Unit 4B Day 3 and 4

Notes on CPCTC

 and proofs with overlapping triangles
Day 3 Warm-Up

33. Which of the following is NOT a method used to prove triangles congruent?
A. AAS
B. ASA
C. SAS
D. SSA
34. Suppose $\overline{R T} \cong \overline{N D}$ and $\angle R \cong \angle N$. What additional information is needed to prove $\triangle R T J \cong \triangle N D F$ by ASA?
F. $\angle T \cong \angle D$
G. $\angle R \cong \angle N$
H. $\angle J \cong \angle D$
J. $\angle T \cong \angle F$
35. $\overline{P Q}$ bisects $\angle R P S$ and $\angle R Q S$. Justify each answer.
a. Which pairs of angles, if any, are congruent?
b. By what theorem or postulate can you prove that $\triangle P R Q \cong \triangle P S Q$?
36. $\overline{L J} \| \overline{K G}$ and M is the midpoint of $\overline{L G}$.

a. Why is $\overline{L M} \cong \overline{G M}$?
b. Can the two triangles be proved congruent by ASA? Explain.
c. Can the two triangles be proved congruent by AAS? Explain.

Then do \# 26, 28, 30 from yesterday's Proof Packet

Day 3 Warm-Up Answers

33. Which of the following is NOT a method used to prove triangles congruent?
A. ABS
B. ASA
C. GAS
D. SSA
34. Suppose $\overline{R T} \cong \overline{N D}$ and $\angle R \equiv \angle N$. What additional information is needed to prove $\triangle R T J=\triangle N D F$ by $A S A$?
$E \angle T \cong \angle D$
G. $\angle R \equiv \angle N$
H. $\angle J \equiv \angle D$
J. $\angle T \equiv \angle F$
35. $\overline{P Q}$ bisects $\angle R P S$ and $\angle R Q S$. Justify each answer. a. Which pairs of angles, if any, are congruent?

ASA
b. By what theorem or postulate can you prove that $\triangle P R Q=\triangle P S Q$?
36. LJ $K G$ and M is the midpoint of $\overline{L G}$.
a. Why is $\overline{L M} \cong \overline{G M}$?
b. Can the two triangles be proved congruent by ASA? Explain.
c. Can the two triangles be proved congruent by AAS? Explain.
Yes

HW Discussion
$4=4 \mathrm{U}$ Uing Congivuent "rvidnglles: $\mathbb{C} \mathbb{P C} \mathbb{C N}^{1}$

Proving Parts of Triangles Congruent:

With SSS, SAS, ASA, and AAS, you know how to use three parts of triangles to show that triangles are congruent. Once you have triangles congruent, you can make conclusions about their other parts.

By definition, corresponding parts of congruent triangles are congruent.

Ex 1.
Given: $\angle R \cong \angle Q$

$$
\angle Q P S \cong \angle R S P
$$

Prove: $\overline{P R} \cong \overline{S Q}$

Statement

1) $\begin{gathered}\angle R \cong \angle Q \\ \angle Q P S \cong \angle R S P\end{gathered}$
2) $\overline{P S} \cong \overline{P S}$
3) Reflexive property of congruence
4) $\triangle Q P S \cong \triangle R S P$
5) $\overline{P R} \cong \overline{S Q}$
6) AAS Theorem
7) CPCTC

What other pairs of sides and angles can you conclude are congruent by CPCTC?

Fxdnnple

According to legend, one of Napoleon's officer used congruent triangles to estimate the width of a river. On the riverbank, the officer stood up straight and lowered the visor of his cap until the farthest thing he could see was the edge of the opposite bank. He then turned and noted the spot on his side of the river that was in line with his eye and the tip of his visor. The officer then paced off the distance to this spot and declared that distance to be the width of the river! Use congruent triangles to prove that he was correct.

