Unit 4B - Nomenclature Covalent Naming

Writing chemical formulas is a fundamental skill in chemistry. Mastery of this unit is REQUIRED as it will be used in EVERY subsequent unit. Chemists have agreed in every nation on rules to name and write the chemical formulas of compounds. Chemists are able to communicate in a common language based on these rules and it is an important step in becoming a chemist.

Chemical nomenclature is a set of rules to generate <u>systematic names</u> for <u>chemical compounds</u>. The nomenclature used most frequently worldwide is the one created and developed by the <u>International Union of Pure and Applied Chemistry (IUPAC)</u>.

The IUPAC's rules for naming <u>organic and inorganic compounds</u> are contained in two publications, known as the Blue Book and the Red Book, respectively.

The primary function of chemical nomenclature is to ensure that a spoken or written chemical name leaves no ambiguity concerning which chemical compound the name refers to: each chemical name **should refer to a single substance.**

There are <u>two</u> types of nomenclature. The IUPAC has a set of rules for naming organic chemicals and inorganic chemicals.

Covalent Naming

• Binary covalent compounds are characterized by having two nonmetals. Naming these compounds involves the use of numerical prefixes:

Prefix	Number	Prefix	Number
mono	1	hexa	6
di	2	hepta	7
tri	3	octa	8
tetra	4	nona	9
penta	5	deca	10

- If there is only ONE atom of the first element, you DON'T need a prefix.

 The FIRST element is named as a normal element.
- The SECOND element has an -IDE ending.

 \circ N₂O₄ dinitrogen tetraoxide o XeF₄ xenon tetrafloride \circ N₂O₅ dinitrogen pentaoxide \circ CO carbon monoxide o CBr₄

carbon tetrabromide

o Diarsenic pentoxide

AS2O5

o Phosphorous pentabromide

PBr₅

o Carbon tetraiodide

CI₄

Trisilicon tetranitride

Si₃N₄

o Tetraphosphorous decoxide

 P_4O_{10}

Naming Polyatomic Ions

You have memorized several polyatomic ions, but there are some you don't know, but can figure out:

- Use chlorate (ClO3) as an example
- If the ion has 1 more oxygen atom than the base ion (ClO₃-), it is named by a prefix per- and a suffix -ate.
 - ClO₄ is perchlorate
- If the ion has 1 less oxygen atom then the base ion (ClO₃-), then it is named by the suffix -ite.
 - ClO₂ is chlorite
- If the ion has 2 less oxygen atoms than the base ion (ClO₃-), then it is named by the prefix hypo- and a suffix -ite.
 - o ClO is hypochlorite

Name the following:

1. SO₃²- **Sulfite**

3. SO₂²- **Hyposulfite**

- 2. PO₃³- Phosphite
- 4. CO₂²- Carbonite
- 5. PO₅³- Perphosphate 6. CrO₃²- Chromite

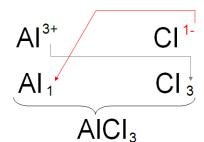
Balancing Charges

Overall

- 1. Balance charge with + and ions
- 2. Write the positive ion of metal first, and the negative ion second

3. Write the number of ions needed as subscripts

Naming Binary Ionic Formulas


1. The Cation is named and written first, then anion and the Monatomic cation = name of the element

$$Ca^{2+}$$
 = calcium ion

2. The monatomic anion = root and the ending is changed to -ide

Criss-Cross rule

1. Write out symbols and charge of elements

- 2. Criss-Cross charges as subscripts (Swap and Drop)
- 3. Combine as a formula unit

Equation For Balancing Charges

(Number of Cations)x(Cation Charge) + (Number of Anions)x(Anion Charge) = $\underline{0}$ (1)(+3) + (X)(-1) = 0, x = 3

