
 Unit 4-Part 1 : Boolean Algebra

 1

 |EE & EC Department | 3130907 – Analog and Digital Electronics

Table of Contents

3.1 Introduction ...3

3.1.1 Advantages of Boolean Algebra ..3

3.2 Boolean Algebra Terminology ...3

3.3 Logic Operators ...4

3.4 Axioms or Postulates ..4

3.5 Boolean Algebra’s Laws and Theorems ..4

3.5.1 Reduction of Boolean Expression .. 10

3.5.1.1 De-Morganized the following functions .. 10

3.5.1.2 Reduce the following functions using Boolean Algebra’s Laws and Theorems 10

3.6 Different forms of Boolean Algebra ... 12

3.6.1 Standard Form ... 12

3.6.1.1 Standard Sum of Product (SOP) ... 12

3.6.1.2 Standard Product of Sum (POS) ... 12

3.6.2 Canonical Form .. 12

3.6.2.1 Sum of Product (SOP) .. 12

3.6.2.2 Product of Sum (POS) .. 13

3.6.2 MINTERMS & MAXTERMS for 3 Variables ... 14

3.6.3 Conversion between Canonical Forms .. 14

3.6.3.1 Convert to MINTERMS ... 14

3.6.3.2 Convert to MAXTERMS .. 15

3.7 Karnaugh Map (K-Map) ... 17

3.7.1 2 Variable K-Map ... 17

3.7.1.1 Mapping of SOP Expression ... 17

3.7.1.2 Mapping of POS Expression ... 17

3.7.1.3 Reduce Sum of Product (SOP) Expression using K-Map .. 18

3.7.1.4 Reduce Product of Sum (POS) Expression using K-Map .. 18

3.7.2 3 Variable K-Map ... 18

3.7.2.1 Mapping of SOP Expression ... 18

 Unit 4-Part 1 : Boolean Algebra

 2

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.2.2 Mapping of POS Expression ... 18

3.7.2.3 Reduce Sum of Product (SOP) Expression using K-Map .. 19

3.7.2.4 Reduce Product of Sum (POS) Expression using K-Map .. 19

3.7.3 4 Variable K-Map ... 20

3.7.3.1 Mapping of SOP Expression ... 20

3.7.3.2 Mapping of POS Expression ... 20

3.7.3.3 Looping of POS Expression .. 21

3.7.3.4 Reduce Sum of Product (SOP) Expression using K-Map .. 23

3.7.3.5 Reduce Product of Sum (POS) Expression using K-Map .. 24

3.7.3.6 Reduce SOP & POS Expression with Don’t Care Combination using K-Map 24

3.7.4 5 Variable K-Map ... 25

3.7.4.1 Mapping of SOP Expression ... 25

3.7.4.2 Reduce Sum of Product (SOP) Expression using K-Map .. 25

3.7.4.3 Reduce Product of Sum (POS) Expression using K-Map .. 26

3.8 Converting Boolean Expression to Logic Circuit and Vice-Versa ... 26

3.9 NAND and NOR Realization/Implementation ... 28

3.10 Tabulation / Quine-McCluskey Method ... 29

3.11 GTU Questions .. 33

 Unit 4-Part 1 : Boolean Algebra

 3

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.1 Introduction

 Inventor of Boolean algebra was George Boole (1815 - 1864).

 Designing of any digital system there are three main objectives;
1) Build a system which operates within given specifications
2) Build a reliable system
3) Minimize resources

 Boolean algebra is a system of mathematical logic.

 Any complex logic can be expressed by Boolean function.

 Boolean algebra is governed by certain rules and laws.

 Boolean algebra is different from ordinary algebra & binary number system.
In ordinary algebra; A + A = 2A and AA = A2, here A is numeric value.

 In Boolean algebra;
A + A = A and AA = A, here A has logical significance, but no numeric significance.

Table: Difference between Binary, Ordinary and Boolean system

Binary number system Ordinary no. system Boolean algebra

1 + 1 = 1 0 1 + 1 = 2 1 + 1 = 1

- A + A = 2A and AA = A2 A + A = A and AA = A

 In Boolean algebra, nothing like subtracting or division, no negative or fractional numbers.

 Boolean algebra represent logical operation only. Logical multiplication is same as AND
operation and logical addition is same as OR operation.

 Boolean algebra has only two values 0 & 1.

 In Boolean algebra; If A = 0 then A ≠ 1. & If A = 1 then A ≠ 0.

3.1.1 Advantages of Boolean Algebra

1. Minimize the no. of gates used in circuit.
2. Decrease the cost of circuit.
3. Minimize the resources.
4. Less fabrication area is required to design a circuit.
5. Minimize the designer’s time.
6. Reducing to a simple form. Simpler the expression more simple will be hardware.
7. Reduce the complexity.

3.2 Boolean Algebra Terminology

1. Variable : The symbol which represent an arbitrary elements of a Boolean
algebra is known as variable.
e.g. F = A + BC, here A, B and C are variable and it can have value either
1 or 0.

 Unit 4-Part 1 : Boolean Algebra

 4

 |EE & EC Department | 3130907 – Analog and Digital Electronics

2. Constant : In expression F = A + 1, the first term A is variable and second term 1
is known as constant. Constant may be 1 or 0.

3. Complement : A complement of any variable is represented by a “ ” (BAR) over any
variable.

e.g. Complement of A is 𝐴.
4. Literal : Each occurrence of a variable in Boolean function either in a non-

complemented or complemented form is called literal.
5. Boolean Function : Boolean expressions are constructed by connecting the Boolean

constants and variable with the Boolean operations. This Boolean
expressions are also known as Boolean Formula.

e.g. F(A, B, C) = (𝐴 + 𝐵) C OR F = (𝐴 + 𝐵) C

3.3 Logic Operators

1. AND : Denoted by ∙ (e.g. A AND B = A ∙ B)
2. OR : Denoted by + (e.g. A OR B = A + B)
3. NOT OR Complement : Denoted by “ ” (BAR) or ()′ (e.g. 𝐴 or (𝐴)′)

3.4 Axioms or Postulates

Axioms 1 : 0 · 0 = 0
Axioms 2 : 0 · 1 = 0
Axioms 3 : 1 · 0 = 0
Axioms 4 : 1 · 1 = 1

