Unit 5 Guided Notes

Functions, Equations, and Graphs
Standards: F.If.7e, F.bFF.1, f.Be.4a, F.BE.5, F.LE.4, f.If. 8
Clio High School - Algebra 2A

Name:
Period:

Need help? Support is available!

- Miss Seitz's tutoring:

Tuesdays and Thursdays after school

- Website with all videos and resources www.msseitz.weebly.com

Miss Kari Seitz

Text: 810.309.9504
Classroom: 810.591.1412
Email: kseitz@clioschools.org

Concept \#	What we will be learning...	Text
\#4	Graphing Exponential Growth and Decay Substitute convenient values of x to generate a table and graph of an exponential function Classify exponential functions in function notation as growth or decay Determine the domain, range, and end behavior (horizontal asymptotes) of an exponential function when looking at a graph	$\begin{aligned} & 7.1 \\ & 7.2 \end{aligned}$
\#2	Modeling Exponential Growth and Decay Write an equation that describes how two things are related based on a real world context Distinguish between exponential functions that model exponential growth and exponential decay	$\begin{aligned} & 7.1 \\ & 7.2 \end{aligned}$
\#3	Finding Linear Inverses Write the inverse of a linear function in standard notation by replacing the x in my original equation with y and then solving for y	6.7
\#4	Translating Between Exponential and Logarithmic Functions State that the inverse of an exponential function is a logarithmic function Explain the inverse relationship between exponents and logarithms $\left(y=b^{x}\right)$ is equivalent to $\log _{b} y=x$	7.3
\#5	Evaluating a Logarithm Solve for the values of logarithms by evaluating powers of the base (ex. $\log _{5} 25$ is 2 since $5^{2}=25$)	7.3
\#6	Solving Exponential and Logarithmic Equations Solve problems with variables in an exponent or logarithm by applying the inverse relationship to logarithms and exponents	
\#7	Properties of Logarithms Use product, quotient and power properties to rewrite logarithmic expressions	7.4
$\begin{aligned} & 48 \\ & 48 \end{aligned}$	Solving by Taking Logs of Both Sides Write an exponential equation $a b^{c t}=d$ in a logarithmic form $\log _{b}(d / a)=c t$ to solve it for t	7.5
\#0	Modeling With Exponential and Logarithmic Equations \square Distinguish between exponential functions that model exponential growth and exponential decay	$\begin{aligned} & C B \\ & 7.5 \end{aligned}$

Definitions		
An E	F	_is of the form $\mathbf{y}=\mathbf{a b}^{\mathbf{x}}$
where \boldsymbol{a} is the \mathbf{I}	V	or also called the \mathbf{Y} - I

Domain, Range, End Behavior		
Domain	Range	End Behavior
All of the x 's that will get us to the graph.	All of the y's that will get us to the graph.	What happens on the right and left ends of the graph.
Always the Same: All R \qquad N \qquad	2 options: - All \mathbf{P} \qquad real numbers - All \mathbf{N} \qquad real numbers	3 options: - Approaching Z \qquad - Approaching P \qquad ∞ - Approaching \mathbf{N} \qquad ∞

$\mathbf{Y}=\mathbf{a} \cdot \mathbf{b}^{\mathbf{x}}$			
Exponential GROWTH			
	$\begin{aligned} & a>0 \\ & b>1 \end{aligned}$ Example: $y=2\left(3^{x}\right)$		$\begin{aligned} & a<0 \\ & b>1 \end{aligned}$ Example: $y=-2\left(3^{x}\right)$
Domain: \qquad Range: \qquad 		Domain: \qquad Range: \qquad 	

Exponential DECAY			
	$\begin{gathered} a>0 \\ 0<b<1 \end{gathered}$ Example: $y=3\left(\frac{1}{2}\right)^{x}$		$\begin{gathered} a<0 \\ 0<b<1 \end{gathered}$ Example: $y=-3\left(\frac{1}{2}\right)^{x}$
Domain: \qquad Range: \qquad 		Domain: \qquad Range: \qquad 	