○ EX: Aluminum and Oxygen ○ EX: Barium and Oxygen

$$Al^{+3}O^{-2} \rightarrow Al_2O_3$$

 $Ba^{+2}O^{-2} \rightarrow BaO$

- Balancing Charges Practice:
 - Lithium IodideLi I
 - Strontium Chloride
 SrCl₂
 - o Aluminum Nitride Al N
 - Sodium Sulfide Na₂S

Ionic Compound Naming Notes

- To name ionic compounds:
 - Name the **Metal (cation)** first.
 - o Name the **Non-Metal (anion)** second- change the ending to <u>ide</u>.
 - Al₂O₃ Aluminum Oxide
 - o BaCl₂ Barium Chloride
 - o Ca₃N₂ Calcium Nitride
 - KF Potassium Fluoride
- Ionic Compounds with transition metals:
 - Transition metals and p-block metals can have multiple oxidation states.
 - Silver (Ag) is always +1
 - Zinc (Zn) is always +2
 - Cadmium (Cd) is always +2
 - o Roman numerals are used in naming transition metals with more than one charge, we have to specify which charge is involved.

Roman numeral	Charge
I	+1
II	+2
III	+3
IV	+4

o Some elements, such as iron, form two or more cations with different charges. We use **Roman numerals** to indicate the ion's charge. For

example, Fe⁺² would be named <u>Iron (II)</u> and Fe⁺³ would be named <u>Iron (III)</u>. If an element does *not* form more than one charge, then you do not use a Roman numeral in its name.

■ Iron (III) Oxide Fe₂O₃

■ PbO₂ Lead (IV) Oxide

■ Fe₂S₃ Iron (III) Sulfide

• The one you are responsible for are as follows:

<u>Name</u>	Symbol	<u>Name</u>	Symbol
lead (II)	Pb ⁺²	mercury (II)	Hg^{+2}
lead (IV)	Pb ⁺⁴	tin (II)	Sn ⁺²
mercury (I)	Hg ⁺¹	tin (IV)	Sn ⁺⁴
copper (I)	Cu ⁺¹	iron (II)	Fe^{+2}
copper (II)	Cu ⁺²	iron (III)	Fe^{+3}
chromium (II)	Cr ⁺²	chromium (III)	Cr ⁺³

Naming Acids

- If the compound begins with Hydrogen, it is an acid. If the acid does not contain a polyatomic ion, write the prefix hydro-, then name the second element and change the ending to -ic.
 - o HCl

Hydrochloric acid

o HBr

Hydrobromic acid

 \circ H₂S

Hydrosulfuric acid

Naming Acids with Polyatomic Ions

The polyatomic ions you have memorized have *-ate* as the ending, so you name the polyatomic ion and change the ending to -ic.

Use sulfate (SO_4^{2-}) as the example

- H₂SO₄ is sulfuric acid
- If the ion has one more oxygen atom than the base (SO_4^{2-}) , then the ion is named by adding the prefix per- and the suffix -ic
 - \circ H₂SO₅
- persulfuric acid is
- If the ion has one less oxygen atom than the base (SO_4^{2-}) , then the ion is named with the suffix -ous.
 - \circ H₂SO₃
- is

sulfurous acid

- If the ion has two less oxygen atoms than the base (SO_4^{2-}) , then the ion is named with the prefix hypo- and the suffix -ous.
 - \circ H₂SO₂
- is

hyposulfurous acid

Name the following:

Carbonic acid 1. H₂CO₃

- 3. HClO₄ Perchloric acid

- 2. H₃PO₂
- Hypophosphorious acid
- 4. H₃PO₃
- Phosphorous acid

Hydrated Compounds

- These are Ionic compounds that produce water when decomposed by heating.
- The compounded is named using the ionic compound, a dot ●, H₂O, and the ending hydrate.
- The number of water molecules are indicate using previous prefixes of "di", "tri", etc.