Given:

$\angle \mathrm{DEG}$ and $\angle \mathrm{DEF}$ are right angles
$\angle \mathrm{EDG} \cong \angle \mathrm{EDF}$

Prove:

$\overline{\mathrm{EG}} \cong \overline{\mathrm{EF}} \quad$ (proof on next slide)

Given:

$\angle \mathrm{DEG}$ and $\angle \mathrm{DEF}$ are right angles
$\angle \mathrm{EDG} \cong \angle \mathrm{EDF}$

Prove:

$$
\overline{\mathrm{EG}} \cong \overline{\mathrm{EF}}
$$

Statement

1. $\angle E D G \cong \angle E D F$
2. $\overline{\mathrm{DE}} \cong \overline{\mathrm{DE}}$
3. $\angle D E G$ and $\angle D E F$ are right angles.
4. $\angle D E G \cong \angle D E F$
5. $\triangle D E F \cong \triangle D E G$
6. $\overline{\mathrm{EG}} \cong \overline{\mathrm{EF}}$

Reasons

1. Given
2. Reflexive Property of Congruence
3. Given
4. All right angles are congruent.
5. ASA Postulate
6. СРСТС

Fexanple

What other congruence statements can you prove from the diagram, in which $\overline{\mathrm{SL}} \cong \overline{\mathrm{SR}}$, and $\angle 1 \cong \angle 2$ are given?
$\overline{\mathrm{SC}} \cong \overline{\mathrm{SC}}$ by the Reflexive Property of Congruence, and $\Delta L S C \cong \Delta R S C$ by SAS Postulate.
Then, $\angle 3 \cong \angle 4$ because corresponding parts of congruent triangles are congruent.

When two triangles are congruent, you can form congruence statements about three pairs of corresponding angles and three pairs of corresponding sides.

You could also use CPCTC to prove $\angle C L S \cong \angle C R S$ and $\overline{C L} \cong \overline{C R}$

Practice

1) Notes online p. 16 \#11, 12, 15
2) Bottom 4 Congruent Triangle Challengers from
http://feromax.com/ cgi-bin/Provelt.pl

3) Notes online p. 16-18 \#20, 21

4.7 Using Corresponding Parts of Congruent Triangles

Some triangle relationships are difficult to see because the triangles overlap. Overlapping triangles may have a common side or angle.

You can simplify your work with overlapping triangles by separating and redrawing the triangles.

Ex: Name the parts of their sides that $\triangle D F G$ and $\triangle E H G$ share.

$1^{\text {st }}$, Identify the overlapping triangles.
$2^{\text {nd }}$, Identify the shared parts.
These are $\overline{H G}$ and $\overline{F G}$, respectively, and angle G.

More tips on the next slide!

Tips for identifying reflexive parts

Draw the triangles separately. Using colors can help! Trace the triangles on the original diagram. Look at where the colors overlap.

Then, look at the amount of repeated letters between the two triangles.

- Often, 1 repeated letter means there is an angle pair congruent by reflexive property.
- Often, 2 repeated letters means there is a side pair congruent by reflexive property.

Practice

Continue work on online Notes p. 15-18

Exit Ticket:

1.What does "CPCTC" stand for?

Use the diagram for Exercises 2 and 3.
2. Tell how you would show

$$
\triangle A B M \cong \triangle A C M .
$$

3. Tell what other parts are congruent by СРСТС.

Use the diagram for Exercise 4.
4. Given: $<\mathrm{Q} \cong<S$, and $\overline{R U} \cong \overline{T U}$ Prove: $\overline{R Q} \cong \overline{T S}$.

1. What does "CPCTC" stand for?

Corresponding parts of congruent triangles are congruent.
Use the diagram for Exercises 2 and 3.
2. Tell how you would show $\triangle A B M \cong \triangle A C M$.

You are given two pairs of $\cong \angle s$ and $\overline{A M} \cong \overline{A M}$ by the Reflexive Prop., so $\triangle A B M \cong \triangle A C M$ by ASA.
3. Tell what other parts are congruent by CPCTC.

$$
\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}, \overline{\mathrm{BM}} \cong \overline{\mathrm{CM}}, \angle \mathrm{~B} \cong \angle \mathrm{C}
$$

Use the diagram for Exercises 4 and 5 .

