#### Unit 5, Activity 1, Customary and Metric Vocabulary Self-Awareness

Look at the vocabulary word. Indicate your knowledge of the word using a +,  $\sqrt{}$ , or –. A plus sign (+) indicates a high degree of comfort and knowledge, a check mark ( $\sqrt{}$ ) indicates uncertainty, and a minus sign (–) indicates the word is brand new to you. Give an example or definition for the term even if you have to guess.

| Word        | + | <br>- | Example | Description |
|-------------|---|-------|---------|-------------|
|             |   |       |         |             |
| length      |   |       |         |             |
|             |   |       |         |             |
| inch        |   |       |         |             |
| fact        |   |       |         |             |
| 1001        |   |       |         |             |
| vard        |   |       |         |             |
| 5           |   |       |         |             |
| mile        |   |       |         |             |
|             |   |       |         |             |
| millimeter  |   |       |         |             |
|             |   |       |         |             |
| centimeter  |   |       |         |             |
| meter       |   |       |         |             |
|             |   |       |         |             |
| kilometer   |   |       |         |             |
|             |   |       |         |             |
| capacity    |   |       |         |             |
|             |   |       |         |             |
| fluid ounce |   |       |         |             |
|             |   |       |         |             |
| cup         |   |       |         |             |
|             |   |       |         |             |

### Unit 6, Activity 1, Customary and Metric Vocabulary Self-Awareness

| Word       | + | <br>- | Example | Description |
|------------|---|-------|---------|-------------|
|            |   |       |         |             |
| pint       |   |       |         |             |
|            |   |       |         |             |
| quart      |   |       |         |             |
|            |   |       |         |             |
| gallon     |   |       |         |             |
|            |   |       |         |             |
| liter      |   |       |         |             |
|            |   |       |         |             |
| milliliter |   |       |         |             |
|            |   |       |         |             |
| weight     |   |       |         |             |
|            |   |       |         |             |
| mass       |   |       |         |             |
|            |   |       |         |             |
| gram       |   |       |         |             |
|            |   |       |         |             |
| pound      |   |       |         |             |
|            |   |       |         |             |
| ounce      |   |       |         |             |
|            |   |       |         |             |
| kilogram   |   |       |         |             |
|            |   |       |         |             |
| ton        |   |       |         |             |
|            |   |       |         |             |

#### Unit 5, Activity 1, Measurement Chart

| Linear Measurement                              |                                                  |  |  |  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|
| Metric System                                   | U. S. Customary System                           |  |  |  |  |  |  |  |
| 1 millimeter is about the thickness of a dime.  | 1 inch is about the length of a small paper clip |  |  |  |  |  |  |  |
| 1 centimeter is about the thickness of a crayon | 1 foot is about the length of a license plate    |  |  |  |  |  |  |  |
| 1 meter is about the width of a front door      | 1 yard is about the width of a front door        |  |  |  |  |  |  |  |
| 1 kilometer is about the length of 10 football  | 1 mile is about the length of 15 football fields |  |  |  |  |  |  |  |
| fields                                          |                                                  |  |  |  |  |  |  |  |
|                                                 |                                                  |  |  |  |  |  |  |  |
| Metric Units                                    | Customary Units                                  |  |  |  |  |  |  |  |
| 10 millimeters $= 1$ centimeter                 | 1  foot = 12  inches                             |  |  |  |  |  |  |  |
| 100  centimeters = 1  meter                     | 1 yard = 3 feet                                  |  |  |  |  |  |  |  |
| 1,000 meters = 1 kilometer                      | 1  yard = 36  inches                             |  |  |  |  |  |  |  |
|                                                 | 1  mile = 5,280  feet                            |  |  |  |  |  |  |  |
|                                                 | 1 mile = $1,760$ yards                           |  |  |  |  |  |  |  |
| Abbreviations of linear measurements according  | to size from smallest to largest:                |  |  |  |  |  |  |  |
| mm (millimeter) cm (centimeter) in.             | (inches) ft (foot) yd (yard)                     |  |  |  |  |  |  |  |

mi (mile)