Axioms 5 : 0 + 0 = 0
Axioms 6 : 0 + 1 = 1
Axioms 7 : 1 + 0 = 1
Axioms 8 : 1 · 1 = 1

Axioms 9 : 1’ = 0
Axioms 10 : 0’ = 1

3.5 Boolean Algebra’s Laws and Theorems

1. Complementation Laws:

 The term complement simply means to invert, i.e. to change 0’s to 1’s and 1’s to 0’s.
Law 1: 0’ = 1
Law 2: 1’ = 0
Law 3: If A = 0 then A’ = 1

Law 4: If A = 1 then A’ = 0
Law 5: A’’ = A

2. AND Laws:

Law 1: A · 0 = 0
Law 2: A · 1 = A

Law 3: A · A = A
Law 4: A · A’ = 0

3. OR Laws:

Law 1: A + 0 = A
Law 2: A + 1 = 1

Law 3: A + A = A
Law 4: A + A’ = 1

 Unit 4-Part 1 : Boolean Algebra

 5

 |EE & EC Department | 3130907 – Analog and Digital Electronics

4. Commutative Laws:

 Commutative laws allow change in position of AND or OR variables.

Law 1: A + B = B + A
Proof:

 This law can be extended to any numbers of variables for e.g.

A + B + C = B + A + C = C + B + A = C + A + B

Law 2: A · B = B · A
Proof:

 This law can be extended to any numbers of variables for e.g.

A · B · C = B · A · C = C · B · A = C · A · B
5. Associative Laws:

 The associative laws allow grouping of variables.

Law 1: (A + B) + C = A + (B + C)
Proof:

 This law can be extended to any no. of variables for e.g.

A + (B + C + D) = (A + B + C) + D = (A + B) + (C + D)

 Unit 4-Part 1 : Boolean Algebra

 6

 |EE & EC Department | 3130907 – Analog and Digital Electronics

Law 2: (A · B) · C = A · (B · C)
 Proof:

 This law can be extended to any no. of variables for e.g.

A · (B · C · D) = (A · B · C) · D = (A · B) · (C · D)

6. Distributive Laws:

 The distributive laws allow factoring or multiplying out of expressions.

Law 1: A (B + C) = AB + AC
Proof:

Law 2: A + BC = (A + B) (A + C)
Proof: R.H.S. = (A + B) (A + C)
 = AA + AC + BA + BC
 = A + AC + BA + BC
 = A + BC (∵ A(1 + C + B) = A)
 = L.H.S.

Law 3: A + A’B = A + B
Proof: L.H.S. = A + A’B
 = (A + A’) (A + B)
 = A + B
 = R.H.S.

7. Idempotence Laws:

 Idempotence means the same value.

Law 1: A · A = A
Proof:
Case 1: If A = 0 A · A = 0 · 0 = 0 = A
Case 2: If A = 1 A · A = 1 · 1 = 1 = A

Law 2: A + A = A
Proof:
Case 1: If A = 0 A + A = 0 + 0 = 0 = A
Case 2: If A = 1 A + A = 1 + 1 = 1 = A

 Unit 4-Part 1 : Boolean Algebra

 7

 |EE & EC Department | 3130907 – Analog and Digital Electronics

8. Complementation Law / Negation Law:
Law 1: A · A’ = 0
Proof:
Case 1: If A = 0 A · A’ = 0 · 1 = 0
Case 2: If A = 1 A · A’ = 1 · 0 = 0

Law 2: A + A’ = 1
Proof:
Case 1: If A = 0 A + A’ = 0 + 1 = 1
Case 2: If A = 1 A + A’ = 1 + 0 = 1

9. Double Negation / Involution Law:

 This law states that double negation of a variables is equal to the variable itself.
Law: A’’ = A
Proof:
Case 1: If A = 0 A’’ = 0’’ = 0 = A
Case 2: If A = 1 A’’ = 1’’ = 1 = A

 Any odd no. of inversion is equivalent to single inversion.

 Any even no. of inversion is equivalent to no inversion at all.

10. Identity Law:
Law 1: A · 1 = A
Proof:
Case 1: If A= 1 A · 1 = 1 · 1 = 1 = A
Case 2: If A= 0 A · 0 = 0 · 0 = 0 = A

Law 2: A + 1 = 1
Proof:
Case 1: If A= 1 A + 1 = 1 + 1 = 1 = A
Case 2: If A= 0 A + 0 = 0 + 0 = 0 = A

11. Null Law:
Law 1: A · 0 = 0
Proof:
Case 1: If A= 1 A · 0 = 1 · 0 = 0 = 0
Case 2: If A= 0 A · 0 = 0 · 0 = 0 = 0

 Law 2: A + 0 = A
Proof:
Case 1: If A= 1 A + 0 = 1 + 0 = 1 = A
Case 2: If A= 0 A + 0 = 0 + 0 = 0 = A

12. Absorption Law:
Law 1: A + AB = A
Proof: L.H.S. = A + AB
 = A (1 + B)
 = A (1)
 = A
 = R.H.S.

Law 2: A (A + B) = A
Proof: L.H.S. = A (A + B)
 = A · A + AB
 = A + AB
 = A (1 + B)
 = A
 = R.H.S.

 Unit 4-Part 1 : Boolean Algebra

 8

 |EE & EC Department | 3130907 – Analog and Digital Electronics

13. Consensus Theorem:
Theorem 1:
A · B + A’C + BC = AB + A’C

Proof: L.H.S. = AB + A’C + BC
 = AB + A’C + BC (A +A’)
 = AB + A’C + BCA + BCA’
 = AB (1 + C) + A’C (1 + B)
 = AB + A’C
 = R.H.S.

 This theorem can be extended as,
AB + A’C + BCD = AB + A’C

Theorem 2:
(A + B) (A’ + C) (B + C) = (A + B) (A’ + C)

Proof:
L.H.S. = (A + B) (A’ + C) (B + C)
 = (AA’ + AC + A’B + BC) (B + C)

 = (0 + AC + A’B + BC) (B + C)
 = ACB+ACC+A’BB+A’BC+BCB+BCC
 = ABC + AC + A’B + A’BC + BC + BC

 = ABC + AC + A’B + A’BC + BC
 = AC (1 + B) + A’B (1 + C) + BC
 = AC + A’B + BC
 = AC + A’B ……..……………………(1)

 R.H.S. = (A + B) (A’ + C)
 = AA’ + AC + BA’ + BC
 = 0 + AC + BA’ + BC
 = AC + A’B + BC
 = AC +A’B ……………………………(2)

Eq. (1) = Eq. (2); So, L.H.S = R.H.S.

