UNIT 5: Inequalities (Chapter 9 in textbook)

Lesson 1: Representing Inequalities (9.1 in book)

Inequality: a mathematical statement comparing expressions that may not be equal.

Boundary Point: separates the values less than from the values greater than a specified point. It may or may not be a possible solution.

Representing Inequalities:

$a \leq b$	a is less than b
$a>b$	a is greater than b
$a \leq b$	a is less than or equal to b
$a \geq b$	a is greater than or equal to b
$a \neq b$	a is not equal to b

HINT: THE 'ALIGATOR' WANTS TO EAT THE BIGGER VALUE, SO ITS MOUTH OPENS TOWARDS IT!

Inequalities can be represented:

- Verbally
- Graphically
- Algebraically

Graphically, an open circle (not filled in) shows that the boundary point is NOT included; a closed circle shows that the boundary point IS included.

Verbally	Graphically	Algebraically
numbers greater than or equal to 2		$\begin{gathered} x \geq 2 \text { same as } \\ 2 \leq x \end{gathered}$
y is less than -1		$\begin{gathered} y<-1 \quad \text { same as } \\ -1>y \end{gathered}$
numbers greater than 2 and less than 5		$\begin{gathered} a>2 \text { and } a<5 \\ \text { same as } 2<a<5 \end{gathered}$
b is less than -2 or greater than or equal to +2		$b<-2$ or $b \geq 2$
x is not equal to 1		$x \neq 1$
z is less than or equal to -4	$\sum_{-10 \cdot 9+8.6-54}$	$z \leq-4$
numbers greater than or equal to -5		$x \geqslant-5$
numbers greater than - 3 And smaller than 0		$-3<a<0$
d is less than -1		$d<-1$
f is greater than 0 or smaller than -2		$\begin{aligned} & f>0 \quad O R \\ & \quad f<-2 \end{aligned}$

p. 346 \#4, 5, 7, 9, 10, 11, 13, 15, 16 Challenge \#23-25

UNIT 5 LESSON 2: Solving One-Step and Two-step Inequalities (9.2 in textbook)

Just like with solving equations, we need to ISOLATE THE VARIABLE.

Example1:

To check:

1. Test the boundary point.

At the boundary point, the LS = RS

$$
L S=3(3)=9 \quad R S=9 \quad \text { Therefore, } 3 \text { is the b.p. }
$$

2. Check that the inequality sign is facing the correct way by testing a value for which the inequality should be true.

If $x=4$, the inequality should be valid.

$$
L S=3(4)=12 \quad \text { RS }=9 \quad 12>9 \text { Therefore, it's valid. }
$$

Since the boundary point is valid and the inequality statement is true, then the solution $x>3$ is correct.

IMPORTANT: WHEN YOU MULTIPLY OR DIVIDE BOTH SIDES BY A NEGATIVE NUMBER, YOU MUSTFLIP THE INEQUALITY SIGN.

Example 2:

$$
\begin{aligned}
& -5 x<10 \quad \text { ' } x \text { multiplied by }-5 \text { is greater than } 10 \text { ' } \\
& \frac{-5 x}{-5}>\frac{10}{-5} \quad \text { To isolate } x \text {, both sides are divided by }-5 \text { and the sign is } \\
& \text { flipped } \\
& x>-2
\end{aligned}
$$

Check:

1. Check the boundary point:
2. Check another value of x that makes the inequality true. A value for $x>-2$ is -1 .

Class work/HW: solving one-step and two-step inequalities worksheets;

UNIT 5 LESSON 3: Multi-Step Inequality Word Problems (9.3 in textbook)

To solve multi-step inequalities, use the same process as you would to solve a linear equation.

$$
\begin{array}{rlrl}
-2 x+6 & <x+9 & & \text { We have } x \text { terms on both sides, so subtract an } x \text { term } \\
-2 x+6-x & \text { from both sides } \\
-3 x+6-x & & x \text { is multiplied by }-3 \text { and } 6 \text { is added to it } \\
-3 x+6-6 & <9-6 & & \text { Undo the addition by subtracting } 6 \text { from both sides. } \\
-3 x & <3 & & \begin{array}{l}
\text { Undo the multiplication by dividing each side by }-3 .
\end{array} \\
-3 x \div-3<3 \div-3 & & \text { the inequality sign since we are dividing by a negative } \\
x & >-1 & & \text { number!! }
\end{array}
$$

Verify the solution:

Substitute the boundary point -1 to check that both sides are equal.

$$
\begin{array}{ccc}
-2(-1)+6=-1+9 & \text { Since the LS }=\text { RS, the boundary } \\
+2+6=8 & \text { point is correct. }
\end{array}
$$

$$
8=8
$$

Since x is supposed to be greater than -1, we can check the inequality statement by substituting a value greater than -1 into the original inequality. An easy number to try greater than -1 is 0 :

$$
\begin{gathered}
-2(0)+6<0+9 \\
0+6<9 \\
6<9
\end{gathered}
$$

Since $6<9$, the inequality statement is correct.

SINCE THE BOUNDARY POINT IS VALID AND THE INEQUALITY STATEMENT IS TRUE, THEN THE SOLUTION $x>-1$ IS CORRECT

On your own: Solve then check $-3 x-10)>5 x+38$

Word Problem 1: A student committee is planning a sports banquet. It costs $\$ 450$ to rent the hall, and then $\$ 24$ per person for the dinner. The committee needs to keep the total costs for the dinner under $\$ 2000$. How many people can attend the dinner?

$$
<2000
$$

Step 1 (define variable): Let p represent the number of people attending the dinner.
Step 2 (write an inequality): The cost of the dinner is $450+24 p$ and it must be less than $\$ 2000$.

$$
\begin{aligned}
& 450+24 x<2000 \\
& \text { Step } 3 \text { (solve) : }-450-450 \\
& 24 x<1550 \\
& \div 24 \div 24 \\
& x<64.6 \\
& \text { Step } 4 \text { (Check): dwedk } x=-64 \\
& \cos t=450+24 \times 64 \\
& =1986 \\
& \therefore \quad x=65 \\
& \cos t=450+24 \times 65 \\
& =2010
\end{aligned}
$$

Word problem 2: A soccer club plans to buy shirts for its team and supporters. ProV Graphics charges a $\$ 75$ setup fee plus $\$ 7$ per shirt. BT Designs has no setup fee but charges $\$ 10.50$ per shirt. How many shirts does the team need to order for ProV Graphics to be the better option? (cost af ProV $<\operatorname{cost}$ of BT)
Let x represent the $\#$ al shirts.
inequality: cost al ProV < cost af BT

$$
75+7 x<10.50 x
$$

Solve:

$$
\begin{aligned}
& 75<3<5 \\
& \div 3.5<3.5 \\
& 21.4<x
\end{aligned}
$$

Class work/HW: p. 365 \#3, 5, 6, 7, 8, 10, challenge \#17-22
Start review questions: p. 368 \#1-20; optional p. 370 \#1-15
or $x>21.4$
or $x \geqslant 22$ $\left(\begin{array}{l}\text { minimum } \\ 22 \\ \text { shirts }\end{array}\right)$