4. Given: $<\mathrm{Q} \cong<S$, and $\overline{R U} \cong \overline{T U}$ Prove: $\overline{R Q} \cong \overline{T S}$.

1) $<Q \cong<S$,
and $\overline{R U} \cong \overline{T U}$
2) $\angle \mathrm{RUQ} \cong \angle T U S$
3) $\triangle \mathrm{RUQ} \cong \triangle T U S$
4) $\overline{R Q} \cong \overline{T S}$.
5) Given
6) vertical angles are \cong
7) AAS Theorem

Day 3 Collected Proof:

Requirements: Write down ALL parts of the problem and mark in your picture. No Talking! This proof will be graded for accuracy!

Given: $\begin{aligned} & \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \\ & \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}\end{aligned}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Day 3 Collected Proof:

Requirements: Write down ALL parts of the problem and mark in your picture. No Talking! This proof will be graded for accuracy!

Given: $\begin{aligned} & \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \\ & \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}\end{aligned}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Day 4

Practice with Proofs

Day 4 Warm-Up

22. In the diagram, $\triangle R X W \cong \triangle J X T$. Which statement is NOT necessarily true?
A. $\angle J \cong \angle R$
B. $\angle W \cong \angle T$
c. $\overline{W X} \cong \overline{J X}$
D. $\overline{R W} \cong \overline{J T}$

23. Which is true by CPCTC?
F. $\overline{A C}$ bisects $\overline{B D}$
G. $\angle B A C \cong \angle D C A$
H. $\angle A B E \cong \angle E D C$
J. $\overline{B C} \cong \overline{D C}$
24. Which is not true by CPCTC?
A. $\overline{B E} \cong \overline{D E}$
B. $\angle B A C \cong \angle D A C$
C. $\angle B C A \cong \angle D C E$
D. $\overline{A B} \cong \overline{A D}$

$\triangle A B C \cong \triangle A D C$
Exercises 23-24
25. In the diagram, $\overline{K B}$ bisects $\angle V K T$ and $\overline{K V} \cong \overline{K T}$.
a. What do you need to show in order to conclude $\angle K B V \cong \angle K B T$? State whether it is possible to show this and justify your answer.

b. Prove that $\overline{V B} \cong \overline{T B}$.

Day 4 Warm-Up Answers

22. In the diagram, $\triangle R X W \cong \triangle I X T$. Which statement is NOT necessarily true?
A. $\angle J \geqslant \angle$
B. $\angle W \equiv \angle T$
C. $\overline{W X} \equiv \overline{J X}$
D. $\overline{R W} \cong \overline{J T}$

23. Which is true by CPCTC?
F. $\overline{A C}$ bisects $\overline{B D}$
G. $\triangle B A C=\angle D \in A$
$\mathrm{H}_{2} \triangle A B E=\angle E D C$
J. $\overline{B C} \equiv \overline{D C}$
24. Which is not true by CPCTC?
A. $\overline{B E} \cong \overline{D E}$
B. $\angle B A C=\angle D A C$
C. $\angle B C A \cong \angle D C E$
D. $A B=\overline{A D}$

Exercises 23-24
25. In the diagram, $\overline{K B}$ bisects $\angle V K T$ and $\overline{K V} \equiv \overline{K T}$.

a. What do you need to show in order to conclude $\angle K B V \equiv \angle K B T$? State whether it is possible to show this and justify your answer.

b. Show that $\overline{V B} \cong \overline{T B}$.

Day 4 Collected Proof Answers:

Requirements: Write down ALL parts of the problem and mark in your picture. No Talking! This proof will be graded for accuracy!

Given: $\begin{aligned} & \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \\ & \| \overline{\mathrm{CD}}\end{aligned}$
Prove: $\overline{A D} \cong \overline{C B}$

Day 4 Collected Proof:

Requirements: Write down ALL parts of the problem and mark in your picture. No Talking! This proof will be graded for accuracy!

