1 and Dive 3 were the same type of parachute.
D) Dive 2 had the parachute that had the slowest rate of decent.

Write and Graph Equations of Lines

"CERTAIN SIGNS PRECEDE CERTAIN EVENTS."
-CICERO

Goal

- Students will be able to write and graph equations of lines.

Slope-intercept Form

- $y=m x+b$
- M is the slope of the line.
- B is the y-intercept of the line (where the line crosses the y-axis).
- Y is y-coordinate of a point on the line.
- X is the x -coordinate of a point on the line.
- To write equation of line we need to find both b and m before writing the equation of the line.

Standard Form

- $A x+B y=C$
- X-intercept (where the graph crosses the x -axis) is $\frac{C}{A}$.
- Y-intercept (where the graph crosses the y-axis) is $\frac{C}{B}$.

Summary

(

- You should be able to identify the different ways to write an equation of a line.

Example 1

- Write the equation of each line in slope-intercept form.

Example 2

- Graph the equation of the line.

1) $y=2 x+7$
2) $5 x+10 y=20$
3) $y=-3 x$
4) $y=8$
5) $x=1$

Example 3

- Write an equation of the line passing through points $(2,4)$ and is perpendicular to the line with the equation $\mathrm{y}=2 \mathrm{x}+7$.

Example 4

- What is the slope and y-intercept of these lines.

1) $5 x-10 y=-20$
2) $-10 y=-5 x-20$
3) $y=\frac{1}{2} x+2$
4) $3 x+y=6$
5) $y=-3 x+6$

Example 5

- Write the equation of the line with the given information.

1) $\mathrm{m}=4, \mathrm{~b}=-2$
$y=4 x-2$
2) $\mathrm{m}=-1, \mathrm{~b}=7$
$y=-x+7$

Prove Theorems about Perpendicular Lines

"ANXIETY IS FEAR OF ONE'S SELF."WILHELM STEKEL

Goal

- You will learn how to prove statements about parallel and perpendicular lines.

Theorem 3.8

- If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

If

Theorem 3.9

- If two lines are perpendicular, then they intersect to form four right angles.

Theorem 3.10

- If two sides of two adjacent acute angles are perpendicular, then the angles are complementary.

, then $\angle 1$ and $\angle 2$ are complementary.

Perpendicular Transversal Theorem

- If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Lines Perpendicular to a Transversal Theorem

- In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

Distance from a line.

- Distance from a point to a line is the length of the perpendicular segment from the point to the line.

Summary

- You should be able to prove statements parallel and perpendicular lines.
- You should be able to determine what the distance from a point to a line is.

Example 1

-What is the value of x ?
$52=\mathrm{x}+7$
$45=\mathrm{x}$

Example 2

- Determine which lines, if any, must be parallel in the diagram. Explain your reasoning.

Example 3

- Prove that if two sides of two adjacent angles are perpendicular, then the angles are complementary.
- Given: ray BA \perp ray BC
- Prove: $\angle 1$ and $\angle 2$ are complementary

Statements	Reasons
1. Ray BA \perp Ray BC	1. Given
2. $\angle \mathrm{ABC}$ is a right angle	2. \perp form 4 right angles
3. $\mathrm{m} \angle \mathrm{ABC}=90^{\circ}$	3. Definition of a right angle
4. $\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle 1+\mathrm{m} \angle 2$	4. Angle Addition Postulate
$5 \cdot 90^{\circ}=\mathrm{m} \angle 1+\mathrm{m} \angle 2$	5. Transitive Property
6. $\angle 1$ and $\angle 2$ are complementary	6. Definition of complementary angles

Example 4

- How far apart are lines m and n ?
- Perpendicular slopes have a product of -1
- $\left(-\frac{1}{2}\right)\left(_\right)=-1$
- ($)=2$
- Use distance formula

Taxicab Geometry

"REMEMBER THAT HAPPINESS IS A WAY OF TRAVEL-NOT A DESTINATION."-ROY M. GOODMAN

Goal

- To apply geometry to real world problems.

Taxicab Distance

- The distance between two points is the sum of the differences in their coordinates.

$$
\begin{aligned}
& \text { - } \mathrm{AB}=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| \\
& \text { - } A\left(x_{2}, y_{2}\right), \quad B\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Example 1

- Find the taxicab distance from A(-1,5) to B $(4,2)$. Draw two different shortest paths from A to B.
- |4--1|+|2-5|
- $|5|+|-3|$
$-5+3$
- 8

Taxicab Circles

- These are circles that are the same distance from the center.
- Here is an example of a taxicab circle with radius of 3 .

Summary

- You should be able to use taxicab geometry to find the "block" distance between two points.