	Modeling Exponential Growth and Decay \square Write an equation that describes how two things are related based on a real world context	Text: 7.1, 7.2
\square Distinguish between exponential functions that model exponential growth and exponential decay		
Vocabulary: exponential growth, exponential decay, growth factor, decay factor		

Annual Interest $\quad \mathbf{A}(\mathbf{t})=\mathbf{a}(\mathbf{1}+\mathbf{r})^{\mathbf{t}}$

Example 1: You invested $\$ 1000$ in a savings account at the end of $6^{\text {th }}$ grade. The account pays 5\% annual interest. How much money will be in the account after six years?
A) Determine if an exponential function is a reasonable model.
B) Define the variables and determine the model.
C) Use the models to solve the problem.

You Try It!

1.) The initial value of a car is $\$ 25,000$. The value of the car decays by 15% each year. Estimate the value of the car after 5 years.

Continuous Interes	$A(t)=P e^{\text {rt }}$
$A(t)=p \cdot e^{\pi}$	There is a very special number we use a lot with exponential functions called E \qquad C \qquad $e=2.718281828 \ldots$
Example 2: Find the amount in a continuously compounded account for the given conditions. Principal: \$5000 Annual interest rate: 3.5\% Time: 10 years	

You Try It!

2.) Suppose you won a contest at the start of $5^{\text {th }}$ grade that deposited \$3000 in an account that pays 5\% annual interest compounded continuously. How much will you have in the account when you enter high school 4 years later?

Finding Linear Inverses
Text: 6.7
\square Write the inverse of a linear function in standard notation by replacing the x in my original equation Vocabulary: inverse, relation

What is the inverse of the following:	
Addition:	Subtraction:
Multiplication:	Division:

You Try It! Find the inverse of each.
1.) $y=x^{2}-1$
2.) $f(x)=\sqrt{x-2}$

Graphs of Functions and their Inverses		
Example 3:		
1.) $\mathrm{y}=3 \mathrm{x}+9$		
2.) $\mathrm{y}=(1 / 3) \mathrm{x}-3$		
Graphs of functions and their		
inverses are		
\mathbf{S} _ about the line		

You Try It! Graph the function and its inverse.
3.) $y=x^{2}$

Translating Between Exponential and Logarithmic Functions
Text: 7.3State that the inverse of an exponential function is a logarithmic function
\square Explain the inverse relationship between exponents and logarithms $\left(y=b^{x}\right)$ is equivalent to $\log _{b} y=x$ Vocabulary: exponential form, logarithmic form, logarithm

Definitions
The inverse of an exponential function is a \mathbf{L}
Key Concept Logarithm
A logarithm base b of a positive number x satisfies the following definition.
\quad For $b>0, b \neq 1, \log _{b} x=y$ if and only if $b^{y}=x$.
You can read $\log _{b} x$ a s " \log base b of $x^{\prime \prime}$. In other words, the logarithm y is the exponent to which b must be raised to get x.

Translating Between Logarithmic and Exponential Forms	
Exponential Function base ${ }^{\text {exponent }}=$ number	Logarithmic Function $\boldsymbol{l o g}_{\text {base }}$ number $=$ exponent
$10^{2}=100$	
$3^{4}=81$	
	$\log _{2} 8=3$
	$\log _{5} 25=2$
Special Cases	
$y=10^{x}$	C
$y=e^{x}$	\mathbf{N}

You Try It!