Weight Measurement

m (meter)

| Customary Units                                                                        | Metric Units                                                                                                                 |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1 pound = 16 ounces<br>1 ton = 2,000 pounds                                            | 1 kilogram = 1000 grams                                                                                                      |
| 1 ounce is about the weight of 30 cm cubes<br>1 pound is the weight of 1 bag of coffee | 1 gram is about the weight of 1 cm cube<br>1 kilogram is about the weight of 2 <sup>1</sup> / <sub>4</sub> bags of<br>coffee |

Abbreviations of weight measurements according to size from smallest to largest:g (gram)oz (ounce)lb (pound)kg (kilogram)

km (kilometer)

Capacity Measures

*Capacity* is the amount a container can hold.

| Customary Units             | Metric Units                          |
|-----------------------------|---------------------------------------|
| 2  cups = 1  pint           | 1 milliliter is about one drop from   |
|                             | an eye dropper                        |
| 2 pints = 1 quart           | 1 liter is about the size of 1 quart  |
| 4  cups = 1  quart          |                                       |
| 1  gallon = 2  half gallons | 1 gallon is about the size of 1 large |
| 1  gallon = 4  quarts       | jug of milk                           |
| 1 gallon = 8 pints          |                                       |
| 1  gallon = 16  cups        |                                       |

Abbreviations of capacity measurements according to size from smallest to largest:ml (milliliter)c (cup)pt (pint)qt (quart)l (liter)gal (gallon)

### Unit 5, Activity 2, Selecting Appropriate Units of Length

Example:



Draw three rectangles for each given dimension. Draw a rectangle in millimeters, centimeters, and inches. Label each figure with the correct units.

1) 5 by 3

2) 1 by 6

#### Unit 5, Activity 3, Area vs. Perimeter Anticipation Guide

#### **Anticipation Guide Statements**

1. The area is the amount of surface inside a given shape.

True\_\_\_\_\_ False\_\_\_\_\_

2. The perimeter is the distance around a shape.

True\_\_\_\_\_ False\_\_\_\_\_

3. The area of a given shape is always the same as the perimeter of the same given shape.

True\_\_\_\_\_ False\_\_\_\_\_

4. An area with a given measurement always has the same perimeter.

True\_\_\_\_\_ False\_\_\_\_\_

5. A figure with a given perimeter always has the same area measurement.

True\_\_\_\_\_ False\_\_\_\_\_

6. The area and perimeter of the same shape are always measured with the same units.

True\_\_\_\_\_ False\_\_\_\_\_

#### Unit 5, Activity 3, Area vs. Perimeter Anticipation Guide with Answers

#### **Anticipation Guide Statements**

1. The area is the amount of surface inside a given shape.

True X False

2. The perimeter is the distance around a shape.

True\_X \_\_\_\_ False\_\_\_\_\_

3. The area of a given shape is always the same as the perimeter of the same given shape.

True\_\_\_\_\_ False\_\_\_X\_\_\_\_

4. An area with a given measurement always has the same perimeter.

True\_\_\_\_\_ False\_\_X\_\_\_\_

5. A figure with a given perimeter always has the same area measurement.

True\_\_\_\_\_ False\_\_\_X\_\_\_\_

6. The area and perimeter of the same shape are always measured with the same units.

True\_\_\_\_\_ False\_\_\_X\_\_\_\_

| _ |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|--|------|--|--|--|--|
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |      |  |  |  |  |

## Unit 5, Activity 3 and Assessment 2, Grid Paper

### Unit 5, Activity 4, Capacity Units

Name: \_\_\_\_\_ Date: \_\_\_\_\_

| fluid<br>ounce | quart     | liter      |
|----------------|-----------|------------|
| cup            | gallon    | milliliter |
| pint           | kiloliter | fl oz      |
| С              | L         | qt         |
| gal            | mL        | pt         |
| kL             |           |            |
|                |           |            |

### Unit 5, Activity 5, Weight/Mass Units

Name: \_\_\_\_\_

Date: \_\_\_\_\_

| ounce    | gram | ton | pound |
|----------|------|-----|-------|
| kilogram | oz   | lb  | kg    |
| g        | Т    |     |       |
|          |      |     |       |

