Geometry SMART Packet Triangle Proofs (SSS, SAS, ASA, AAS)

Student: \qquad Date: \qquad Period: \qquad

Standards

G.G. 27 Write a proof arguing from a given hypothes is to a given conclusion.
G.G. 28 Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL), given sufficient information about the sides and/or angles of two congruent triangles.

Note: We can NOT prove triangles with AAA or SSA!!

How to set up a proof:

When the triangles have an angle or

side in common | 6. Definition of a Midpoint |
| :--- |
| Results in two segments being |
| congruent |

Directions: Check which congruence postulate you would use to prove that the two triangles are congruent.

Practice. Fill in the missing reasons
6. Given: $\angle Y L F \cong \angle F R Y, \quad \angle R F Y \cong \triangle F Y$

Prove: $\triangle F R Y \cong \triangle F L Y$

Statement	Reason
1. $\angle Y L F \cong \angle F R Y$	
2. $\angle R F Y \cong \angle L F Y$	
3. $\overline{F Y} \cong \overline{F Y}$	
4. $\triangle F R Y \cong \triangle F L Y$	

7. Given: $\overline{L T} \cong \overline{T R}, \angle L T \cong \cong E T R, I T \| E R$

Prove: $\triangle L I T \cong \triangle T E R$

Statement	Reason	
1. $\overline{L T} \cong \overline{T R}$		
2. $\angle I L T \cong \angle E T R$		
3. $I T \\| E R$		
4. $\angle L T I \cong \angle E R T$		
5. $\triangle L I T \cong \triangle T E R$		

8. Given: C is midpoint of $\overline{B D}$

$$
\begin{aligned}
& \overline{A B} \perp \overline{B D} \\
& \overline{B D} \perp \overline{D E}
\end{aligned}
$$

Prove: $\triangle A B C \cong \triangle E D C$

Statement	Reason
1. C is midpoint of $\overline{B D}$	
2. $\overline{A B} \perp \overline{B D}$ and $\overline{B D} \perp \overline{D E}$	
3. $\overline{B C} \cong \overline{C D}$	
4. $\angle B C A \cong \angle E C D$	
5. $\angle A B C$ and $\angle E D C$ are right angles	
6. $\angle A B C \cong \angle E D C$	
7. $\triangle A B C \cong \triangle E D C$	

9. Given: $\overline{B A} \cong \overline{E D}$
C is the midpoint of $\overline{B E}$ and $\overline{A D}$
Prove: $\triangle A B C \cong \triangle D E C$

Statement	Reason
1. $\overline{B A} \cong \overline{E D}$	
2. C is the midpoint of $\overline{B E}$ and $\overline{A D}$	
3. $\overline{B C} \cong \overline{E C}$	
4. $\overline{A C} \cong \overline{D C}$	
5. $\triangle A B C \cong \triangle D E C$	

10. Given: $\overline{B C} \cong \overline{D A}$
$\overline{A C}$ bisects $\angle B C D$
Prove: $\triangle A B C \cong \triangle C D A$

Statement	Reason
1. $\overline{B C} \cong \overline{D A}$	
2. $\overline{A C}$ bisects $\angle B C D$	
3. $\angle B C A \cong \angle D C A$	
4. $\overline{A C} \cong \overline{A C}$	
5. $\triangle A B C \cong \triangle C D A$	

Practice. Write a 2 -column proof for the following problems.
11.

Given: $\angle A D B$ and $\angle C D B$ are right angles $\angle A \cong \angle C$
Prove: $\triangle A D B=\triangle C D B$

12. Given: C is the midpoint of $B D$ and $A E$ Prove: $\triangle A B C \cong \triangle E D C$

13. Given: $\overline{A B} \cong \overline{C B}, \overline{B D}$ is a median of $\overline{A C}$

Prove: $\triangle A B D \cong \triangle C B D$

Regents Practice

14. Which condition does not prove that two triangles are congruent?
(1) $\mathrm{SSS} \cong \mathrm{SSS}$
(2) $\mathrm{SSA} \cong \mathrm{SSA}$
(3) $\mathrm{SAS} \cong \mathrm{SAS}$
$A S A \cong A S A$
15. In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove $\triangle A B C \cong \triangle D E F$?
(1) SSS
(2) SAS
(3) ASA
(4) HL
16. In the accompanying diagram of triangles $B A T$ and $F L U, \angle B \cong \angle F$ and $\overline{B A} \cong \overline{F L}$.

