UNIT 5: Inequalities (Chapter 9 in textbook)

Lesson 1: Representing Inequalities (9.1 in book)

Inequality: a mathematical statement comparing expressions that may not be equal.

Boundary Point: separates the values less than from the values greater than a specified point. It may or may not be a possible solution.

Representing Inequalities:

a < b	a is less than b
a > b	a is greater than b
$a \leq b$	a is less than or equal to b
$a \ge b$	a is greater than or equal to b
a≠b	a is not equal to b

HINT: THE 'ALIGATOR' WANTS TO EAT THE BIGGER VALUE, SO ITS MOUTH OPENS TOWARDS IT!

Inequalities can be represented:

- Verbally
- Graphically
- Algebraically

Graphically, an **open circle** (not filled in) shows that the boundary point is NOT included; a **closed circle** shows that the boundary point IS included.

Verbally	Graphically	Algebraically
numbers greater than or equal to 2	-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10	$x \ge 2 \text{same as} \\ 2 \le x$
y is less than -1	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2	y < −1 same as −1 > y
numbers greater than 2 and less than 5	-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10	a>2 and a<5 same as 2 <a<5< td=""></a<5<>
b is less than -2 or greater than or equal to +2	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	b<−2 or b≥2
x is not equal to 1	-6 -5 -4 -3 -2 -1 0 1 2 3 4	$\chi \neq 1$
z is less than or equal to -4	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3	2 < -4
numbers greater than or equal to -5	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	X Z -5
humbers greater than -3 <u>And</u> smaller than 0	-6 -5 -4 -3 -2 -1 0 1 2 3 4	-3 < a < 0
d is less than -1	-6 -5 -4 -3 -2 -1 0 1 2 3 4	d<-1
f is greater than 0 or smaller than -2	-6 -5 -4 -3 -2 -1 0 1 2 3 4	f>0 <u>or</u> f<-2

p. 346 #4, 5, 7, 9, 10, 11, 13, 15, 16 Challenge #23-25

UNIT 5 LESSON 2: Solving One-Step and Two-step Inequalities (9.2 in textbook)

Just like with solving equations, we need to ISOLATE THE VARIABLE.

Example1:

3x > 9	'x multiplied by 3 is greater than 9'
$\frac{3x}{3} > \frac{9}{3}$	To isolate x, both sides are divided by 3
<i>x</i> > 3	-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

To check:

1. Test the boundary point.

At the boundary point, the LS = RS

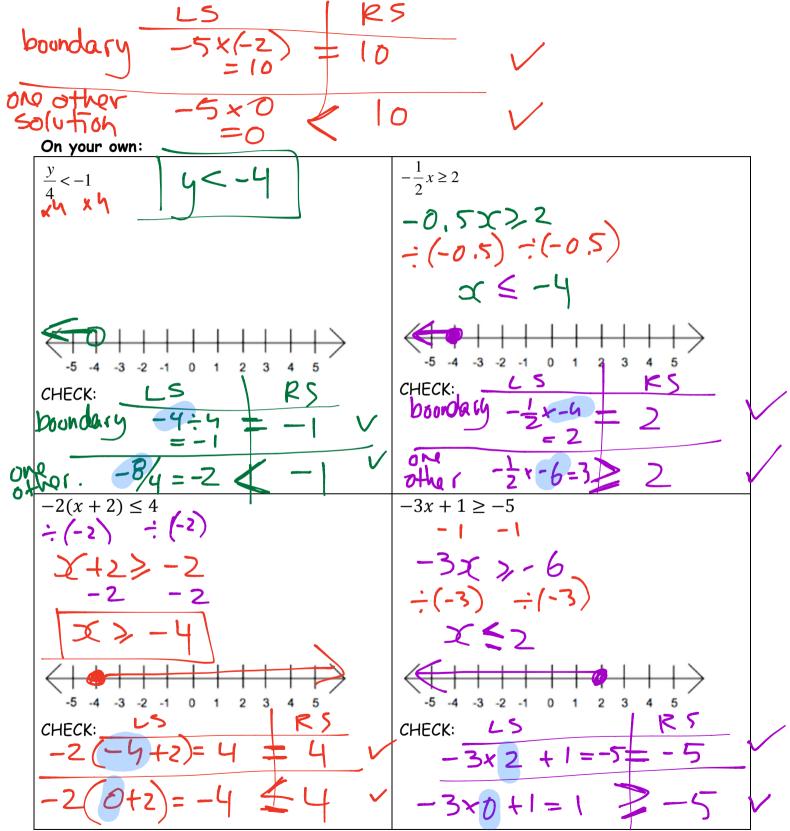
LS = 3(3) = 9 RS = 9 Therefore, 3 is the b.p.

