

III. Mendel and Heredity (6.3)

A. Mendel laid the groundwork for genetics

- 1. **Traits** are distinguishing characteristics that are inherited.
- 2. **Genetics** is the study of **biological inheritance patterns** and variation.
- 3. Gregor Mendel showed that traits are inherited as **discrete units.**
- 4. Many in Mendel's day thought traits were blended.

B. Mendel's data revealed patterns of inheritance

1. Mendel studied plant variation in a monastery garden

- 2. Mendel made three key decisions in his experiments
 - a. Control over breeding
 - b. Use of purebred plants
 - c. Observation of "eitheror" traits (only appear two alternate forms)

3.	Exp	erime	ntal	design

a. Mendel chose **pea plants** because reproduce quickly and could control how they mate

- b. Crossed purebred white-flowered with purebred purple-flowered pea plants.
 - 1). Called parental, or P generation
 - 2). Resulting plants (first filial or **F1 generation**) all had purple flowers

- c. Allowed F1 generation to self-pollinate
 - 1). Produced **F2 generation** that had both plants with purple and white flowers)
 - 2). Trait for white had been "hidden", it did not disappear.

d. He began to observe **patterns**- Each cross yielded similar ratios in F2 generation (**3/4 had purple**, **and 1/4 white**)

FIGURE 6.10 MENDEL'S MONOHYBRID CROSS RESULTS				
F ₂ TRAITS	DOMINANT	RECESSIVE	RATIO	
Pea shape	5474 round	1850 wrinkled	2.96:1	
Pea color	6022 yellow	2001 green	3.01:1	
Flower color	705 purple	224 white	3.15:1	
Pod shape	od shape 882 smooth		2.95:1	
Pod color	428 green	152 yellow	2.82:1	
Flower position 651 axial		207 terminal	3.14:1	
Plant height	787 tall	277 short	2.84:1	

- 4. Mendel made three important conclusions
 - a. Traits are inherited as discrete units (explained why individual traits persisted without being blended or diluted over successive generations)

- b. Two other key conclusions collectively called the **law of segregation**
 - 1). Organisms **inherit two copies** of each **gene**, one from each parent

2). Organisms donate only one copy of each gene in their gametes (two copies of each gene segregate, or separate, during gamete formation

	н	۰
-	'n	Ł

- IV. Traits, Genes, and Alleles (6.4)
 - A. The same gene can have many versions

1. **gene**- a "piece" of DNA that provides a set of instructions to a cell to make a certain **protein**. (*Proteins are either structural or functional*)

- a. Most genes exist in many forms (called alleles)
- b. You have two alleles for each gene`

- 2. Homozygous- means two of same allele
- 3. Heterozygous- two different alleles

- B. Genes influence the development of traits
 - 1. **Genome** is all the organisms genetic material

- C. Dominant and Recessive Alleles
 - 1. **Dominant alleles** allele that is expressed when two different alleles or two dominant alleles are present (use capital letter to represent. (*I.e. capital T*)

- 2. **Recessive alleles** only expressed if have two copies of recessive present (use small-case letter to represent)
- 3. Homozygous dominant = TT
- 4. Heterozygous = Tt
- 5. Homozygous recessive = tt

- D. Alleles and Phenotypes
 - 1. Both homozygous dominant and heterozygous genotypes yield a dominant phenotype. (*I.e. TT and Tt*)

2. Most traits occur in a **range** and <u>do not follow</u> simple dominant-recessive patterns

Discontinuous

Widow's Flat
Peak

Hair line (monogenic)

- V. Traits and Probability (6.5)
 - A. Punnett squares illustrate genetic crosses
 - 1. Used to **predict possible genotypes** resulting from a cross
 - a. Axes of grid represent possible **gamete** genotypes of each

- b. Boxes show **genotypes** of **offspring**
- c. Can determine **ratio** of genotypes in each generation

Punnett Square

B. Monohybrid cross involves one trait

1. Homozygous dominant X Homozygous recessive

Genotypic ratio 100% Ff

Phenotypic ratio 100% purple

2. Heterozygous X Heterozygous

Genotypic ratio 1:2:1

Phenotypic ratio 3:1

3. Heterozygous X Homozygous recessive

Genotypic ratio 1:1

Phenotypic ratio 1:1

C. Test Cross- a cross between organism with an and an organism with a unknown genotype recessive phenotype Dominant phenotype, unknown genotype: Recessive phenotype; known genotype: PP or Pp? pp Predictions P P D. **Dihybrid** cross involves two traits 1. Mendel also conducted dihybrid crosseswondered if both traits would always appear together or if they would be expressed independently of each other 2. Mendel discovered phenotypic ratio in F2 generation as always 9:3:3:1 regardless of YyRr combination traits he used yyRR O WRr 1 AA BB ab 1 AA BB 1 1

Father Aa Bb aa BB

Aa bb aa Bb

aa Bb

Aa bb

aa bb

Aa BB Aa Bb

- 3. Mendel's dihybrid crosses led to his second law, the **law of independent assortment**.
- 4. The law of independent assortment states that allele pairs <u>separate independently</u> of each other during meiosis

- E. Heredity patterns can be calculated with probability
 - 1. **probability** the likelihood that a particular event will happen
 - 2. Probability applies to random events such as **meiosis** and **fertilization**