1.) Write in logarithmic form.

$$
6^{2}=36
$$

2.) Write in exponential form.
$\log _{4} 16=2$
\square Solve for the values of logarithms by evaluating powers of the base (ex. $\log _{5} 25$ is 2 since $5^{2}=25$)
Vocabulary: N/A

Evaluating a Logarithm

To EVALUATE a logarithm means to write as an equation and solve (or translate into exponential).
Example 1: Evaluate $\log _{4} 32$

```
STEP 1:
Write as an equation
```

STEP 2:
Rewrite as
exponential
equation
STEP 3:
Rewrite with the same base

STEP 4:
Set exponents equal and solve

You Try It! Evaluate each logarithm.
1.) $\log _{5} 125$
2.) $\log _{4} \frac{1}{32}$

Challenge! See if you can follow this example. What is the value of $\log _{8} 32 ?$	
$\log _{8} 32=x$	Write a logarithmic equation.
$32=8^{x}$	Use the definition of a logarithm to write an exponential equation.
$2^{5}=\left(2^{3}\right)^{x}$	Write each side using base 2.
$2^{5}=2^{3 x}$	Power Property of Exponents
$5=3 x$	Since the bases are the same, the exponents must be equal.
$\frac{5}{3}=x$	Solve for x.
Since $8^{\frac{5}{3}}=32$, then $\log _{8} 32=\frac{5}{3}$.	

Solving Exponential and Logarithmic Equations
Text:
\square Solve problems with variables in an exponent or logarithm by applying the inverse relationship to logarithms and exponents
Vocabulary: N/A

Solving Exponential Equations	
Variable in the BASE Write each side with the same exponent	Variable in the EXPONENT Write each side with the same base
$x^{3}=1,000$	$25=5^{x}$
With a negative exponent $x^{-2}=\frac{1}{121}$	Using a negative exponent $\left(\frac{1}{3}\right)^{x}=\frac{1}{27}$
REMINDER	
$\sqrt[5]{\mathrm{x}^{4}}=x^{\frac{4}{5}} \quad \mathbf{k}^{\frac{3}{4}}$	$\mathrm{p}^{\frac{1}{2}}=\sqrt{\mathrm{p}}$

You Try It!
1.) $81=x^{4}$
2.) $4^{x}=64$
3.) $\frac{1}{32}=x^{-5}$
4.) $2^{x}=\frac{1}{32}$

Solving Logarithmic Equations	
Variable in the BASE	
Rewrite as Exponential then... Write each side with the same exponent	
$2=\log _{x} 9$	Working with negative exponents... $\log _{x} \frac{1}{169}=-2$
Variable in the NUMBER Rewrite as Exponential then... just calculate!	
$\log _{21} x=2$	Working with negative exponents... $\log _{7} x=-3$

You Try It!

5.) $\log _{x} 49=2$
6.) $\log x=\frac{1}{2}$
7.) $2=\log _{25} x$

Properties of Logarithms
Text: 7.4
\square Use product, quotient and power properties to rewrite logarithmic expressions
Vocabulary: N/A

Properties of Exponents

- $a^{0}=1, a \neq 0$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $a^{-n}=\frac{1}{a^{n}}$
- $(a b)^{n}=a^{n} b^{n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{m} \cdot a^{n}=a^{m+n}$
- $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Simplify	Simplify	Rewrite in radical form
$\left(x^{4}\right)^{2}$	$\frac{3 b^{2}}{3 b^{4}}$	$m^{\frac{5}{4}}$

IMPORTANT NOTE: Remember that the Natural Logarithm ($\log _{\mathrm{e}}$) is written as In. The properties of logarithms work the EXACT same way for Natural Logarithms as they do for regular ones, but we still write them as In instead of $\log _{\mathrm{e}}$

Power Property $\boldsymbol{\operatorname { l o g }}_{\mathrm{b}} \mathbf{m}^{\mathbf{n}}=\mathbf{n} \cdot \log _{\mathrm{b}} \mathbf{m}$	
Expanding: Use when you have an exponent	Condensing: Use when you have a number out front
$\log _{4} x^{5}$	$5 \log x$
$\log \sqrt[5]{x^{3}}$	
$\log _{2}(2 y-4)^{3}$	

Product Property $\log _{b} m \cdot n=\log _{b} m+\log _{b} n$	
Expanding: Use when you have multiplication	Condensing: Use when you have addition
$\log _{4} x y z$ $\log _{5}\left(5 b^{6} c\right)$	$\log x+3 \log y$ 促

Quotient Property $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$	
Expanding: Use when you have division	Condensing: Use when you have subtraction
$\log _{3} \frac{2 a}{b}$	$\log x-3 \log y$ 炎

You Try It!

