Unit 4 Guided Notes

Rational Functions

Standards: A.APR.6, A.CED.1, A.REI.2, A.REI.11, F.BF.1, F.BF.3

Clio High School – Algebra 2A

 Name:

Period:

Need help? Support is available!

- Miss Seitz's tutoring: See schedule in classroom
 - Website with all videos and resources

•

www.msseitz.weebly.com

Miss Kari Seitz Text: 810.309.9504 Classroom: 810.591.1412 Email: kseitz@clioschools.org

Concept #	What we will be learning	Text
# 4	Introduction to Rational Functions	8.2
#1	\Box Identify and explain the effect on the graph of replacing f(x) by f(x) + k, k · f(x), f(k · x), and	0.2
	f(x+k) for specific values of k (both positive and negative)	
	\Box Find the value of k given the graphs	
	Rational Functions and Their Graphs	
#2	\Box I can write a function that describes the relationships between two quantities	8.3
	\Box I can describe important features of rational functions based on their equations and graph	
	Multiplying and Dividing Rational Expressions	
#3	Factor the top and bottom and cancel like parenthesis	8.4
	Multiply and divide rational expressions	
	Adding and Subtracting Rational Expressions	
#4	Add and subtract rational expressions	8.5
	Solving Rational Equations	
#5	Solve rational equations	8.6
	\Box Plug answers into the original equation to see if the denominator is zero or is not true	

Introduction to Rational Functions

Text: 8.2

□ Identify and explain the effect on the graph of replacing f(x) by f(x) + k, k ⋅ f(x), f(k ⋅ x), and f(x+k) for specific values of k (both positive and negative)
 □ Find the value of k given the graphs

Vocabulary: asymptote

Definitions		
D is the set of all x's that will give us the graph	R is the set of all y's that will give us the graph	
The A are the lines that the graph gets very close to but does not touch or cross		
x is the value where the graph hits the x-axis (where y = 0)	y is the value where the graph hits the y-axis (where x = 0)	

Example 1: Identify the domain and range. Sketch the graph.

$$y=\frac{2}{x-4}+1$$

Asymptotes:

x – intercept: y – intercept:

1.) Identify the domain and range. Sketch the graph.

$$y=\frac{2}{x+2}-3$$

Asymptotes:

x – intercept:

y – intercept:

2.) Write the equation of the graph.

Asymptotes:

- x intercept:
- y intercept:

#2

Rational Functions and Their Graphs

□ I can write a function that describes the relationships between two quantities

□ I can describe important features of rational functions based on their equations and graph

Vocabulary: rational function, continuous graph, discontinuous graph, point of discontinuity, removable discontinuity

Vertical Asymptotes		
Where the	denominator equals zero	
Example 1: Identify the vertical	Example 2: Identify the vertical	
asymptote(s).	asymptote(s)	
$y = \frac{3}{x+2}$	$y = \frac{x-4}{x^2 + x - 6}$	

You Try! Identify the vertical asymptotes of each.

1.)
$$y = \frac{3}{x(x-2)}$$

2.)
$$y = \frac{x+5}{x-5}$$

Identifying Holes Anything that cancels		
Example 3: Identify the holes in the graph. $y = \frac{x^2 + x - 6}{x^2 + 4x + 3}$		
<u>Steps:</u>		
1. Factor the top and		
bottom using X-Box		
2. See what is the		
same on the top and		
bottom		
2. Sat factors that		
3. Set factors that		
would cancel equal to		
zero and solve for x		

You Try! Identify the holes of each graph.

3.) $y = \frac{2x^2 + 2x - 12}{x^2 + 3x}$	4.) $y = \frac{x^3 - 3x^2 - 4x}{x^3 - x}$
$x^{2}+3x$	$x^{3}-x$

Real World Application

Example 4: You are planning a trip to Cedar Point. It costs \$1,000 to rent a bus for the day. Each person will have to pay \$7 to get in to the park at a group rate.

A: Write a function for the cost to each person

B: How many people do you need to sign up in order to make the cost \$30 or less per person? Does this number make sense?

Multiplying and Dividing Rational Expressions

Factor the top and bottom and cancel like parenthesis
 Multiply and divide rational expressions

Text: 8.4

Vocabulary: rational expression, simplest form, excluded value, simplify

Definitions			
An E	VALUE is one	To S means to factor	r
that makes the	e denominator zero. It is	the numerator and denominator as	
excluded because you cannot divide		much as possible and see what	
by zero.		cancels.	

SIMPLIFY Rational Expressions		
Example 1: Simplify and state	Example 2: Simplify and state excluded	
excluded values	values	
<u>10n + 90</u> n + 9	$\frac{n^2 + 3n - 40}{n^3 + 9n^2 + 8n}$	

MULTIPLY Rational Expressions		
Factor everything and see what cancels!		
Example 3: Simplify and state	Example 4: Simplify and state	
excluded values	excluded values	
$\frac{X-7}{X^2 + X-56}$	$\frac{5m}{15m^2 + 50m} \cdot \frac{15m^2 + 50m}{10}$	

You Try It! Simplify and state excluded values

$$\frac{1.0}{b^2 - 13b + 40}{b - 5}$$

$$\frac{x^2+3x-10}{x+6} \circ \frac{7x}{x^2+3x-10}$$

Steps to Add/Subtract

- 1. Factor the numerator and denominator of each fraction
- 2. Determine LCD (Lowest Common Denominator)
- 3. Multiply the numerator and denominator of each fraction by what that fraction is "missing" from the LCD
- 4. Add or subtract across the top by combining like terms

You Try It!

1.)
$$\frac{d^2 + 4d - 32}{d^2 + 16d + 64} - \frac{9}{d + 8}$$

2.)
$$\frac{x^2 - 5x + 4}{x^2 - 5x + 4} + \frac{x^2 - 2x + 1}{x^2 + 4x - 5}$$

Solving Rational Equations

□ Solve rational equations

□ Plug answers into the original equation to see if the denominator is zero or is not true

Vocabulary: rational equation

Steps to Solve Rational Equations

- 1. Factor the numerator and denominator completely
- 2. Find the LCD (Lowest Common Denominator)
- 3. Multiply the numerator of each term by the LCD
- 4. Cancel out any factors (your denominators should go away!)
- 5. Simplify
- 6. Solve for your variable

Make sure you check to see if your answers make the **ORIGINAL** denominators zero. These are the extraneous solutions!

Example 3:
$$1 = \frac{1}{6x + 3} + \frac{x - 5}{2x + 1}$$
Example 4:
$$\frac{1}{p + 3} = \frac{p - 6}{p^2 + 3p} - \frac{5p - 15}{p^2 + 3p}$$

You Try It! Solve the rational equation. Be sure to check for extraneous solutions!

1.)
$$\frac{1}{n+3} - \frac{1}{4n+2} = \frac{n-1}{4n+2}$$

2.)
$$\frac{4}{m^2 + 4m - 5} = \frac{6m + 18}{m^2 + 4m - 5} + 1$$