2. Check that the inequality sign is facing the correct way by testing a value for which the inequality should be true.

If x = 4, the inequality should be valid.

LS = 3(4) = 12 RS = 9 12 > 9 Therefore, it's valid.

Since the boundary point is valid and the inequality statement is true, then the solution x > 3 is correct.


IMPORTANT: WHEN YOU MULTIPLY OR DIVIDE BOTH SIDES BY A NEGATIVE NUMBER, YOU MUST FLIP THE INEQUALITY SIGN.

Example 2:

-5x < 10	'x multiplied by -5 is greater than 10'
$\frac{-5x}{-5} > \frac{10}{-5}$	To isolate x, both sides are divided by -5 and the sign is flipped
x > -2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Check:

- 1. Check the boundary point:
- 2. Check another value of x that makes the inequality true. A value for x > -2 is -1.

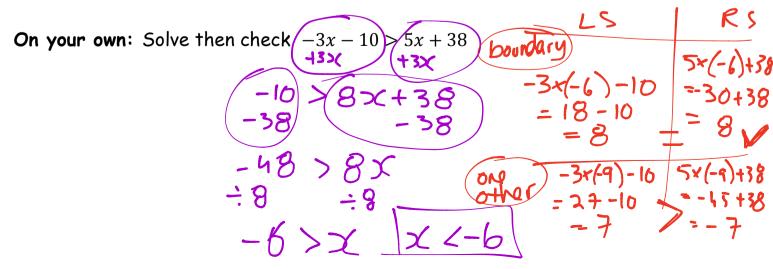
Class work/HW: solving one-step and two-step inequalities worksheets; challenge: p. 359 #23-28

UNIT 5 LESSON 3: Multi-Step Inequality Word Problems (9.3 in textbook)

To solve multi-step inequalities, use the same process as you would to solve a linear equation.

-2x + 6 < x + 9	We have x terms on both sides, so subtract an x term
-2x + 6 - x < x + 9 - x	from both sides
-3x + 6 < 9	x is multiplied by -3 and 6 is added to it
-3x + 6 - 6 < 9 - 6	Undo the addition by subtracting 6 from both sides.
-3x + -3 + -3	Undo the multiplication by dividing each side by -3. Flip
-3x + -3 + -3	the inequality sign since we are dividing by a negative
x -1	number!!

Verify the solution:


Substitute the boundary point -1 to check that both sides are equal.

-2(-1) + 6 = -1 + 9	Since the LS = RS, the boundary
+2 + 6 = 8	point is correct.
8 = 8	

Since x is supposed to be greater than -1, we can check the inequality statement by substituting a value greater than -1 into the original inequality. An easy number to try greater than -1 is 0:

-2(0) + 6 < 0 + 9	Since 6 < 9, the inequality statement is
0 +6 < 9	correct.
6 < 9	

SINCE THE BOUNDARY POINT IS VALID AND THE INEQUALITY STATEMENT IS TRUE, THEN THE SOLUTION x > -1 IS CORRECT

Word Problem 1: A student committee is planning a sports banquet. It costs \$450 to rent the hall, and then \$24 per person for the dinner. The committee needs to keep the total costs for the dinner under \$2000. How many people can attend the dinner?

<2000

Step 1 (define variable): Let p represent the number of people attending the dinner.
Step 2 (write an inequality): The cost of the dinner is 450 + 24p and it must be less than \$2000.

$$450 + 24x < 2000$$
Step 3 (solve): $-450 - 450$

$$243(< 1550$$

$$-243(< 1550)$$

$$-243(< 1550)$$

$$-243(< 1550)$$

$$-243(< 1550)$$

$$-243(< 1550)$$

$$-243(< 1550)$$

$$-264$$

$$-264$$

$$= 265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

$$-265$$

Word problem 2: A soccer club plans to buy shirts for its team and supporters. ProV Graphics charges a \$75 setup fee plus \$7 per shirt. BT Designs has no setup fee but charges \$10.50 per shirt. How many shirts does the team need to order for ProV Graphics to be the better option? (ast st ProV < ast st Pst)

Let x represent the #al shirts. cost al Prov C cost al BT inequality: < 10.50× solve: $al, 4 < \chi$

Class work/HW: p. 365 #3, 5, 6, 7, 8, 10, challenge #17-22 Start review questions: p. 368 #1-20; optional p. 370 #1-15