Unit 4 Guided Notes

Rational Functions

Standards: A.APr.6, A.CED.1, A.rei.2, A.rei.11, F.BF.1, F.bF. 3
Clio High School - Algebra 2A

Need help? Support is available!

- Miss Seitz's tutoring: See schedule in classroom
- Website with all videos and resources
www.msseitz.weebly.com

Miss Kari Seitz
Text: 810.309.9504
Classroom: 810.591.1412
Email: kseitz@clioschools.org

Concept \#	What we will be learning...	Text
中4	Introduction to Rational Functions Identify and explain the effect on the graph of replacing $f(x)$ by $f(x)+k, k \cdot f(x), f(k \cdot x)$, and $f(x+k)$ for specific values of k (both positive and negative) Find the value of k given the graphs	8.2
\#2	Rational Functions and Their Graphs I can write a function that describes the relationships between two quantities I can describe important features of rational functions based on their equations and graph	8.3
\#3	Multiplying and Dividing Rational Expressions Factor the top and bottom and cancel like parenthesis Multiply and divide rational expressions	8.4
\#4	Adding and Subtracting Rational Expressions Add and subtract rational expressions	8.5
45	Solving Rational Equations Solve rational equations Plug answers into the original equation to see if the denominator is zero or is not true	8.6

Text: 8.2
\square Identify and explain the effect on the graph of replacing $f(x)$ by $f(x)+k, k \cdot f(x), f(k \cdot x)$, and $f(x+k)$ for specific values of k (both positive and negative)
\square Find the value of k given the graphs
Vocabulary: asymptote

Definitions	
D \qquad is the set of all x's that will give us the graph	R \qquad is the set of all y's that will give us the graph
The A \qquad are the lines that the graph gets very close to but does not touch or cross	
x- \qquad is the value where the graph hits the x-axis (where $\mathbf{y}=\mathbf{0}$)	y - \qquad is the value where the graph hits the y-axis (where $\mathbf{x}=\mathbf{0}$)
The Parent Rational Function	
The equation: $y=\frac{1}{x}$ Domain: Range: Asymptotes:	

Writing the Equation of the Graph

Example 2: Write the equation of the graph.

Asymptotes:
x - intercept:
y - intercept:

You Try It!

1.) Identify the domain and range. Sketch the graph.

$$
y=\frac{2}{x+2}-3
$$

Asymptotes:

x - intercept: $\quad y$ - intercept:

2.) Write the equation of the graph.

Asymptotes:
x - intercept:
y - intercept:

	Rational Functions and Their Graphs	Text: $\mathbf{8 . 3}$
\square I can write a function that describes the relationships between two quantities		
\square I can describe important features of rational functions based on their equations and graph		
Vocabulary: rational function, continuous graph, discontinuous graph, point of discontinuity, removable		
discontinuity, non-removable discontinuity		

Vertical Asymptotes
 Where the denominator equals zero

Example 1: Identify the vertical asymptote(s). Example 2: Identify the vertical asymptote(s) $\qquad y=\frac{x-4}{x+2}$ $x^{2}+x-6$

You Try! Identify the vertical asymptotes of each.
1.) $y=\frac{3}{x(x-2)}$
2.) $y=\frac{x+5}{x-5}$

Identifying Holes

Anything that cancels
Example 3: Identify the holes in the graph. $y=\frac{x^{2}+x-6}{x^{2}+4 x+3}$
Steps:

1. Factor the top and bottom using X-Box
2. See what is the same on the top and bottom
3. Set factors that would cancel equal to zero and solve for x

You Try! Identify the holes of each graph.
3.) $y=\frac{2 x^{2}+2 x-12}{x^{2}+3 x}$
4.) $y=\frac{x^{3}-3 x^{2}-4 x}{x^{3}-x}$

Real World Application

Example 4: You are planning a trip to Cedar Point. It costs $\$ 1,000$ to rent a bus for the day. Each person will have to pay $\$ 7$ to get in to the park at a group rate.

A: Write a function for the cost to each person

B: How many people do you need to sign up in order to make the cost $\$ 30$ or less per person? Does this number make sense?

Multiplying and Dividing Rational Expressions
Text: 8.4
\square Factor the top and bottom and cancel like parenthesisMultiply and divide rational expressions
Vocabulary: rational expression, simplest form, excluded value, simplify

Definitions	
An E_VALUE is one	To S__ means to factor
that makes the denominator zero. It is	the numerator and denominator as
excluded because you cannot divide	much as possible and see what by zero.

