Name \qquad Date \qquad

Due Test Day!
 Pretest: Unit 4
 Covalent Bonding

The following is an overview of the concepts, ideas, and problems we have covered in this unit. You are, however, responsible for all material covered, regardless if found here or not! Therefore, be sure to review all your notes, worksheets, assignments, handouts, readings, labs, problems, etc.. On the day of the test you will want to be wellacquainted with the material and organized, you will not want to waste time trying to understand an idea or searching for some needed information. Arrive prepared!

Text References:

- Introduction to Chemical Bonding (6.1)
- Covalent Bonding (6.2)
- Molecular Geometry (6.5)
. Naming Molecular Compounds (7.1, pages 215-219)
Know the following vocabulary terms listed below:

- acids	- Formal charge	- multiple bond
- binary compound	- hybridization	- nonpolar covalent bond
- bond energy	- Lewis structure	- polar covalent bond
- chemical bond	- molecular compound	- resonance
- covalent bonding	- molecular formula	- single bond
- dipole	- molecule	- structural formula

1. Explain what is wrong with the following Lewis structures, then rewrite each one correctly!
a. $\mathrm{H}-\mathrm{H}-\ddot{\mathrm{S}}$:
: O :
b. $\mathrm{H}-\stackrel{\|}{\mathrm{C}}=\ddot{\mathrm{O}}-\mathrm{H}$

C.

Practice Problems

1.) Draw Lewis dot structures for:

a	$\mathrm{H}_{2} \mathrm{O}$	
b	CO_{2}	
c	PF_{3}	
d	$\mathrm{H}_{2} \mathrm{~S}$	
e	CN^{-}	
f	CF_{4}	
g	$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\ \left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right) \\ \text {(you've had this one before!) } \end{gathered}$	

2.) Name each of the following compounds:
a.) $\mathrm{N}_{2} \mathrm{O}_{3}$
b.) FeP
c.) $\mathrm{H}_{3} \mathrm{PO}_{4}$
d.) PBr_{3}
e.) HCl
f.) MgCl_{2}
g.) OF_{2}
3.) Write formulas for the following compounds:
a.) aluminum hydroxide
b.) chromium(II) chloride \qquad
c.) phosphorus pentoxide \qquad
d.) hydrobromic acid
e.) tetraphosphorus decoxide \qquad
f.) sulfurous acid \qquad
4.) With words and a diagram, describe the bond that occurs between chlorine and hydrogen in HCl . (Note a similar example was done in class... Check your notes!)
5.) Using the electronegativity values found on the last page of this packet, label each bond below as nonpolar covalent, polar covalent, or ionic. For polar covalent bonds, correctly add $\delta+$ and δ-to indicate the bond's polarity.
a.) H ----- F
d.) $\mathrm{Mg}---\mathrm{O}$
b.) N ----- N
e.) $\mathrm{Cl}---\mathrm{P}$
c.) $\quad \mathrm{N}$----- 0
f.) $\quad \mathrm{S}$---- Cl
6.) In terms of bonding, why does the element oxygen always appear as a diatomic element (O_{2} not just O)? Explain thoroughly, using labeled orbital diagrams in your discussion.
7.) Use an orbital diagram to show how carbon creates four identical hybrid orbitals. (What are these orbitals called? Why are they called this?)
8.) i. Draw a proper Lewis structure for each of the following ions, then circle the one that has the shortest and strongest $\mathrm{N}-\mathrm{O}$ bonding.
$\mathrm{NO}_{2}^{-} \quad \mathrm{NO}_{3}^{-} \quad \mathrm{NO}^{+}$
ii. Which compound(s) from part i has a $\mathrm{N}-\mathrm{O}$ bond that is composed of 1 pi bond and 1 sigma bond?
9.)