### Unit 5, Activity 6, Measurement Situation Cards

Name: \_\_\_\_\_

| Date: | _ |
|-------|---|
|-------|---|

|                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theo wants to measure the amount of water that<br>his bathtub can hold. What tool should he use to<br>measure? What will his measurement unit be?<br>What is the abbreviation for that unit? Are there<br>any other units that he could use to find answer?<br>Would those be as effective? Why or why not? | Jack wants to measure the perimeter of his<br>rectangular living room floor. What tool should<br>he use to measure? What will his measurement<br>unit be? What is the abbreviation for that unit?<br>Are there any other units that he could use to<br>find answer? Would those be as effective? Why<br>or why not?               |
| Leslie has to measure the flour for a cake she is<br>baking. What tool should she use to measure?<br>What will her measurement unit be? What is the<br>abbreviation for that unit? Are there any other<br>units that she could use to find answer? Would<br>those be as effective? Why or why not?          | Jessica wants to measure the width of her car.<br>What tool should she use to measure? What will<br>her measurement unit be? What is the<br>abbreviation for that unit? Are there any other<br>units that she could use to find answer? Would<br>those be as effective? Why or why not?                                           |
| Tyrin measures his waist to see what size of<br>pants to buy. What tool should he use to<br>measure? What will his measurement unit be?<br>What is the abbreviation for that unit? Are there<br>any other units that he could use to find answer?<br>Would those be as effective? Why or why not?           | Margaret has to buy the correct postage for a<br>package of books to send to her friend. What<br>tool should she use to measure? What will her<br>measurement unit be? What is the abbreviation<br>for that unit? Are there any other units that she<br>could use to find answer? Would those be as<br>effective? Why or why not? |

Theo wants to measure the amount of water that his bathtub can hold. What tool should he use to measure? What will his measurement unit be? What is the abbreviation for that unit? Are there any other units that he could use to find answer? Would those be as effective? Why or why not? gallon milk jug or measuring pitcher; gallon. gal; liter; not as effective because about four liters equals one gallon

Leslie has to measure the milk for a cake she is baking. What tool should she use to measure? What will her measurement unit be? What is the abbreviation for that unit? Are there any other units that she could use to find answer? Would those be as effective? Why or why not? *measuring cup or graduated cylinder; cups; c; pints could work if there were a lot of milk required or tablespoons could work if Leslie did not need a lot of milk; fluid ounces or milliliters would work just as well because it is a specific measurement and can also be determined with a clear measuring cup or graduated cylinder* 

Tyrin measures his waist to see what size of pants to buy. What tool should he use to measure? What will his measurement unit be? What is the abbreviation for that unit? Are there any other units that he could use to find answer? Would those be as effective? Why or why not? tape measure; inches; in.; centimeters if he wants to measure in metric units. Centimeters will be just as effective. Feet would be too big and difficult to use for new pants. Jack wants to measure the perimeter of his rectangular living room floor. What tool should he use to measure? What will his measurement unit be? What is the abbreviation for that unit? Are there any other units that he could use to find answer? Would those be as effective? Why or why not? *tape measure or yard stick; feet; ft; yards or meters but those will not be as precise; centimeters or inches could also work but the numbers will be high, and it will require more computation* 

Jessica wants to see if her suitcase is too heavy for an airplane. What tool should she use to measure? What will her measurement unit be? What is the abbreviation for that unit? Are there any other units that she could use to find answer? Would those be as effective? Why or why not? scale; pounds; lb; She could use kilograms and that would be as effective. She could also use ounces, but a suitcase would measure a lot of ounces, and it would be hard to calculate. Grams would be way too small.