Which statement is needed to prove $\triangle B A T \cong \triangle F L U$?
(1) $\angle A \cong \angle L$
(2) $\overline{A T} \cong \overline{L U}$
(3) $\angle A \cong \angle U$
(4) $\overline{B A} \| \overline{F L}$
17. In the accompanying diagram, $\overline{H K}$ bisects $\overline{Z L}$ and $\angle H \cong \angle K$.

What is the most direct method of proof that could be used to prove $\triangle H I J \cong \triangle K L J$?
(1) $\mathrm{HL} \cong \mathrm{HL}$
(2) $\mathrm{SAS} \cong \mathrm{SAS}$
(3) $A A S \cong A A S$
(4) $A S A \cong A S A$
18. Complete the partial proof below for the accompanying diagram by providing reasons for steps $3,6,8$, and 9 .

Given: $\overline{A F C D}, \overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}, \overline{B C} \| \overline{F E}, \overline{A B} \cong \overline{D E}$
Prove: $\triangle A B C \cong \triangle D E F$

	Statements	
$1 \overline{A F C D}$	1 Given	
$2 \overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}$	2 Given	
$3 \angle B$ and $\angle E$ are right angles.	3	
$4 \angle B \cong \angle E$	4 All right angles are congruent.	
$5 \overline{B C} \\| \overline{F E}$	5 Given	
$6 \angle B C A \cong \angle E F D$	6	
$7 \overline{A B} \cong \overline{D E}$	7 Given	
$8 \triangle A B C \cong \triangle D E F$	8	

1．Cis midpr $\overline{D D}+\overline{A c}$ iginen
2） $\overrightarrow{A C}=\overrightarrow{E C}$
2，even ofnotpot
3．社采
3 defo ofvidA
4．$\angle A C B=\angle B \angle B O$ 呾 $W A=$
3．Dufn of 1
6．is inne il fern $A C x \geq$
5．$\triangle A B E=\triangle O L \quad 5$ SAS
8．AAS
（13）

$3 \overrightarrow{A T}=\overline{L N} \quad 3<y f$ madia

$5 \cdot 8 \operatorname{Nas} \div \triangle C \beta_{0} 5.555$
（iv）（2）
（16）（1）
$(17)(2)$
$=(3)$

H5 +his you we not ceoponsible fin
そ SS5
(2) SAS
(2) $A A S$
(2) $45 A$
(8) S3s
(2) Reasms

1. Gomein
\Rightarrow guwer
2. luiexere prop
3. ASA
if) $\frac{\text { Rigens }}{\text { Genen }}$
4. gumar
5. ikonkan't, in \&
: A 办
(8) Redan-s

1 gener
2 geni-
3. Fforisi deloin miant.
4.
$5 \operatorname{Zegn} \hat{i} \frac{1}{1}$

\rightarrow RAS
(9) Suars
\therefore gorem
2. giver
3. lefing molit
it din of $\mathrm{m} \cdot \mathrm{C} \mathrm{m}^{2}$
5. 555
(b) Revens

1 ghein
${ }_{3}$ 2 kien of i-bsecto
if Nifynemer
5. SAS
(ii)

2. $\angle A T x^{\circ}=\angle 128$
2. घleq Cs
3. Suin
3. $\angle A=\angle C$
4. fiplike
5. $\triangle A D S *$ ACB 5 . AAS
b. $\triangle A D B-A C D B$ b. dy है