Practice Name Formula

- 1. CuSO₄ 5H₂O
- Copper (II) sulfate pentahydrate
- 2. $ZnCl_2 \bullet 6H_2O$
- Zinc chloride hexahydrate

Naming Summary Sheet:

Naming Ionic Compounds: Metal and Nonmetal

Rules:

- 1. The first element (the cation) is named first, using the elements name.
- 2. Second element (the anion) is named change the ending of the anion to –ide (unless a polyatomic ion) (suffix "-ide")
- Example: CaF_2 calcium fluoride
- If a metal has <u>more than one</u> possible charge, use roman numerals to describe the charge of the metal.
 - Fe_2S_3 iron (III) sulfide

Transition Metals with Single Charges:

 $-Ag^{+1}$ $-Cd^{+2}$

Transition Metals with Multiple Charges:

- Cu^{+1} or Cu^{+2}
- Cr^{+2} or Cr^{+3}
- Co^{+2} or Cr^{+3}
- Fe^{+2} or Fe^{+3}
- Pb^{+2} or Pb^{+4}
- Sn^{+2} or Sn^{+4}

Naming a Covalent Compounds: 2 Nonmetals

Rules:

- 1. Prefixes are used to denote the number of atoms
- 2. "Mono" is not used to name the first element

Note: when the addition of the Greek prefix places two vowels adjacent to one another, the "a" (or the "o") at the end of the Greek prefix is usually dropped; e.g., "nonaoxide" would be written as "nonoxide", and "monooxide" would be written as "monoxide". The "i" at the end of the prefixes "di-" and "tri-" are never dropped

Prefix	Number	Prefix	Number
Mono	1	Hex(a)	6
Di	2	Hept(a)	7
Tri	3	Oct(a)	8
Tetr(a)	4	Non(a)	9
Pent(a)	5	Dec(a)	10

- If there is only ONE atom of the first element, you DON'T need a prefix. The FIRST element is named as a normal element. The SECOND element has an –IDE ending.
- Example: CBr₄ carbon tetrabromide

Naming Polyatomics and Acids: Only Nonmetals

Base Polyatomics:

ClO ₃ -1	Chlorate	IO ₃ -1	Iodate
NO_3^{-1}	Nitrate	SO_4^{-2}	Sulfate
CO ₃ -2	Carbonate	PO ₄ -3	Phosphate
BrO ₃ -1	Bromate	CrO ₄ -2	Chromate

To determine name, look at how the compound compares to the base, with an –ate ending.

Number of Oxygen:	Polyatomics	Example	Acids	Example
1 more than base	Per –ate	-SO ₅ - persulfate	Per –ic acid	HClO ₄ – perchloric acid
Base	-ate	-SO ₄ - sulfate	-ic acid	HClO ₃ - chloric acid
1 less than base	-ite	-SO ₃ - sulfite	-ous acid	HClO ₂ - chlorous acid
2 less than base	Hypo-ite	-SO ₂ - hyposulfite	Hypo-ous	HClO – hypochlorous
			acid	acid
Binary (no oxygen	-ide	-S - sulfide	Hydro-ic acid	HCl – hydrochloric acid
present				

Note: When Group is used, it is referring to all of the elements in the groups on the periodic table.

Condensed List of Common Ions and their charges

1. Cations:

+1 charge	+1 charge +2		+2 charge			+4 charg	е
Group 1 Ex: sodium	Ex: Na ⁺¹	Group 2 Ex: calcium	Ex: Ca ⁺²	aluminum	Al ⁺³		
hydrogen	H ⁺¹	cadmium	Cd ⁺²				
silver	Ag ⁺¹	zinc	Zn ⁺²				
hydronium	H ₃ O ⁺¹	copper (II)	Cu ⁺²				
ammonium	NH ₄ ⁺¹	chromium (II)	Cr ⁺²	chromium (III)	Cr ⁺³		
copper (I)	Cu ⁺¹	cobalt (II)	Co ⁺²	cobalt (III)	Co ⁺³		
gold(I)	Au ⁺¹	iron (II)	Fe ⁺²	iron (III)	Fe ⁺³		
		lead (II)	Pb ⁺²			lead (IV)	Pb ⁺⁴
		mercury (I)	Hg ₂ +2				
		mercury (II)	Hg ⁺²				
	·	tin (II)	Sn ⁺²			tin (IV)	Sn ⁺⁴