 This theorem can be extended to any no. of
variables.
(A + B) (A’ + C) (B + C + D) = (A + B) (A’ + C)

14. Transposition theorem:

Theorem: AB + A’C = (A + C) (A’ +B)
Proof: R.H.S. = (A + C) (A’ +B)
 = AA’ + AB + CA’ + CB
 = 0 + AB + CA’ + CB
 = AB + CA’ + CB
 = AB + A’C (∵ AB + A’C + BC = AB + A’C)
 =L.H.S.

15. De Morgan’s Theorem:
Law 1: (A + B)’ = A’ · B’ OR (A + B + C)’ = A’ · B’ · C’
Proof:

 Unit 4-Part 1 : Boolean Algebra

 9

 |EE & EC Department | 3130907 – Analog and Digital Electronics

Law 2: (A· B)’ = A’ + B’ OR (A · B · C)’ = A’ + B’ + C’
Proof:

LHS

NAND Gate

A

B

AB (AB)’
=

RHS

B

A A’

B’

A’ + B’

=

Bubbled OR

A

B

(AB)’

A

B

A’ + B’

A B AB (AB)’

0 0 0 1

0 1 0 1

1 0 0 1

0 1 1 0

A B A’ B’ A’+B’

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

0 1 0 0 0

16. Duality Theorem:

 Duality theorem arises as a result of presence of two logic system i.e. positive & negative
logic system.

 This theorem helps to convert from one logic system to another.

 From changing one logic system to another following steps are taken:
1) 0 becomes 1, 1 becomes 0.
2) AND becomes OR, OR becomes AND.
3) ‘+’ becomes ‘·’, ‘·’ becomes ‘+’.
4) Variables are not complemented in the process.

=

 Unit 4-Part 1 : Boolean Algebra

 10

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.5.1 Reduction of Boolean Expression

3.5.1.1 De-Morganized the following functions

(1) F = [(A + B’) (C + D’)]’ (2) F = [(AB)’ (CD + E’F) ((AB)’ + (CD)’)]’

Sol: Sol:

 F = [(A + B’) (C + D’)]’ F = [(AB)’ (CD + E’F) ((AB)’ + (CD)’)]’

∴ F = (A + B’)’ + (C + D’)’ ∴ F = (AB)’’ + (CD + E’F)’ + ((AB)’ + (CD)’)’

∴ F = A’ B’’ + C’D’’ ∴ F = AB + [(CD)’ (E’F)’] + [(AB)’’ (CD)’’]

∴ F = A’B + C’D ∴ F = AB + (C’ + D’) (E + F’) + ABCD

(3) F = [(AB)’ + A’ + AB]’ (4) F = [(P + Q’) (R’ + S)]’

Sol: Sol:

 F = [(AB)’ + A’ + AB]’ F = [(P + Q’) (R’ + S)]’

∴ F = (AB)’’ · A’’ · (AB)’ ∴ F = (P + Q’)’ + (R’ + S)’

∴ F = ABA (A’ + B’) ∴ F = P’Q’’ + R’’S’

∴ F = AB (A’ + B’) ∴ F = P’Q + RS’

∴ F = ABA’ + ABB’

(5) F = [P (Q + R)]’ (6) F = [[(A + B)’ (C + D)’]’ [(E + F)’ (G + H)’]’]’

Sol: Sol:

 F = [P (Q + R)]’ F = [[(A + B)’ (C + D)’]’ [(E + F)’ (G + H)’]’]’

 F = P’ + (Q + R)’ ∴ F = [(A + B)’ (C + D)’]’’ + [(E + F)’ (G + H)’]’’

 F = P’ + Q’ R’ ∴ F = [(A + B)’ (C + D)’] + [(E + F)’ (G + H)’]

 ∴ F = A’B’C’D’ + E’F’G’H’

3.5.1.2 Reduce the following functions using Boolean Algebra’s Laws and Theorems

(1) F = A + B [AC + (B + C’)D] (2) F = A [B + C’ (AB + AC’)’]

Sol: Sol:

 F = A + B [AC + (B + C’)D] F = A [B + C’ (AB + AC’)’]

∴ F = A + B [AC + (BD + C’D)] ∴ F = A [B + C’ (AB)’ (AC’)’]

∴ F = A + ABC + BBD + BC’D ∴ F = A [B + C’ (A’ + B’) (A’ + C)]

∴ F = A + ABC + BD + BC’D ∴ F = A [B + (A’ C’ + B’ C’) (A’ + C)]

∴ F = A (1 + BC) + BD (1 + C’) ∴ F = A [B + (A’ C’A’ + B’ C’A’) (A’ C’ C + B’ C’ C)]

∴ F = A (1) + BD (1) ∴ F = A [B + (A’C’ + B’ C’A’) (0 + 0)]

∴ F = A + BD ∴ F = A [B + A’C’ (1 + B’)]

 ∴ F = AB + A’AC’

 ∴ F = AB

 Unit 4-Part 1 : Boolean Algebra

 11

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(3) F = (A + (BC)’)’ (AB’ + ABC) (4) F = [(A + B) (A’ + B)] + [(A + B) (A + B’)]

Sol: Sol:

 F = (A + (BC)’)’ (AB’ + ABC) F = [(A + B) (A’ + B)] + [(A + B) (A + B’)]

∴ F = (A’ (BC)’’) (AB’ + ABC) ∴ F = [AA’ + AB + BA’ + BB] + [AA + AB’ + BA + BB”]

∴ F = (A’BC) (AB’ + ABC) ∴ F = [0 + AB + A’B + B] + [A + AB’ + AB + 0]

∴ F = A’BCAB’ + A’BCABC ∴ F = [B (A + A’ + 1)] + [A (1 + B’ + B)]

∴ F = 0 + 0 ∴ F = B + A

∴ F = 0 ∴ F = A + B

(5) F = [(A + B’) (A’ + B’)]+ [(A’ + B’) (A’ + B’)] (6) F = (A + B) (A + B’) (A’ + B) (A’ + B’)

Sol: Sol:

 F = [(A + B’) (A’ + B’)] + [(A’ + B’) (A’ + B’)] F = (A + B) (A + B’) (A’ + B) (A’ + B’)

∴ F = [AA’ + AB’ + B’A’ + B’B’] + [A’A’ + A’B’

+ B’A’ + B’B’]

∴ F = (AA + AB’ + BA + BB’) (A’A’ + A’B’ + BA’ +

BB’)

∴ F = [0 + AB’ + A’B’ + B’] + [A’ + A’B’ + B’] ∴ F = [A (1+ B’ + B)] [A’ (1 + B’ + B)]

∴ F = [B’ (A + A’ + 1)] + [A’ + B’(1)] ∴ F = [A(1)] [A’(1)]

∴ F = B’ + A’ + B’ ∴ F = AA’

∴ F = A’ + B’ ∴ F = 0

(7) F = (B + BC) (B + B’C) (B + D) (8) F = AB’C + B + BD’ + ABD’ + A’C

Sol: Reduce the function to minimum no. of literals.

