NAME:		

DATE:		

PERIOD: ____ PRE-CALCULUS

MR. MELLINA

UNIT 3: TRIGONOMETRIC GRAPHS

- Lesson 1: Graphs of the Sine, Cosine, and Tangent Functions
- Lesson 2: Graphs of the Cosecant, Secant, and Cotangent Functions
 - Lesson 3: Periodic Graphs and Amplitude
 - Lesson 4: Periodic Graphs and Phase Shifts
 - Lesson 5: Basic Trigonometric Identities

math puns are the first SINE OF MADNESS

Lesson 1: Graphs of the Sine, Cosine, and Tangent

Objectives:

- Graph the sine, cosine, and tangent functions.
- State all values in the domain of a basic trigonometric function that correspond to a given value of the range.
- Graph transformations of the sine, cosine, and tangent graphs.

Warm Up 🐸

a. Use the graph of $\sin t$ to state all values of t for which $\sin t$ is -1.

b. Use the graph of $\cos t$ to state all values of t for which $\cos t$ is $\frac{1}{2}$.

c. Use the graph of $\tan t$ to state all values of t for which $\tan t$ is -1.

Example 1: Graphing

Graph the given function on the domain given and state the transformations from the parent function.

a. $f(x) = 4 \cos x$ on $[0, 2\pi]$

 $h(t) = \tan t + 5$ on $[-3\pi, 3\pi]$ 6 5 4 3 2 - 5T -<u>3π</u> -<u>π</u> 31 ŝπ 흓 -3π -2π -π 2π π зπ -2 -3 -4 -5 **†**-6

Example 2: Identifying Graphs

c.

Match a graph to a function. Only one graph is possible for each function.

Lesson 2: Graphs of the Cosecant, Secant, and Cotangent Functions

Objectives:

- Graph the cosecant, secant, and cotangent functions.
- Graph transformations of the cosecant, secant, and cotangent graphs.

Warm Up 🍅

Use your graphing calculator to graph the two functions given on the same screen and sketch what you see on the given graph. Graph on $-2\pi \le x \le 2\pi$ and $-4 \le y \le 4$.

Example 1: Graphing Transformations

Example 2: Graphing Cotangent

Graph on $-2\pi \leq t \leq 2\pi$

a. $h(t) = \cot t$

Lesson 3: Periodic Graphs and Amplitude

Objectives:

- State the period and amplitude (if any) given the function rule or the graph of a sine, cosine, or tangent function.
- Use the period and amplitude (if any) to sketch the graph of a sine, cosine, or tangent function.

Warm Up 🍅

What does it mean for a function to be periodic?

Example 1: Determining Period

Determine the period of each function.

a. $k(t) = \cos 3t$ b. $f(t) = \sin \frac{t}{2}$

c.
$$k(t) = \tan 2t$$
 d. $f(t) = \tan \frac{t}{2}$

Example 2: Graphing Vertical and Horizontal Streches

Graph each function on $-2\pi \le t \le 2\pi$. Identify the period and amplitude.

a. $g(t) = 7\cos 3t$

b.
$$h(t) = \frac{1}{3}\sin\frac{t}{2}$$

c. $f(t) = -2\sin 4t$

Lesson 4: Periodic Graphs and Phase Shifts

Objectives:

- State the period and amplitude (if any) given the function rule or the graph of a sine, cosine, or tangent function.
- Use the period and amplitude (if any) to sketch the graph of a sine, cosine, or tangent function.

Warm Up 📛

Graph $-2\pi \le t \le 2\pi$. a. $k(t) = -2\cos t + 3$

Example 1: Phase Shift

Graph each function on $-2\pi \le t \le 2\pi$. Identify the period, amplitude, and phase shift. a. $g(t) = \sin\left(t + \frac{\pi}{2}\right)$

b.
$$h(t) = \cos\left(t - \frac{2\pi}{3}\right)$$

c. $f(t) = 3\sin(2t+5)$

d.
$$g(t) = 2\cos(3t - 4) - 1$$

e.
$$f(t) = -4\sin\left(\frac{t}{2} + 1\right) + 3$$