2. Anions

Required lons							
	-1			-2		-3	
Name	Symbol	Name	Symbol	Name	Symbol	Name	Symbol
Group 17 Ex: Chloride	Ex: Cl-	Cyanide	CN ⁻¹	Group 16 Ex: Oxide	Ex: O-2	*Group 15 Ex: nitride	Ex: N-3
*perchlorate	ClO ₄ ⁻¹	hydroxide	OH-1	carbonate	CO ₃ -2	phosphate	PO ₄ -3
chlorate	ClO ₃ -1	*bicarbonate	HCO ₃ -1	sulfate	SO ₄ -2	phosphite	PO ₃ -3
*chlorite	ClO ₂ -1	hydride	H ⁻¹	*sulfite	SO_3^{-2}		
*hypochlorite	ClO ⁻¹	acetate	C ₂ H ₃ O ₂ -1				
nitrate	NO ₃ -1						
*nitrite	NO_2^{-1}						
Optional lons	May appe	ear in extra cre	edit or in A	AP Chemistry	y)		
	-1			-2		-3	
Name	Symbol	Name	Symbol	Name	Symbol	Name	Symbol
hypochlorite	CIO ⁻¹	perbromate	BrO ₄ -1	oxalate	$C_2O_4^{-2}$	arsenate	AsO ₄ -3
permanganate	MnO ₄ -1	bromate	BrO ₃ -1	peroxide	O_2^{-2}		
Periodate	IO ₄ -1	bromite	BrO ₂ -1	silicate	SiO ₃ -2		
iodate	IO ₃ -1	hypobromite	BrO ⁻¹	telluriate	TeO ₄ -2		
iodite	IO ₂ -1			seleniate	SeO ₄ -2		
hypoiodite	IO ⁻¹			chromate	CrO ₄ -2		
				dichromate	Cr ₂ O ₇ -2		

^{* -}indicates ion can be determined by using additional information (see below). **Bolded lons**- Indicates the most important of the required ions for students to know

3. Additional Information

- a. All cations not listed will use Roman numerals to indicate charges
- b. Anions with different numbers of oxygens other than the "ate" form"

i. 1 more O "per"------"ate" Ex: FO_4^{-1} = perfluorate ii. 1 less O "hypo"-----"ite" Ex: FO_2^{-1} = fluorite Ex: FO_1^{-1} = hypofluorite

- c. Anions which have a hydrogen added to them take a "bi-" or "hydrogen" prefix AND the charges increases by +1
 - i. Ex. HCO₃-1 = bicarbonate or hydrogen carbonate
- d. Some transition metals can be named in another ways, using their Latin name as a root.
 - i. An "ous" ending has the lower possible oxidation state
 - ii. An "ic" ending indicates the higher possible oxidation state
 - iii. This naming system is no longer commonly used and can be found on older bottles of compounds.

		1 11 01119
<u>Name</u>	<u>Symbol</u>	Latin Name
lead (II)	Pb ⁺²	plumbous
lead (IV)	Pb ⁺⁴	plumbic
mercury (I)	Hg ⁺¹	mercurous
mercury (II)	Hg ⁺²	mercuric
tin (II)	Sn ⁺²	stannous
tin (IV)	Sn ⁺⁴	stannic
copper (I)	Cu ⁺¹	cuprous
copper (II)	Cu ⁺²	cupric
iron (II)	Fe ⁺²	ferrous
iron (III)	Fe ⁺³	ferric
chromium (II)	Cr ⁺²	chromous
chromium (III)	Cr ⁺³	chromic