 F = (B + BC) (B + B’C) (B + D) Sol:

∴ F = (BB + BB’C + BBC + BCB’C) (B + D) F = AB’C + B + BD’ + ABD’ + A’C

∴ F = (B + 0 + BC + 0) (B + D) ∴ F = AB’C + B (1 + D’ + AD’) + A’C

∴ F = B (B + D) (∵B + BC = B(1 + C) = B) ∴ F = AB’C + B + A’C

∴ F = B + BD (∵B (B + D) = BB + BD) ∴ F = C (A’ + AB’) + B

∴ F = B (∵B + BD = B (1 + D)) ∴ F = C (A’ + A) (A’ + B’) + B

 ∴ F = C (1) (A’ + B’) + B

(9) F = AB + AB’C +BC’ ∴ F = C (A’ + B’) + B

Sol: ∴ F = A’C + CB’ + B

 F = AB + AB’C +BC’ ∴ F = A’C + (C + B) (B’ + B)

∴ F = A (B + B’C) + BC’ ∴ F = A’C + (B + C) (1)

∴ F = A (B + B’) (B + C) + BC’ ∴ F = A’C + B + C

∴ F = AB + AC + BC’ { ∵ B + B’ = 1} ∴ F = C (1 + A’) + B

∴ F = CA + C’B + AB ∴ F = B + C

∴ F = CA + C’B { ∵ 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 } Here, 2 literals are present B & C.

 Unit 4-Part 1 : Boolean Algebra

 12

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.6 Different forms of Boolean Algebra

 There are two types of Boolean form
1) Standard form
2) Canonical form

3.6.1 Standard Form

 Definition: The terms that form the function may contain one, two, or any number of literals.
i.e. each term need not to contain all literals. So standard form is simplified form of canonical
form.

 A Boolean expression function may be expressed in a nonstandard form. For example the
function:

F = (A + C) (AB’ + D’)

 Above function is neither sum of product nor in product of sums. It can be changed to a
standard form by using distributive law as below;

F = AB’ + AD’ + AB’C + CD’

 There are two types of standard forms: (i) Sum of Product (SOP) (ii) Product of Sum (POS).

3.6.1.1 Standard Sum of Product (SOP)

 SOP is a Boolean expression containing
AND terms, called product terms, of one
or more literals each. The sum denote the
ORing of these terms.

 An example of a function expressed in
sum of product is:

F = Y’ + XY + X’YZ’

3.6.1.2 Standard Product of Sum (POS)

 The OPS is a Boolean expression containing
OR terms, called sum terms. Each terms
may have any no. of literals. The product
denotes ANDing of these terms.

 An example of a function expressed in
product of sum is:

F = X (Y’ + Z) (X’ + Y + Z’ + W)

3.6.2 Canonical Form

 Definition: The terms that form the function contain all literals. i.e. each term need to contain
all literals.

 There are two types of canonical forms: (i) Sum of Product (SOP) (ii) Product of Sum (POS).

3.6.2.1 Sum of Product (SOP)

 A canonical SOP form is one in which a no. of product terms, each one of which contains all the
variables of the function either in complemented or non-complemented form, summed
together.

 Each of the product term is called “MINTERM” and denoted as lower case ‘m’ or ‘Ʃ’.

 For minterms, Each non-complemented variable 1 & Each complemented variable 0

 For example,
1. XYZ = 111 = m7
2. A’BC = 011 = m3

3. P’Q’R’ = 000 = m0
4. T’S’ = 00 = m0

 Unit 4-Part 1 : Boolean Algebra

 13

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.6.2.1.1 Convert to MINTERM

(1) F = P’Q’ + PQ (2) F = X’Y’Z + XY’Z’ + XYZ

Sol: Sol:

 F = 00 + 11 F = 001 + 100 + 111

∴ F = m0 + m3 ∴ F = m1 + m4 + m7

∴ F = Σm(0,3) ∴ F = Σm(1,4,7)

(3) F = XY’ZW + XYZ’W’ + X’Y’Z’W’

Sol:

 F = 1011 + 1100 + 0000

∴ F = m11 + m12 + m0

∴ F = Σm(0,11,12)

3.6.2.2 Product of Sum (POS)

 A canonical POS form is one in which a no. of sum terms, each one of which contains all the
variables of the function either in complemented or non-complemented form, are multiplied
together.

 Each of the product term is called “MAXTERM” and denoted as upper case ‘M’ or ‘Π’.

 For maxterms, Each non-complemented variable 0 & Each complemented variable 1

 For example,
1. X’+Y’+Z = 110 = M6 2. A’+B+C’+D = 1010 = M10

3.6.2.2.1 Convert to MAXTERM

(1) F = (P’+Q)(P+Q’) (2) F = (A’+B+C)(A+B’+C)(A+B+C’)

Sol: Sol:

 F = (10)(01) F = (100) (010) (001)

∴ F = M2·M1 ∴ F = M4 M2 M1

∴ F = ΠM(1,2) ∴ F = ΠM(1,2,4)

(3) F = (X’+Y’+Z’+W)(X’+Y+Z+W’)(X+Y’+Z+W’)

Sol:

 F = (1110)(1001)(0101)

∴ F = M14·M9·M5

∴ F = ΠM(5,9,14)

 Unit 4-Part 1 : Boolean Algebra

 14

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.6.2 MINTERMS & MAXTERMS for 3 Variables

