Unit 4: Statistics

Measures of Central

> Tendency \&

Measures of

 Dispersion
Measures of Central Tendency

- a measure that tells us where the middle of a bunch of data lies
- most common are Mean, Median, and Mode.

Mean

- The Mean is the average of the numbers or a calculated "central" value of a set of numbers.
- To calculate: Add up all the numbers, then divide by how many numbers there are.
- Example: find the Mean $\{3,7,5,13,20,23,39,23,40,23,14,12,56,23,29\}$
> The sum $=330$
> There are fifteen numbers
$>$ Mean $=330 / 15=22$
- Example: find the Mean $\{3,-7,5,13,-2\}$
$>$ The sum $=3-7+5+13-2=12$
> There are 5 numbers
$>$ Mean $=12 \div 5=2.4$

Median

- The middle number (in a sorted list of numbers).
- To find: place the numbers you are given in numerical order and find the middle number.
$>$ Example: find the Median of $\{|3,23,1|, 16,15,10,2\}$
- First, order the numbers, least to greatest
- Next, identify the middle number

What if there isn't only ONE middle number?

- If there are an odd number of items in the list, there will be ONE definite Median or middle number
- If there are an even number of items in the list, there will be TWO middle number.
$>$ You will add those two numbers and divide by two to determine the median in this case.
> Example:
- find the Median $\{3,13,7,5,21,23,23,40,23,14,12,56,23\}$,
- First, order the numbers, least to greatest

$$
\{3,5,7,12,13,14,2 \mid, 23,23,23,23,29,40,56\}
$$

- Next, identify the middle numbers

There are now fourteen numbers and so we don't have just one middle number, we have a pair of middle numbers:

$$
\begin{array}{llllllllllllll}
3 & 5 & 7 & 12 & 13 & 14 & 21 & 23 & 23 & 23 & 23 & 29 & 40 & 56
\end{array}
$$

- Finally, average the two numbers

Add them together and divide by 2 :

$$
\begin{aligned}
& 21+23=44 \\
& 44 \div 2=22
\end{aligned}
$$

Median in this example is $\mathbf{2 2}$

Mode

- The number which appears most often in a set of numbers.
$>$ Example: in $\{6,3,9,6,6,5,9,3\}$ the Mode is 6 (it occurs most often).

$$
6,3,9,6,6,5,9,3
$$

What if there is more than one mode?

- You CAN have more than one mode.
> Example: $\{1,3,3,3,4,4,6,6,6,9\}$
- 3 appears three times, as does 6 .
- So there are two modes: at $\mathbf{3}$ and 6
> Having two modes is called "bimodal".
> Having more than two modes is called "multimodal".

What if there is NO mode?

- You CAN have a set without a mode.
> Example: $\{1,3,5,7,9\}$
- No number appears more than once.
- So there is NO mode.

Try the following:

Find the Mean, Median, and Mode for the following:
I) $\{2,3,5,6,13,5,1\}$
2) $\{20 \mathrm{I}, \mathrm{I} 99,20 \mathrm{I}, 200,199\}$
3) $\{8,7,5,19\}$
4) $\{3,7,2 I, 23,63,27,29,95,23\}$

Measures of Dispersion

- Tell you how widely spread out the values are
- Most common are Range, Standard Deviation, and Variance

Range

- The range of a data set is the difference between the maximum and minimum values in the set
- Example:
$>\ln \{4,6,9,3,7\}$ the lowest value is 3 , and the highest is 9 .

 7. ${ }^{2}$ the ol owest yalue is 3, and the highest is 9. Example: In $\{4,6,9,3,7\}$ the lowest value is 3 , hand the thalighest is 9 . Example: In $\{4,6,9$, 3 , 7 $\}^{\text {and the }}$ thishest st ${ }^{36}$ value is 3 , and the highest is 9. $>$ Range $=3616-5=3611$.
> The single value of 3616 makes the range large, but most values are around 10 .

So the range is 9-3 = 6 .

Try the following:

Find the Range for the following:
I) $\{2,3,5,6,13,5,1\}$

12
2) $\{201,199,201,200,199\}$

3) $\{8,7,5,19\}$

14
4) $\{3,7,21,23,63,27,29,95,23\}$

92

Variance

- The average of the squared differences from the Mean (symbol is σ^{2})
- To calculate the variance follow these steps:
$>$ find the Mean (average of the numbers)
$>$ then for each number: subtract the Mean and square the result (the squared difference)
> then work out the average of those squared differences
- Example: find the variance $\{600,470,170,430,300\}$
> Step I: Find the Mean
$-\frac{600+470+170+430+300}{5}=\frac{1970}{5}=394$
> Step 2: Subtract the Mean from each number in the set and square it
$-600-394=206 \quad 2062=42,436$
$-470-394=76 \quad 762=5,776$
$-170-394=-224 \quad(-224)^{2}=50,176$
$-430-394=36 \quad 362=1,296$
$-300-394=-94 \quad(-94)^{2} \quad=\quad 8,836$
> Step 3: Average those numbers (find the Mean) of the squared\#'s $-\frac{42,436+5,776+50,176+1,296+8,836}{5}=\frac{108,520}{5}=21,704$
$>$ The variance, $\sigma^{2}=21,704$

Standard Deviation

- The Standard Deviation is a measure of how spread out numbers are (what is the standard difference between values in the set?)
- Its symbol is σ (the greek letter sigma)
- The formula
$>$ the square root of the Variance $\sqrt{\sigma^{2}}=\sigma$
- From our last example:

$>$ The variance, $\sigma^{2}=21,704$
$>$ The standard deviation, $\sigma=\sqrt{21,704}=147.3227749 \approx 147.3228$

Variance/Standard Deviation:
small - data tends to be close to the mean big - data is more spread out

Variance seems like ALOT of work!

GOOD NEWS...

It can ALL be done in your calculator!

Here's how: (I'm using example 4 from Try This) > Go to STAT (enter to pull up lists) - enter the values in LI
« order doesn't matter

> Once values are entered, 2nd Mode to g¢
$>$ Go to STAT
> Arrow over to CALC
> Choose I: I-Var-Stats

- hit enter 3 or 4 times to get the screen on the right
> Scroll down and there's more!
> All of your stats are here!

What do they mean??

Median
 Mode: You still have to find that one on your own! 23

TRY IT AIL TOGETHER NOW...

- Find the following for the set $X=\{2,5,8,21,45,26,5,10\}$
$>$ Mean: X 15.25
> Median:
> Mode: 5
\rightarrow Range: $45 \cdot 2=43$
\rightarrow Variance: $\sigma^{2}=187.4375$
\rightarrow Standard Deviation: $\sigma=13.69078157$