Covalent Naming Worksheet

Name the compound

CO ₂	Carbon dioxide	N_2O	dinitrogen monoxide
NI_3	Nitrogen triiodide	As ₂ O ₅	diarsenic pentoxide
СО	Carbon monoxide	N_2O_3	dinitrogen trioxide
SiBr ₄	Silicon tetra bromide	Cl ₂ S ₇	dichloride heptasulfide
PCl ₅	Phosphorus pentachloride	B ₂ Cl ₄	diboron tetrachloride
SF ₆	Sulfur hexaflouride	P ₄ O ₁₀	tetraphosphorous decoxide

Give the formula for each compound

nitrogen dioxide	NO ₂	phosphorus trifluoride	PF ₃
sulfur hexabromide	SBr ₆	dibromine heptaoxide	Br ₂ O ₇
carbon diselenide	CSe ₂	dinitrogen tetrasulfide	N ₂ S ₄
diphosphorus trioxide	P ₂ O ₃	xenon hexafluoride	XeF ₆
silicon tetrachloride	SiCl ₄	arsenic pentafluoride	AsF ₅

Practice Ionic

Tin (II) Chloride SnCl₂

• PbCl₂ Lead (II) Chloride

Iron (III) Nitride FeN

• CO₂O₃ Colbalt (III) Oxide

Copper (I) Bromide CuBr

• SnS Tin (II) Sulfide

• Circle the correct chemical formula for each compound below. Make sure the positive and negative charges are balanced.

0	calcium oxide	CaO	Ca ₂ O	CaO_2
0	magnesium fluoride	MgF	Mg_2F	MgF ₂
0	sodium sulfide	NaS	Na₂S	NaS_2
0	barium nitride	BaN	Ba_2N_3	Ba ₃ N ₂

Naming Acids

• If the compound begins with Hydrogen, it is an acid. If the acid does not contain a polyatomic ion, write the prefix *hydro-*, then name the second element and change the ending to *-ic*.'

HCl Hydrochloric acid

o HBr Hydrobromic acid

H₂S Hydrosulfuric acid

Naming Acids with Polyatomic Ions

The polyatomic ions you have memorized have -ate as the ending, so you name the polyatomic ion and change the ending to -ic.

Use sulfate (SO_4^{2-}) as the example

- H₂SO₄ is sulfuric acid
- If the ion has one more oxygen atom than the base (SO_4^{2-}), then the ion is named by adding the prefix *per* and the suffix *-ic*
 - O H₂SO₅ is persulfuric acid
- If the ion has one less oxygen atom than the base (SO₄²⁻), then the ion is named with the suffix –
 ous.
 - H₂SO₃ is sulfurous acid
- If the ion has two less oxygen atoms than the base (SO_4^{2-}), then the ion is named with the prefix *hypo* and the suffix *-ous*.
 - H₂SO₂ is hyposulfurous acid

Name the following:

 H_2CO_3 H_3PO_2 $HCIO_4$ H_3PO_3

Carbonic acid Hypophosphorous acid Perchloric acid Phosphorous acid

Ionic Naming Worksheet 2

Fill in the table below with the correct ionic formula. Write the name of the compound in the box as well. The first one has been done for you as an example. Don't forget that certain cations use Roman numerals in their names.

CI-	O ⁻²	N ⁻³
NaCl	Na₃ O	Na₃N
sodium chloride	Sodium Oxide	Sodium Nitride
Cu Cl	Cu ₂ O	Cu₃ N
Copper (I) Chloride	Copper (I) Oxide	Copper (I) Nitride
Cu Cl ₂	Cu O	Cu ₃ N ₂
Copper (II) Chloride	Copper (II) Oxide	Copper (II) Nitride
Mg Cl₂	Mg O	Mg ₃ N ₂
Chloride	Oxide	Nitride
Al Cl ₃ Aluminum Chloride	Al ₂ O ₃ Aluminum Oxide	Al N Aluminum Nitride
Fe Cl ₃	Fe₂ O₃	Fe N
Iron (III) Chloride	Iron (III) Oxide	Iron (III) Nitride
Cd Cl ₂ Cadmium (Chloride	Cd O Cadmium Oxide	Cd ₃ N ₂ Cadmium Nitride
	NaCl sodium chloride Cu Cl Copper (I) Chloride Cu Cl ₂ Copper (II) Chloride Mg Cl ₂ Chloride Al Cl ₃ Aluminum Chloride Fe Cl ₃ Iron (III) Chloride	NaCl Sodium Chloride Cu Cl Copper (I) Chloride Cu Cl ₂ Copper (II) Oxide Cu Cl ₂ Cu O Copper (II) Oxide Mg Cl ₂ Chloride Mg O Oxide Al Cl ₃ Aluminum Chloride Fe Cl ₃ Iron (III) Chloride Cd Cl ₂ Cd O