Table: Representation of Minterms and Maxterms for 3 variables

3.6.3 Conversion between Canonical Forms

3.6.3.1 Convert to MINTERMS

1. F(A,B,C,D) = ΠM(0,3,7,10,14,15)

Solution:

Take complement of the given function;

∴ F’(A,B,C,D) = ΠM(1,2,4,5,6,8,9,11,12,13)

∴ F’(A,B,C,D) = (M1 M2 M4 M5 M6 M8 M9 M11 M12 M13)’

Put value of MAXTERM in form of variables;
∴ F’(A,B,C,D) = [(A+B+C+D’)(A+B+C’+D)(A+B’+C+D)(A+B’+C+D’)(A+B’+C’+D)

(A’+B+C+D)(A’+B+C+D’)(A’+B+C’+D’)(A’+B’+C+D)(A’+B’+C+D’)]’
∴ F’(A,B,C,D) = (A’B’C’D) + (A’B’CD’) + (A’BC’D’) + (A’BC’D) + (A’BCD’)

+ (AB’C’D’) + (AB’C’D) + (AB’CD) + (ABC’D’) + (ABC’D)
∴ F’(A,B,C,D) = m1 + m2 + m4 + m5 + m6 + m8 + m9 + m11 + m12 + m13

∴ F’(A,B,C,D) = Σm(1,2,4,5,6,8,9,11,12,13)

In general, Mj’ = mj

 Unit 4-Part 1 : Boolean Algebra

 15

 |EE & EC Department | 3130907 – Analog and Digital Electronics

2. F = A + B’C

Solution:

 A B & C is missing. So multiply with (B + B’) & (C + C’)

 B’C A is missing. So multiply with (A + A’).
∴ A = A (B + B’) (C + C’)

∴ A = (AB + AB’) (C +C’)

∴ A = ABC + AB’C + ABC’ + AB’C’

And, B’C = B’C (A + A’)

∴ B’C = AB’C + A’B’C

So, F = ABC + AB’C + ABC’ + AB’C’ + AB’C + A’B’C

∴ F = ABC + AB’C + ABC’ + AB’C’ + A’B’C

∴ F = 111 + 101 + 110 + 100 + 001

∴ F = m7 + m6 + m5 + m4 + m1

∴ F = Σm(1,4,5,6,7)

3.6.3.2 Convert to MAXTERMS

1. F = Σ(1,4,5,6,7)

Solution:

Take complement of the given function;

∴ F’(A,B,C) = Σ(0,2,3)

∴ F’(A,B,C) = (m0 + m2 + m3)

Put value of MINTERM in form of variables;
∴ F’(A,B,C) = (A’B’C’ + A’BC’ + A’BC)’

∴ F’(A,B,C) = (A+B+C)(A+B’+C)(A+B’+C’)

∴ F’(A,B,C) = M0·M2·M3

∴ F’(A,B,C) = ΠM(0,2,3)

In general, mj’ = Mj

2. F = A (B + C’)

Solution:

 A B & C is missing. So add BB’ & CC’

 B + C’ A is missing. So add AA’
∴ A = A + BB’ + CC’

 Unit 4-Part 1 : Boolean Algebra

 16

 |EE & EC Department | 3130907 – Analog and Digital Electronics

∴ A = (A + B + CC’) (A + B’ + CC’)

∴ A = (A + B + C) (A + B + C’) (A + B’ + C) (A + B’ + C’)

And, B + C’ = B + C’ + AA’

∴ B + C’ = (A + B + C’) (A’ + B + C’)

So, F = (A + B + C) (A + B + C’) (A + B’ + C) (A + B’ + C’) (A + B + C’) (A’ + B + C’)

∴ F = (A + B + C) (A + B + C’) (A + B’ + C) (A + B’ + C’) (A’ + B + C’)

∴ F = (000) (001) (010) (011) (101)

∴ F = ΠM(0,1,2,3,5)

3. F = XY + X’Z

Solution:

∴ F = XY + X’Z

∴ F = (XY + X’) (XY + Z)

∴ F = (X +X’) (Y + X’) (X + Z) (Y + Z)

∴ F = (X’ + Y) (X + Z) (Y + Z)

 X’ + Y Z is missing. So add ZZ’

 X + Z Y is missing. So add YY’
 Y + Z X is missing. So add XX’

∴ X’ + Y = X’ + Y + ZZ’

∴ X’ + Y = (X’ + Y + Z) (X’ + Y + Z’)

And, X + Z = X’ + Z + YY’

∴ X + Z = (X + Y + Z) (X + Y’ + Z)

And, Y + Z = Y + Z + XX’

∴ Y + Z = (X + Y + Z) (X’ + Y + Z)

So, F = (X’ + Y + Z) (X’ + Y + Z’) (X + Y + Z) (X + Y’ + Z) (X + Y + Z) (X’ + Y + Z)

∴ F = (100) (101) (000) (010)

∴ F = M4 M5 M0 M2

∴ F = ΠM(0,2,4,5)

 Unit 4-Part 1 : Boolean Algebra

 17

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7 Karnaugh Map (K-Map)

 A Boolean expression may have many different forms.

 With the use of K-map, the complexity of reducing expression becomes easy and Boolean
expression obtained is simplified.

 K-map is a pictorial form of truth table and it is alternative way of simplifying Boolean function.

 Instead of using Boolean algebra simplification techniques, you can transfer logic values from
a Boolean statement or a truth table into a Karnaugh map (k-map)

 Tool for representing Boolean functions of up to six variables then after it becomes complex.

 K-maps are tables of rows and columns with entries represent 1’s or 0’s of SOP and POS
representations.

 K-map cells are arranged such that adjacent cells correspond to truth table rows that differ in
only one bit position (logical adjacency)

 K-Map are often used to simplify logic problems with up to 6 variables

No. of Cells = 2 n, where n is a number of variables.
 The Karnaugh map is completed by entering a ‘1’ (or ‘0’) in each of the appropriate cells.

 Within the map, adjacent cells containing 1's (or 0’s) are grouped together in twos, fours, or
eights and so on.

3.7.1 2 Variable K-Map

 For 2 variable k-map, there are 22 = 4 cells.

 If A & B are two variables then;
SOP Minterms A’B’ (m0, 00) ; A’B (m1, 01) ; AB’ (m2, 10) ; AB (m3, 11)
POS Maxterms A + B (M0, 00) ; A + B’ (M1, 01) ; A’ + B (M2, 10) ; A’ + B’ (M3, 11)

3.7.1.1 Mapping of SOP Expression

 1 in a cell indicates that the minterm is

included in Boolean expression.