Valence \mathbf{e}^{-}Total	Lewis Dot Structure	Molecular Shape \& Bond Angle	Name of Shape	Molecular Polarity
$\mathrm{NO}_{3}{ }^{-}$				
BrCN				
SO_{3}				
$\mathrm{C}_{2} \mathrm{HF}$				

10.) Which compound(s) in problem \#9 (above) contain polar bonds, but is/are nonpolar due to symmetry?
11.) Draw the three resonance structures for the nitrate ion, $\mathrm{NO}_{3}{ }^{-}$.
12.) Use Lewis structures and arrows to show the coordinate covalent bonding that forms between BF_{3} and NH_{3}.
13.) Use the table below to calculate the energy need to break all the bonds in the following compounds:
a. CCl_{4}
b. HCOOH

$\begin{aligned} & \text { Bond } \\ & \mathrm{H}-\mathrm{H} \end{aligned}$	Average bond energy ($\mathrm{kJ} / \mathrm{mol}$) 436	$\begin{aligned} & \text { Bond } \\ & \mathrm{C}-\mathrm{C} \end{aligned}$	Average bond energy ($\mathrm{kJ} / \mathrm{mol}$) 346	Bond $\mathrm{C}-\mathrm{C}$	Average bond energy ($\mathrm{kJ} / \mathrm{mol}$) 346	$\begin{aligned} & \text { Bond } \\ & \mathrm{C}-0 \end{aligned}$	Average bond energy (kJ/mo 358
F-F	159	$\mathrm{C}-\mathrm{N}$	305				
$\mathrm{Cl}-\mathrm{Cl}$	243	C-0	358	$\mathrm{C}=\mathrm{C}$	612	$\mathrm{C}=0$	732
$\mathrm{Br}-\mathrm{Br}$	193	$\mathrm{C}-\mathrm{H}$	418	$\mathrm{C} \equiv \mathrm{C}$	835	$\mathrm{C} \equiv 0$	1072
I-I	151	$\mathrm{C}-\mathrm{Cl}$	327				
H-F	569	$\mathrm{C}-\mathrm{Br}$	285	$\mathrm{C}-\mathrm{N}$	305	$N-N$	163
$\mathrm{H}-\mathrm{Cl}$	432	$\mathrm{N}-\mathrm{N}$	163	$\mathrm{C}=\mathrm{N}$	615	$\mathrm{N}=\mathrm{N}$	418
$\mathrm{H}-\mathrm{Br}$	366	$\mathrm{N}-\mathrm{H}$	386	$\mathrm{C} \equiv \mathrm{N}$	887	$N \equiv N$	945
H-I	299	O-H	459				

14.) Circle the correct answers.

Use the questions and the test-taking tip to prepare for your standardized test.

1. The common name of SiI_{4} is tetraiodosilane. What is its molecular compound name?
a. silane tetraiodide
b. silane tetraiodine
c. silicon iodide
d. silicon tetraiodide
2. Which of the following compounds contains at least one pi bond?
a. CO_{2}
b. CHCl_{3}
c. AsI_{3}
d. BeF_{2}
3. The Lewis structure for silicon disulfide is \qquad -
a. $\mathrm{Si}=\ddot{\mathrm{S}}$:
b. $\cdot \mathrm{S}=\mathrm{Si}=\stackrel{\mathrm{S}}{ }$.
c. $\stackrel{\rightharpoonup}{\mathrm{S}}: \mathrm{Si}: \mathrm{S}_{\text {" }}$
d. $: \mathrm{S}=\mathrm{Si}=\mathrm{S}:$
4. The central selenium atom in selenium hexafluoride forms an expanded octet. How many electron pairs surround the central Se atom?
a. 4
b. 5
c. 6
d. 7
5. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ was one of the first anesthetics used in medicine. The chloroform molecule contains 26 valence electrons in total. How many of these valence electrons take part in covalent bonds?
a. 26
b. 13
c. 8
d. 4

Which is the strongest type of intermolecular bond
a. ionic sond
b. dipole-dipole forcer
c. dispervinntorce
d. hydrogen bond
7. All of the following compounds have bent molecular shapes EXCEPT \qquad -.
a. BeH_{2}
b. $\mathrm{H}_{2} \mathrm{~S}$
c. $\mathrm{H}_{2} \mathrm{O}$
d. SeH_{2}
8. Which of the following compounds is NOT polar?
a. $\mathrm{H}_{2} \mathrm{~S}$
b. CCl_{4}
c. $\mathrm{SiH}_{3} \mathrm{Cl}$
d. AsH_{3}
9. Which of the following diatomic gases has the shortest bond between its two atoms?
a. HI
b. O_{2}
c. Cl_{2}
d. N_{2}
15.) Use the concept of Formal Charge to determine which of the following is the most likely structure for sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\begin{gathered}
: \ddot{0}-H \\
1-H \\
0=S=0 \\
H-0:
\end{gathered}
$$