Ionic Naming Worksheet 3 I. Write the formula for each of the compounds.

1) Copper (II) sulfate	CuSO ₄	10) barium hydroxide	Ba(OH) ₂
2) Ammonium nitrate	NH ₄ NO ₃	11) calcium chlorate	Ca(CIO ₃) ₂
3) Lithium chloride	LiCI	12) aluminum sulfite	Al ₂ (SO ₃) ₃
4) Magnesium acetate	Mg(C ₂ H ₃ O ₂) ₂	13) chromium(II) oxide	CrO
5) Sodium bromide	NaBr	14) potassium iodide	KI
6) Chromium (II) hydroxid	e Cr(OH) ₂	15) sodium hypochlorite	NaClO
7) Lead (II) sulfate	PbSO ₄	16) ammonium oxide	(NH ₄) ₂ O
8) Tin (IV) phosphate	Sn ₃ (PO ₄) ₄	17) potassium sulfide	K ₂ S
9) Sodium bicarbonate	NaHCO ₃	18) lithium perchlorate	LiCIO ₄

II. Give the name of the following compounds.

1) Fe ₂ (SO ₄) ₃	Iron (III) sulfate	10) Ag ₂ SO ₄	Silver sulfate
2) Na ₃ PO ₄	Sodium phosphate	11) Co(OH) ₂	Cobalt Hydroxide
3) Pb(NO ₃) ₂	Lead (II) Nitrate	12) AgClO ₃	Silver Chlorate
4) FeCl ₃	Iron (III) Chloride	13) K ₂ SO ₃	Potassium Sulfite
5) KIO ₃ .———	Potassium lodate	14) CrCO ₃	Chromium (II) Carbonate
6) CaF ₂	Calcium fluoride	15) K ₂ CO ₃	Potassium Carbonate
7) Na ₂ SO ₄	Sodium Sulfate	16) CaO	Calcium Oxide
8) CuSO ₃	Copper (II) Sulfite	17) ZnCO ₃	Zinc Carbonate
9) PbF ₂	Lead (II) Fluoride	18) CuS	Copper (II) Sulfide

Acid Naming Worksheet 4

Complete the table by providing the name of formula for the following acids.

	Nitrio acid
1. HNO ₃	Nitric acid
2. HCI	Hydrochloric acid
3. H₂SO₄	Sulfuric acid
4. H ₂ SO ₃	Sulfurous acid
5. HC₂H₃O₂	Acetic acid
6. HBr	Hydrobromic acid
7. HNO ₂	Nitrous acid
8. H ₃ PO ₄	Phosphoric acid
9. H₂S	Hydrosulfuric acid
10. H ₂ CO ₃	Carbonic acid
11.HI	Hydroiodic acid
12.HF	Hydrofluoric acid
13. HCIO ₃	Chloric acid
14.HCIO	hypochlorous acid
15. H ₃ PO ₃	Phosphorous acid
H ₂ SO ₄	16. Sulfuric Acid
HNO ₃	17. Nitric Acid
HCI	18. Hydrochloric Acid
HC ₂ H ₃ O ₂	19. Acetic Acid
HF	20. Hydrofluoric Acid
HCIO	21. Hypochlorous Acid
H ₃ PO ₃	22. Phosphorous Acid
HNO ₂	23. Nitrous Acid
H ₂ CO ₃	24. Carbonic Acid
H ₂ S	25. Hydrosulfuric Acid
	•