 For e.g. if F = ∑m(0,2,3), then 1 is put in
cell no. 0,2,3 as shown below.

1

11

0

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

3.7.1.2 Mapping of POS Expression

 0 in a cell indicates that the maxterm is

included in Boolean expression.

 For e.g. if F = ΠM(0,2,3), then 0 is put in
cell no. 0,2,3 as shown below.

0

00

1

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

 Unit 4-Part 1 : Boolean Algebra

 18

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.1.3 Reduce Sum of Product (SOP) Expression using K-Map

(1) F = m0 + m1 (2) F = A’B’ + AB’ (3) F = Σ(1,3)
Sol:

1

00

1

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

Sol:

1

01

0

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

Sol:

0

10

1

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

 F = A’ F = B’ F = B

(4) F = m2 + m3 (5) ∑m(0,1,3) (6) ∑m(0,1,2,3)
Sol:

0

11

0

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

Sol:

1

11

1

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

Sol:

1

11

1

B’

0

B

1A

B

0 1

2 3

A’ 0

A 1

 F = A F = A’ + AB F = 1

3.7.1.4 Reduce Product of Sum (POS) Expression using K-Map

(1) F = ΠM(0,2,3,1) (2) F = (A+B) (A’+B) (A+B’) (3) F = M3·M1·M2
Sol:

0

00

0

B

0

B’

1A

B

0 1

2 3

A 0

A’ 1

Sol:

0

10

0

B

0

B’

1A

B

0 1

2 3

A 0

A’ 1

Sol:

1

00

0

B

0

B’

1A

B

0 1

2 3

A 0

A’ 1

 F = 0 F = A B F = A’ B’

3.7.2 3 Variable K-Map

 For 3 variable k-map, there are 23 = 8 cells.

3.7.2.1 Mapping of SOP Expression

3.7.2.2 Mapping of POS Expression

0

 Unit 4-Part 1 : Boolean Algebra

 19

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.2.3 Reduce Sum of Product (SOP) Expression using K-Map

(1) F = A’B’C + ABC + A’BC’ (2) F = Σ(1,6,7)
Sol:

Sol:

 F = A’B’C + ABC + A’BC’ F = A’B’C + AB

(3) F = A’B’C’ + ABC’ + AB’C’ + A’BC (4) F = Σm(0,1,2,4,5,6)
Sol:

Sol:

 F = B’C’ + AC’ + A’BC F = B’ + C’

(5) F = m3 + m4 +m6 + m7 (6) F = Σm(3,7,1,6,0,2,5,4)
Sol:

Sol:

 F = BC + AC’ F = 1

3.7.2.4 Reduce Product of Sum (POS) Expression using K-Map

(1) F = (A’+B’+C’) (A’+B+C’) (2) F = M0·M3·M7
Sol:

Sol:

 F = (A’ + C’) F = (A + B + C) (B’ + C’)

 Unit 4-Part 1 : Boolean Algebra

 20

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(3) F = ΠM(1,2,5) (4) F = ΠM(0,4,1,5,7,3)
Sol:

Sol:

 F = (B + C’) (A + B + C) F = (B) (C’)

(5) F = (A+B+C)(A+B’+C’)(A’+B+C) (6) ΠM(5,7,0,3,2,4,6,1)
Sol:

Sol:

 F = (B + C) (A + B’ + C’) F = 0

3.7.3 4 Variable K-Map

 For 4 variable k-map, there are 24 = 16 cells.

3.7.3.1 Mapping of SOP Expression

3.7.3.2 Mapping of POS Expression

 Unit 4-Part 1 : Boolean Algebra

 21

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.3.3 Looping of POS Expression

 Looping Groups of Two:

 Looping Groups of Four:

 Unit 4-Part 1 : Boolean Algebra

 22

 |EE & EC Department | 3130907 – Analog and Digital Electronics

 Looping Groups of Eight:

 Examples

 Unit 4-Part 1 : Boolean Algebra

 23

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.3.4 Reduce Sum of Product (SOP) Expression using K-Map

(1) F = ∑ (0,1,2,4,5,6,8,9,12,13,14) (2) F = A’B’C’ + B’CD’ + A’BCD’ + AB’C’
Sol:

Sol:

 F = C’ + A’D’ + BD’ F = B’C’ + B’D’ + A’CD’

(3) F = ∑ (0,1,2,3,5,7,8,9,12,13) (4) F = ∑ (0,1,3,4,5,6,7,13,15)
Sol:

Sol:

 F = A’B’ + AC’ + A’D F = A’C’ + A’D + BD + A’B

 Unit 4-Part 1 : Boolean Algebra

 24

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(5) F = ∑m (5,6,7,9,10,11,13,14,15)
Sol:

 F = BD + BC + AD + AC

3.7.3.5 Reduce Product of Sum (POS) Expression using K-Map

(1) F = ΠM (0,1,2,5,7,8,9,10,14,15) (2) F = M1 M3 M4 M7 M6 M9 M11 M12 M14 M15
Sol:

Sol:

 F = (B + D) (B + C) (A + B’ + D’) (A’ + B’ + C’) F = (B’ + D) (C’ + B’) (D’ + B)

3.7.3.6 Reduce SOP & POS Expression with Don’t Care Combination using K-Map

(1) F = ∑m (1,5,6,12,13,14) + d (2,4) (2) F = ΠM (4,7,10,11,12,15) · d (6,8)
Sol:

Sol:

 F = BC’ + BD’ + A’C’D F = (B’ + C + D) (B’ + C’ + D’) (A’ + B + C’)

 Unit 4-Part 1 : Boolean Algebra

 25

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.4 5 Variable K-Map

 For 5 variable k-map, there are 25 = 32 cells.