Margaret has to buy the correct postage for a package of books to send to her friend. What tool should she use to measure? What will her measurement unit be? What is the abbreviation for that unit? Are there any other units that she could use to find answer? Would those be as effective? Why or why not? scale; ounces; oz; grams might work but the package could be quite heavy, and there would be too many grams for it to be a useful number. Pounds might work but the package might be in between pounds and the correct postage might be difficult to determine

## Unit 5, Activity 9, Converting Units Process Guide

| 1. Read the measurement problem carefully and look at the units to determine if the problem involves length, weight, capacity, or volume. |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| a. What are the units?                                                                                                                    |
| b. What are the abbreviations for the units?                                                                                              |
| 2. Does the problem involve length, weight, capacity, or volume?                                                                          |
| 3. Looking at the abbreviations for the units, does this problem have customary or metric units?                                          |
| 4. From what unit of measurement are you converting?                                                                                      |
| 5. To what unit of measurement are you converting?                                                                                        |
| 6. How are those two units of measurement related?                                                                                        |
| 7. Are you converting from larger units to smaller units or smaller units to larger units?                                                |
| 8. Should you multiply or divide?                                                                                                         |
| 9. By what amount are you multiplying or dividing?                                                                                        |
| 10a. If you are multiplying, is there anything you need to add to your answer?                                                            |
| If so, what number and unit do you need to add?                                                                                           |
| Show your work here:                                                                                                                      |
| 10b. If you are dividing, do you have anything left over?                                                                                 |
| If so, what is left over?                                                                                                                 |
| Show your work here:                                                                                                                      |
| 11. What is your answer?                                                                                                                  |

#### Unit 5, Activity 11, Graphing Data

# Line graph



## Line Plot





### Unit 5, Activity 11, Graphing Data

# Bar Graph



# Pictograph

The graph below shows the number of computers at the schools in a district.

| Number of computers in schools |      |       |  |  |  |  |  |  |  |  |  |
|--------------------------------|------|-------|--|--|--|--|--|--|--|--|--|
| School A                       |      |       |  |  |  |  |  |  |  |  |  |
| School B                       |      |       |  |  |  |  |  |  |  |  |  |
| School C                       |      |       |  |  |  |  |  |  |  |  |  |
| School D                       |      |       |  |  |  |  |  |  |  |  |  |
|                                |      |       |  |  |  |  |  |  |  |  |  |
| Each 🗳 Stands for 25 co        | ompu | ters. |  |  |  |  |  |  |  |  |  |

### Unit 5, Activity 11, Graphing Measurement Cards

Name: \_\_\_\_\_

Date: \_\_\_\_\_

| Miles Der Dert Der      |          | Amount of Popcorn Popped |                                   |
|-------------------------|----------|--------------------------|-----------------------------------|
| Miles Ran               | Each Day | Jack                     | 45 lb                             |
| Monday                  | / mi     | Suzanne                  | 23 lb                             |
| Tuesday                 | 4 mi     | Chuck                    | 39 lb                             |
| Wednesday               | 8 mi     | Kendall                  | 51 lb                             |
| Thursday                | 5 mi     | Jaquan                   | 32 lb                             |
| Friday                  | 2 mi     | Troy                     | 48 lb                             |
|                         |          | High Ten                 | nperature                         |
| Amount of Lemonade Sold |          | Monday                   | 75°                               |
| Jackson Street          | 15 qt    | Tuesday                  | 71°                               |
| Jefferson Street        | 24 qt    | Wednesday                | 83°                               |
| Claibourne Ave          | 30 qt    | Thursday                 | <u> </u>                          |
| Nashville Ave           | 18 qt    | Friday                   | 73°                               |
| Wilkinson Streeet       | 22 qt    | Saturday                 | 75<br>77°                         |
| Student                 | Heights  |                          |                                   |
| Kearney                 | 48 in    | Length of Pencil         |                                   |
| Kim                     | 49 in.   | #1                       | $4\frac{1}{4}$ in.                |
| Rashad                  | 53 in.   | #2                       | $4\frac{1}{2}$ in.                |
| Penelope                | 49 in.   | #3                       | 5 in.                             |
| Barry                   | 51 in.   | #4                       | 4 ¼ in.                           |
| Kova                    | 46 in.   | #5                       | 4 <sup>3</sup> ⁄ <sub>4</sub> in. |
| Ronson                  | 51 in.   | #6                       | 5 in.                             |
| Chris                   | 49 in    | #7                       | 4 ¼ in.                           |
|                         | .,       |                          |                                   |