SIMPLIFY Rational Expressions

Example 1: Simplify and state excluded values $\frac{10 n+90}{n+9}$	Example 2: Simplify and state excluded values $n^{3}+9 n^{2}+8 n$

MULTIPLY Rational Expressions Factor everything and see what cancels!		
Example 3: Simplify and state excluded values $\frac{X-7}{X^{2}+X-56}$$\quad$Example 4: Simplify and state excluded values		
	$\frac{5 \mathrm{X}-4}{15 \mathrm{~m}^{2}+50 \mathrm{~m}} \cdot \frac{15 \mathrm{~m}^{2}+50 \mathrm{~m}}{10}$	

DIVIDE Rational Expressions

Factor everything and then FLIP the $2^{\text {nd }}$ guy. JUST LIKE FRACTIONS!

Example 5: Simplify and state excluded values
$\frac{4}{K-2} \div \frac{2-2 K}{2 K-2}$

Example 6: Simplify and state excluded values

$$
\frac{-p^{2}+12 p-35}{2 p^{2}} \div \frac{p^{2}-11 p+28}{p-4}
$$

You Try It! Simplify and state excluded values
1.)
$\frac{b^{2}-13 b+40}{b-5}$
2.)

$$
\frac{x^{2}+3 x-10}{x+6} \cdot \frac{7 x}{x^{2}+3 x-10}
$$

Adding and Subtracting Rational Expressions
Text: 8.5
\square Add and subtract rational expressions
Vocabulary: like terms, complex fraction

Steps to Add/Subtract

1. Factor the numerator and denominator of each fraction
2. Determine LCD (Lowest Common Denominator)
3. Multiply the numerator and denominator of each fraction by what that fraction is "missing" from the LCD
4. Add or subtract across the top by combining like terms

Find the LCD (Lowest Common Denominator)

Example 1: $\frac{3}{t+5}+\frac{7}{t^{2}-25}$

Example 2: $\frac{w^{2}+12 w+32}{w^{2}+3 w-40}+\frac{1}{w-5}$

Example 3:

$$
\frac{y^{2}-10 y+21}{y^{2}-11 y+28}+\frac{y^{2}-7 y+12}{y^{2}+y-12}
$$

Example 4: $\frac{p^{2}+6 p+9}{p^{2}-4 p-21}+\frac{6}{p-7}$

Example 5: $\frac{n^{2}+n-12}{n^{2}-11 n+24}-\frac{n^{2}-4 n-32}{n^{2}+n-12}$

You Try It!

1.) $\frac{d^{2}+4 d-32}{d^{2}+16 d+64}-\frac{9}{d+8}$
2.) $\frac{x^{2}-5 x+4}{x^{2}-5 x+4}+\frac{x^{2}-2 x+1}{x^{2}+4 x-5}$

Solving Rational Equations
Text: 8.6
\square Solve rational equationsPlug answers into the original equation to see if the denominator is zero or is not true Vocabulary: rational equation

Steps to Solve Rational Equations

1. Factor the numerator and denominator completely
2. Find the LCD (Lowest Common Denominator)
3. Multiply the numerator of each term by the LCD
4. Cancel out any factors (your denominators should go away!)
5. Simplify
6. Solve for your variable
Make sure you check to see if your answers make the ORIGINAL denominators zero. These are the extraneous solutions!

Example 1:	$\frac{2}{\mathbf{x}}=\frac{\mathbf{x}-1}{5 \mathrm{x}}-\frac{1}{\mathrm{x}}$

Example 2:

$$
\frac{3 x+4}{3 x^{2}}=\frac{5+}{2 x^{2}} \frac{1}{6 x}
$$

$$
\text { Example 3: } 1=\frac{1}{6 x+3}+\frac{x-5}{2 x+1}
$$

Example 4: $\frac{1}{p+3}=\frac{p-6}{p^{2}+3 p}-\frac{5 p-15}{p^{2}+3 p}$

You Try It! Solve the rational equation. Be sure to check for extraneous solutions!
1.) $\frac{1}{n+3}-\frac{1}{4 n+2}=\frac{n-1}{4 n+2}$
2.) $\frac{4}{m^{2}+4 m-5}=\frac{6 m+18}{m^{2}+4 m-5}+1$