3.7.4.1 Mapping of SOP Expression

3.7.4.2 Reduce Sum of Product (SOP) Expression using K-Map

(1) F = ∑m (0,2,3,10,11,12,13,16,17,18,19,20,21,26,27)
Sol:

F = C’D + B’C’E’ + AB’D’ + A’BCD’

(2) F = ∑m (0,2,4,6,9,11,13,15,17,21,25,27,29,31)
Sol:

F = BE + AD’E + A’B’E’

 Unit 4-Part 1 : Boolean Algebra

 26

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.7.4.3 Reduce Product of Sum (POS) Expression using K-Map

(1) F = ΠM (1,4,5,6,7,8,9,14,15,22,23,24,25,28,29,30,31)
Sol:

F = (B’ + C + D) (C’ +D’) (A + B + C’) (A’ + B’ + D) (A + C + D + E’)

3.8 Converting Boolean Expression to Logic Circuit and Vice-Versa

(1) For the logic circuit shown fig., find the
Boolean expression and the truth table.
Identify the gate that given circuit realizes.

(2) For the logic circuit shown fig., find the
Boolean expression and the truth table.
Identify the gate that given circuit realizes.

Sol: Sol:

 Here,
Output of OR gate will be (A+B)
Output of NAND gate will be (AB)’
So, C will be AND of these two outputs

 Here, bubble indicates inversion.
Hence input of top OR gate is A’ and B’ and
hence its output will be A’+B’
Output of bottom OR gate will be A+B

 ∴ C = (A+B) · (A·B)’ ∴ Y = (A’+B’)(A+B)

 Truth table for the same can be given below; Truth table for the same can be given below;
 Input Output

A B A+B A·B (A·B)’ (A+B)·(A·B)’

0 0 0 0 1 0

0 1 1 0 1 1

1 0 1 0 1 1

1 1 1 1 0 0

 Input Output

A B A’ B’ A’+B’ A+B (A’+B’)(A+B)

0 0 1 1 1 0 0

0 1 1 0 1 1 1

1 0 0 1 1 1 1

1 1 0 0 0 1 0

 From the truth table it is clear that the circuit
realizes Ex-OR gate.

 From the truth table it is clear that the circuit
realizes Ex-OR gate.

 NOTE: NAND = Bubbled OR

 Unit 4-Part 1 : Boolean Algebra

 27

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(3) For the logic circuit shown fig., find the
Boolean expression.

(4) For the given Boolean expression draw the
logic circuit. F = X + (Y’ + Z)

Sol: The expression primarily involves three logic
gates i.e NOT, AND and OR.
To generate Y’ a NOT gate is required.
To generate Y’Z an AND gate is required.
To generate final output OR gate is required.

Sol:

 Here,
Output of top AND gate will be AB’
Output of bottom AND gate will be A’B
So, C will be OR of these two outputs

 ∴ C = AB’ + A’B

(5) F = ∑ (0,1,2,4,5,6,8,9,12,13,14) Reduce using

k-map method. Also realize it with logic
circuit or gates with minimum no. of gates.

(6) F = ∑m (1,5,6,12,13,14) + d (2,4) Reduce using
k-map method. Also realize it with logic
circuit.

Sol:

Sol:

 F = C’ + A’D’ + BD’ F = BC’ + BD’ + A’C’D

 Realization of function with logic circuit Realization of function with logic circuit

 Unit 4-Part 1 : Boolean Algebra

 28

 |EE & EC Department | 3130907 – Analog and Digital Electronics

 3.9 NAND and NOR Realization/Implementation

 Steps to implement any function using NAND or NOR gate only as below;
1. Reduce the given function if necessary.
2. For NAND, add Bubbles at the outputs of AND gates and at the inputs of OR gates.
3. For NOR, add Bubbles at the outputs of OR gates and at the inputs of AND gates.
4. Add an inverter symbol wherever you created a Bubble.
5. Ignore cascading connection of two NOT gates, if any are present.
6. Replace all gates with NAND gates or NOR gates depending on the type of implementation.

(1) F = AB + CD + E Implement given function using (i) NAND gates only (ii) NOR gates only
Sol:

 Function realization using basic logic gates as below;

 Using NAND gates Using NOR gates
 Step:1 Step:1

 Step:2 Step:2

 Step:3 Step:3

 Unit 4-Part 1 : Boolean Algebra

 29

 |EE & EC Department | 3130907 – Analog and Digital Electronics

 Step:4 Step:4

3.10 Tabulation / Quine-McCluskey Method

 As we know that the Karnaugh map method is a very useful and convenient tool for simplification
of Boolean functions as long as the number of variables does not exceed four.

 But for case of large number of variables, the visualization and selection of patterns of adjacent
cells in the Karnaugh map becomes complicated and too much difficult. For those cases Quine
McCluskey tabulation method takes vital role to simplify the Boolean expression.

 The Quine McCluskey tabulation method is a specific step-by-step procedure to achieve
guaranteed, simplified standard form of expression for a function.

 Steps to solve function using tabulation method are as follow;

Step 1 − Arrange the given min terms in an ascending order and make the groups based on the
number of ones present in their binary representations. So, there will be at most ‘n+1’ groups if
there are ‘n’ Boolean variables in a Boolean function or ‘n’ bits in the binary equivalent of min
terms.

Step 2 − Compare the min terms present in successive groups. If there is a change in only one-bit
position, then take the pair of those two min terms. Place this symbol ‘_’ in the differed bit position
and keep the remaining bits as it is.

Step 3 − Repeat step2 with newly formed terms till we get all prime implicants.

Step 4 − Formulate the prime implicant table. It consists of set of rows and columns. Prime
implicants can be placed in row wise and min terms can be placed in column wise. Place ‘1’ in the
cells corresponding to the min terms that are covered in each prime implicant.

Step 5 − Find the essential prime implicants by observing each column. If the min term is covered
only by one prime implicant, then it is essential prime implicant. Those essential prime implicants
will be part of the simplified Boolean function.