Given: $\begin{aligned} & \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \\ & \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}\end{aligned}$
Prove: $\overline{A D} \cong \overline{C B}$

HW Discussion

A tougher CPCTC problem

Complete a 2-column proof for....
2) Given: $\overline{\operatorname{PS}} \cong \overline{R S}, \angle \mathrm{PSQ} \cong \angle R S Q$ Prove: ${ }_{\triangle Q P T \cong \triangle Q R T}$

Answer to tougher CPCTC problem

2) Given: $\overline{\mathrm{SS}} \cong \overline{\mathrm{RS}}, \angle \mathrm{PSQ} \cong \angle \mathrm{RSQ}$ Prove: ${ }_{\triangle Q P T} \cong \triangle Q R T$

Statement	Reason
$\overline{P S} \cong \overline{R S}, \angle \mathrm{PSQ} \cong \angle \mathrm{RSQ}$	Given

$\overline{S Q} \cong \overline{S Q}$

$$
\begin{gathered}
\triangle \mathrm{PSQ} \cong \triangle \mathrm{RSQ} \\
\overline{P Q} \cong \overline{R Q} \text { and } \\
\angle \mathrm{PQS} \cong \angle \mathrm{RQS} \\
\overline{Q T} \cong \overline{Q T}
\end{gathered}
$$

$$
\triangle Q P T \cong \triangle Q R T
$$

Reflexive property of congr.

SAS Post.

CPCTC

Reflexive property of congr.
SAS Post.

Practice Proof - tougher one using CPCTC

Given: $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}, \overline{A C} \cong \overline{D B}$
Prove: $\overline{A E} \cong \overline{D E}$

Practice Proofs - tougher one using CPCTC
Given: $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}, \overline{A C} \cong \overline{D B}$
Prove: $\overline{A E} \cong \overline{D E}$

Statement
$\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}, \overline{A C} \cong \overline{D B}$

Reason

$\angle \mathrm{ABC}$ and $\angle \mathrm{DCB}$ are Right Angles Defn. of perpendicular
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$ are Right $\Delta \mathrm{s}$

$$
\overline{B C} \cong \overline{B C}
$$

$$
\begin{gathered}
\triangle A B C \cong \triangle D C B \\
\overline{A B} \cong \overline{D C} \text { and } \angle A \cong \angle D \\
\angle A E B \cong \angle D E C \\
\triangle A E B \cong \triangle D E C \\
\overline{A E} \cong \overline{D E}
\end{gathered}
$$

Reflexive Property of \cong
HL Theorem
CPCTC
Vertical angles Theorem
AAS Theorem
СРСТС

Practice

Continue work on online Notes p. 15-18

Day 4 Collected Proof:

 Complete a 2-column proof.
Given:

$\overline{\mathrm{AD}}$ is a \perp bisector of $\overline{\mathrm{BC}}$

Prove:
 $A B \cong A C$

9 Requirements: Write down ALL parts of the problem and mark in your picture. No Talking!

Day 4 Collected Proof Answer:

Given: $\overline{\mathrm{AD}}$ is a \perp bisector of $\overline{\mathrm{BC}}$ Prove: $\overline{A B} \cong \overline{A C}$

Statement
$\overline{\mathrm{AD}}$ is $a \perp$ bisector of $\overline{B C}$
$\angle \mathrm{ADC}$ and $\angle \mathrm{ADB}$ are right $\angle \mathrm{s}$

$$
\angle \mathrm{ADC} \cong \angle \mathrm{ADB}
$$

$$
\overline{B D} \cong \overline{C D}
$$

$$
\overline{A D} \cong \overline{A D}
$$

$$
\angle \mathrm{ADC} \cong \angle \mathrm{ADB}
$$

$$
\overline{A B} \cong \overline{A C}
$$

Reason
Given
Defn. of perpendicular lines
All Right angles are congruent
Defn. of bisector
Reflexive Property of congruence
SAS Postulate
CPCTC