Organic Naming

- Organic molecules can in general be either chains (also known as acyclic) or cyclic or a combination of both.
- Chain of carbon atoms to determine the basic *root name* of the compound.
- The prefix provides the number of carbons, the middle provides the bonds between the carbons (*saturated* single bonds, *unsaturated* double or triple bonds) the ending describes the functional group.

Summary:

Prefix	Number	Prefix	Number
Meth	1	Hex	6
Eth	2	Hept	7
Prop	3	Oct	8
But	4	Non	9
Pent	5	Dec	10

Types of Organic Compounds:

Compound Type	Ending	Example	Properties
Alk ane	ane	H H H H - C - C - C - H H H H	. Propane Saturated hydrocarbons since they have only single bonds with no extra electrons
Alk ene	ene	H H H H—C—C=C H H	Propene Alkenes contain a double bond and are referred to as unsaturated hydrocarbons. The electrons could be available for bonding additional atoms. The suffix for alkenes is ene.
Alk yne	yne	H H—C≡C−C−H H	Propyne Alkynes are unsaturated hydrocarbons containing a triple bond. The two sets electrons could be available for bonding additional atoms. The suffix for alkynes is yne.
Alcohol	ol	H H H H-C-C-C-O-H H H H	Propanol Alcohols are compounds that have an OH group (hydroxyl) bonded to hydrocarbon chains. The suffix for alcohols is ol.
Carboxylic Acid	oic	H H O H-C-C-C H H O-H	Propanoic acid Carboxylic acids have a hydrocarbon group attached to the carboxylic acid group, O The suffix for carboxylic acid is oic acid O COH

Unit 4B

Unit 4B Test Review

Write the formula for the following compounds

- 1. Aluminum Bromide AlBr₃ 4. Dinitrogen Tetroxide N₂O₄
- 2. Ammonium Fluoride NH₄F 5. Iron (II) Sulfate FeSO₄
- 3. Copper (I) Chloride CuCl 6. Carbon Dioxide CO₂

Name the following compounds

- 7. NaHCO₃ Sodium Bicarbonate 10. MgO Magnesium Oxide
- 8. H₂S **HydroSulfic acid** 11. N₂O₃ . **Dinitrogen Trioxide**
- 9. Fe₂(SO₄)₂ Iron (II) Sulfate 12. CuCl₂ Copper (II) Chloride

Name the following compounds:

46. N_2O_4

13. HBr Hydrobromic acid	14. BaSO ₃ Barium Sulfite	15. Al ₂ (SO ₄) ₃ Aluminum Sulfate
16. H ₂ CO ₃	17. HI	18. Ca(SO ₃) ₂

Carbonic acidHydro iodic acidCalcium Sulfite19. $Pb(NO_4)_2$ 20. $Zn_3(PO_2)_2$ 21. $Ca_3(PO_4)_2$ Lead (II) PernitrateZinc HypophosphiteCalcium Phosphate

Lead (II) PernitrateZinc HypophosphiteCalcium Phosphate22. H2SO323. HC2H3O224. K2CrO3Sulfurous acidAcetic acidPotassium Chromite

25 H₂SO₄ 26. Ra(C₂H₃O₂)₂ 27. NiClO **Sulfuric acid Radium acetate Nickel Hypochlorite**

28. HNO₃ 29. H₃P 30. H₃PO₄

Nitric acid Hydrophosphic acid Phosphoric acid

31. HNO_2 32. $Fe(ClO_4)_3$ 33. K_2O

Nitrous acidIron (III) perchloratePotassium Oxide34. HNO335. SnO36. H2SO3

Nitric acid Tin (II) Oxide Sulfurous acid

37. ZnSO₂ 38. Al(ClO)₃ 39. HI

Zinc hyposulfite Aluminum hypochlorite Hydro

Zinc hyposulfiteAluminum hypochloriteHydro iodic acid $40. \ Hg_2Cl_2$ $41. \ Fe(OH)_2$ $42. \ Fe_2(CrO_4)_3$ Mercury (I) ChlorideIron (II) HydroxideIron (III) chromate