1.) Expand: $\log _{3} \frac{9 v}{u^{2}}$
2.) Write as a single logarithm: $\boldsymbol{\operatorname { l o g }}_{2} 8+3 \boldsymbol{\operatorname { l o g }}_{2} X-\boldsymbol{\operatorname { l o g }}_{2} \sqrt{\boldsymbol{y}}$
\square Write an exponential equation $a b^{c t}=d$ in a logarithmic form $\log _{b}(d / a)=c t$ to solve it for t
Vocabulary: N/A

Solving Exponential Equations

Example 1: Solve $2^{8 z-3}=2^{5 z}$

Example 2: Solve $10 \cdot 5^{2 x}+5=130$. Give the exact answer (with logs left
in) and the approximate answer (decimal).
Steps: 1. Get the number with the exponent by itself.
2. Take the log of both sides
3. Use the properties of logarithms
4. Solve to get x by itself
Approximate Answer:

Solving a Logarithmic Equation With Logs on Each Side

Example 3: What is the solution of $\boldsymbol{\operatorname { l o g }}_{6}(\mathbf{3 n + 5})=\boldsymbol{\operatorname { l o g }}_{6}(2 n+6)$

You Try It!

1.) $2^{2 x+5}=2^{4 x}$
2.) $\log _{8}(2 n+5)=\log _{8}(-3 n+10)$
3.) $3^{3 x}=190$

Modeling with Exponential and Logarithmic Equations
Text: Concept Byte 7.5
\square Distinguish between exponential functions that model exponential growth and exponential decay
Vocabulary: N/A

Example 1

The pH of a solution measures its acidity on a scale from 1 to 14 . It is given using the equation $\mathrm{pH}=-\log \mathrm{H}_{0}$ where H_{0} is the concentration of the Hydrogen ions.
a.) If a solution has a hydrogen concentration of 0.00000001 , what is its pH ?
b.) If a solution has a pH of 4 , what is the Hydrogen ion concentration?

Example 2

The population of Clio t years after 2000 is given by the equation $\mathrm{P}=\mathrm{P}_{0}(1.001)^{\mathrm{t}}$ where P_{0} is the population of Clio in 2000.
a.) If there were 19,500 people living in Clio in 2000, then how many were living there in 2008?
b.) If there were 19,500 people living in Clio in 2000, then in what year will its population be at least 20,000?

Example 3

The number of atoms of an isotope in a sample after t years is given by the equation $N=N_{0} e^{k t}$ where N_{0} is the number of atoms of that isotope initially and k is the decay constant of that isotope.
a.) Uranium -235 has a decay constant of 9.72×10^{-10}. If a sample contains 200,000,000 atoms of Uranium, how many atoms of Uranium will it have after 1,000 years?
b.) A sample which originally contained $5,000,000$ atoms of Potassium - 40 now contains 4,500,000 atoms. If the decay constant of Potassium - 40 is 5.34×10^{-10}, how many years old is this sample?

Example 4

The Richter Scale measures the magnitude of an earthquake. It is given by the equation $M=\log A-\log A_{0}$ where A is the maximum excursion of the seismograph measured in nanometers and A_{0} is the epicentral distance of the station measured in kilometers.
a.) If a seismograph station that is 100 km distant from the epicenter of an earthquake has a maximum excursion of 100,000 nanometers, then what is the magnitude of the earthquake on the Richter Scale?
b.) An earthquake with a magnitude of 6.9 on the Richter Scale is observed by a seismograph station that is $1,000 \mathrm{~km}$ distant. What should be the maximum excursion of the seismograph measure?