Step 6 − Reduce the prime implicant table by removing the row of each essential prime implicant
and the columns corresponding to the min terms that are covered in that essential prime
implicant. Repeat step 5 for reduced prime implicant table. Stop this process when all min terms
of given Boolean function are over.

http://www.electronicsengineering.nbcafe.in/karnaugh-map-k-map/

 Unit 4-Part 1 : Boolean Algebra

 30

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(1) Simplify the following expression to sum of product using Tabulation Method

𝑭(𝑨, 𝑩, 𝑪, 𝑫) = ∑(𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟕, 𝟏𝟏, 𝟏𝟐, 𝟏𝟓)

Sol:

 Determination of Prime Implicants

 Determination of Prime Implicants

 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = 𝑩𝑪′𝑫′ + 𝑨′𝑩′ + 𝑪𝑫 + 𝑨′𝑫′

 Unit 4-Part 1 : Boolean Algebra

 31

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(2) Simplify the following expression to sum of product using Tabulation Method
𝑭(𝑨, 𝑩, 𝑪, 𝑫) = 𝒎(𝟎, 𝟒, 𝟖, 𝟏𝟎, 𝟏𝟐, 𝟏𝟑, 𝟏𝟓) + 𝒅(𝟏, 𝟐)

Sol:

 Determination of Prime Implicants

 Determination of Essential Prime Implicants

 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = 𝑨𝑩𝑫 + 𝑪′𝑫′ + 𝑩′𝑫′

 Unit 4-Part 1 : Boolean Algebra

 32

 |EE & EC Department | 3130907 – Analog and Digital Electronics

(3) Simplify the following expression to sum of product using Tabulation Method
𝑭(𝑨, 𝑩, 𝑪, 𝑫) = 𝜫(𝟏, 𝟑, 𝟓, 𝟕, 𝟏𝟑, 𝟏𝟓)

Sol:

 Determination of Prime Implicants

 Determination of Essential Prime Implicants

 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = (𝑨 + 𝑫′)(𝑩′ + 𝑫′)

(4) Simplify the following expression to sum of product using Tabulation Method

𝑭(𝑨, 𝑩, 𝑪, 𝑫) = 𝑴(𝟎, 𝟖, 𝟏𝟎, 𝟏𝟐, 𝟏𝟑, 𝟏𝟓) ∙ 𝒅(𝟏, 𝟐, 𝟑)
Sol:

 Determination of Prime Implicants

 Determination of Essential Prime Implicants

 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = (𝑨′ + 𝑩′ + 𝑫′)(𝑩 + 𝑫)(𝑨′ + 𝑩′ + 𝑪)

 Unit 4-Part 1 : Boolean Algebra

 33

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3.11 GTU Questions

U
n

it

G
ro

u
p

Questions

Su
m

m
er

-1
5

W
in

te
r-

15

Su
m

m
er

-1
6

W
in

te
r-

16

Su
m

m
er

-1
7

W
in

te
r-

17

Su
m

m
er

-1
8

W
in

te
r-

18

A
n

sw
er

To
p

ic
 N

o
_

P
g.

 N
o

.

3

A
State and explain De Morgan’s theorems
with truth tables.

7 7 3.5_8

A

Apply De Morgan’s theorem to solve the
following:
(1) [A + (BC)']' [AB' + ABC] = 0
(2) A [B + C' (AB + AC')'] = AB

7 3.5_8

A
Reduce the expression:
(1) A + B (AC + (B+C’) D)
(2) (A + (BC)’)’(AB’ + ABC)

 4 3.5.1.2_10

A
Demonstrate by means of truth tables the
validity of the De Morgan’s theorems for
three variables.

 3 3.5_8

A

Simplify the following Boolean functions to
a minimum number of literals.
(i) F(x,y,z)=xy+xyz+xyz’+x’yz
(ii) F(p, q, r, s) = (p’+q) (p+q+s)s’

 4 3.5.1.2_11

A State and prove De Morgan’s theorems 7 3.5_8

A
Reduce the expression
F = (B+BC) (B+B'C)(B+D)

 3 3.5.1.2_11

B Explain minterm and maxterm 3 3
3.6.2.1_12
3.6.2.2_13

B Compare SOP and POS. 3 3.6.1.1_12

B

Give examples of standard and nonstandard
SOP and POS forms. Explain how a NON
standard POS expression can be converted
in to standard POS expression using
example you have given.

 7 3.6_12

B
Express the Boolean function F=A+A'C in a
sum of min-terms.

 7 3.6.3.1_15

B&C
Express A’B + A’C as sum of minterms and
also plot K-map.

 7
3.6.3.1._15

3.7.2_18

C

What are SOP and POS forms of Boolean
expressions? Minimize the following
expression using K-map
Y= Σm(4,5,7,12,14,15) + d(3,8,10)

7
3.6.1.1_12
3.7.3.6_24

C
Write short note on K-map. OR Explain K-
map simplification technique.

 7 7 3.7_17

 Unit 4-Part 1 : Boolean Algebra

 34

 |EE & EC Department | 3130907 – Analog and Digital Electronics

3

C
Simplify the following Boolean function
using K-map F (w, x, y, z) = Σ m(1, 3, 7, 11,
15) with don’t care, d(w, x, y, z) = Σm(0,2,5)

 3 3.7.3.6_24

C

Simplify the Boolean function F =
A’B’C’+AB’D+A’B’CD’ using don’t-care
conditions d=ABC+AB’D’ in (i) sum of
products and (ii) product of sums by means
of Karnaugh map and implement it with no
more than two NOR gates. Assume that
both the normal and complement inputs are
available.

 7
3.7.3.6_24

3.9_28

C
Reduce using K-map
(i)Σm(5,6,7,9,10,11,13,14,15)
(ii)ΠM(1,5,6,7,11,12,13,15)

 4
3.7.3.4_23
3.7.3.5_24

C
Minimize using K-map
f(A,B,C,D) = Σ(1,3,4,6,8,11,15) +d(0,5,7) also
draw MSI circuit for the output.

 7 3.7.3.6_24

C

Simplify equation using K-map :
F(a,b,c,d) = Σm(3,7,11,12,13,14,15)
Realize the expression with minimum
number of gates.

 4
3.7.3.4_24

3.8_26

C

Minimize the following Boolean expression
using K- Map and realize it using logic gates.
F(A,B,C,D)=Σm(0,1,5,9,13,14,15)+d(3,4,7,10
,11)

 7 3.7.3.6_24

C&D
Compare K-map and tabular method of
minimization.

 3
3.7_17

3.10_29

D
Simplify following Boolean function using
tabulation method:
F(w, x, y, z) = Σ (0, 1, 2, 8, 10, 11, 14, 15)

 7 3.10_29

D
Simplify the Boolean function
F(x1,x2,x3,x4)=Σm(0,5,7,8,9,10,11,14,15)
using tabulation method.

 7 3.10_29

E
Simplify Y=A’BCD’ + BCD’ + BC’D’ + BC’D and
implement using NAND gates only.

 7 3.9_28

E
Implement following Boolean function using
only NAND gates. Y=ABC’+ABC+A’BC.

 4 3.9_28