43. Ba(ClO₂)₂ 44. Li₃PO₃ 45. KMnO₄

47. Cl₂S₇

Barium Chlorite Lithium Phosphite Potassium permanganate

48. PbO₂

Dinitrogen Tetraoxide49. Rb₂CO₃

Dichloride heptasulfide
50. HClO

51. Fe(OH)₃

Rubidium carbonate hypochlorous acid Iron (III) hydroxide

Write the chemical formula for the following compounds:

52 Hydrochloric Acid 53. Copper (II) Perchlorate 54. Strontium Nitrate

HCl	Cu(ClO ₄) ₂	$Sr(NO_3)_2$
55. Sodium Hypochlorite	56. Phosphoric Acid	57. Lead(IV) Oxide
NaClO	H ₃ PO ₄	$\mathbf{PbO_2}$
58. Sulfurous Acid	59. Tin(II) Fluoride	60. Potassium Permanganate
H_2SO_3	SnF_2	KMnO ₄
61. Aluminum Hyponitrite	62. Chromous Acid	63. Sodium Phosphate
$Al(NO)_3$	H_2CrO_3	NaPO ₄
64. Mercury (II) Sulfide	65. Sodium Sulfite	66. Ammonium Phosphate
HgS	Na_2SO_3	(NH ₄) ₃ PO ₄
67. Tin(IV) Fluoride	68. Iron Nitrate	69. Calcium Perchromate
SnF ₄	$Fe(NO_3)_2$	Ca(ClO ₅) ₂
70. Hyposulfurous Acid	71. Copper(I) Sulfide	72. Titanium (III) Chlorate
H_2SO_3	Cu_2S	Ti(ClO ₄) ₃
73. Calcium Hydroxide	74. Sodium Bicarbonate	75. Aluminum Hypophospite
$Ca(OH)_2$	NaHCO ₃	$Al(PO_2)_3$
76. Lithium Hyposulfite	77. Colbalt (III) Sulfite	78. Tin(IV) Nitrite
Li_2SO_2	$\mathbf{Co}_2(\mathbf{SO}_3)_3$	$Sn(NO_2)_4$
79. Calcium Fluoride	80. Lead(IV) Acetate	81. Ammonium Phosphite
$\mathbf{CaF_2}$	$Pb(C_2H_3O_2)_4$	(NH ₄) ₃ PO ₃
82. Iron(III) Oxide	83. Hydrosulfuric Acid	84. Iron(II) Chromate
$\mathbf{Fe_2O_3}$	H_2S	FeCrO ₄
85. Potassium Cyanide	86. Ammonium Sulfate	87. Calcium Chloride
KCN	(NH ₄) ₂ SO ₄	CaCl ₂
88. Barium Hydroxide	89. Mercury(II) Sulfide	90. Silver Chlorate
Ba(OH) ₂	HgS	$Ag(ClO_3)_2$
91. Lead (II) Sulfate	92. Potassium Permanganate	93. Silicon Dioxide
PbSO ₄	KMnO ₄	SiO_2

94. Draw the condensed structural diagram of the following types of compounds a. Alkane

b. Alkene ...

c. Alkyne

d. Alcohol

e. Carboxylic acid

95. Name the following compounds:

- a. CH₃OH Methanol
- **b.** CH₃CH₂CH₃ **Propane**
- c. CH₃CH₂CH₂CHCHCH₂CH₃ Heptene

96. Determine the formula of the following compounds:

a. Nonane
$$C_9H_{20}$$

or CH_3CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3