- VI. Meiosis and Genetic Variation (6.6)
 - $\mbox{A. Sexual reproduction} \ \underline{\mbox{creates}} \ \mbox{unique gene} \ \mbox{combinations}$
 - 1. Sexual reproduction creates unique combination of genes

- a. **independent assortment** of chromosomes in meiosis
- b. random fertilization of gametes

2. 2^{23} possible sperm or egg cells produced 2^{23} X 2^{23} = about 70 trillion different combinations of chromosomes

- B. Crossing over during meiosis increases genetic diversity
 - 1. **crossing over** exchange of chromosome segments between homologous chromosomes during Prophase I of Meiosis I
 - 2. Results in new combination of genes

- C. **Linked genes** genes located on the same chromosome inherited together.
 - 1. Closer together they are high chance of inheriting together
 - 2. If genes far apart, crossing-over may separate them
 - 3. **Gene linkage** used to build **genetic map** of many species

A and B are referred to as linked because they would likely be inherited together.

C and D are referred to as linked because they would likely be inherited together.

UNIT 6: GENETICS Chapter 7: Extending Mendelian Genetics I. Chromosomes and Phenotype (7.1) A. <u>Two</u> copies of each autosomal gene affect phenotype 1. Most human traits are result of autosomal genes 2. Many human genetic disorders also caused by autosomal genes a. Chance of having disorder can be predicted b. Use same principles as Mendel did B. Disorders Caused by Recessive Alleles 1. Some disorders caused by recessive alleles on autosomes heterozygous parent (Cc), carrier CC Cc \boldsymbol{C} heterozygous, carrier heterozygous parent (*Cc*), carrier CC homozygous recessive, affecte c

= Normal allele (dominant) = Cystic fibrosis allele (recessive)

- 2. Must have **two copies** of **recessive allele** to have disorder
 - a. Disorders often appear in offspring of parents who are **heterozygous**
 - b. **Cystic Fibrosis** recessive disorder that affects sweat glands and mucus glands.

3. A person who is $\underline{\text{heterozygous}}$ for disease is called a carrier- does not show disease symptoms

Children

- C. Disorders Caused by Dominant Alleles
 - 1. Less common than recessive disorders

- 2. **Huntington's Disease** damages nervous system and usually appears during adulthood.
 - a. 75% chance if both parents heterozygous
 - b. Since disease strikes later in life, person can have children before disease appears. Allele is passed on even though disease is fatal

- E. Males and Females can differ in sex-linked traits
 - 1. Mendel figured out much about **heredity**, but did not know about **chromosomes**

- a. Mendel only studied autosomal traits
- b. Expression of genes on sex chromosomes <u>differs</u> from autosomal genes

2. Sex-linked Genes

- a. Genes located on sex-chromosomes called **sex-linked genes**
- b. Many species have specialized sex chromosomes
 - In mammals and some other animals, individuals with XX are female and XY are male
 - 2). X chromosome $\underline{\text{much larger}}$ than the \mathbf{Y}

- 3. Expression of Sex-Linked Genes
 - a. Males only have $\underline{\text{one copy}}$ of each chromosome (XY)

- 1). Express all alleles on each chromosome
- 2). No second copy of another allele to mask effects of another allele (all recessive alleles expressed)

b. In each cell of female, one of two X-chromosome	
is <u>randomly</u> "turned off".	
1). Called X Chromosome Inactivation	
2). Creates patchwork of two types of cells	
mie x°Y	
(male x ⁰ x ¹)	
fmin x ² x ²	
II. Complex Patterns of Inheritance (7.2)	
A. Phenotypes can depend on interactions of	
alleles	
 Many traits are result from alleles with range of dominance, rather than a strict 	
dominant and recessive relationship	
2. In many cases, phenotypes result from	
multiple genes	
B. Incomplete Dominance	
Neither allele completely dominant	
2. Heterozygous phenotype somewhere	
between homozygous phenotypes ("blending")	
Phenotype Genotype Phenotype Genotype	
green B ₁ B ₁ Steel blue B ₂ B ₂ Royal blue B ₁ B ₂	

C	Codominance
٠.	o o a o i i i i i a i i o o

- 1. Both traits are expressed completely
- 2. Can sometimes look like "blending" of traits, but actually show **mixture of both**

red

white

roan

- 3. Human blood type is example of codominance
 - a. Also has 3 different alleles- trait also considered a **multiple-allele trait**

PHENOT	YPE (BLOOD TYPE)	GENOTYPES
А	antigen A	I ^A I ^A or I ^A i
В	I ^B I ^B or I ^B i	
AB	both antigens	I^IB
0	no antigens	ii

b. When alleles are neither dominant of recessive (in both incomplete and codominance) use upper case letters with either subscripts or superscripts)

D. Many genes may interact to produce one trait

- 1. **Polygenic traits** two or more genes determine trait
 - a. **Skin color** result of four genes that interact to produce range of colors

b. Human eye color shows at least 3 genes (hypothesize that are still genes undiscovered as well) Order of dominance: brown > green > blue.

GENE NAME	DOMINANT ALLELE	RECESSIVE ALLELE
BEY1	brown	blue
BEY2	brown	blue
GEY	green	blue

2. **Epistasis**- when one gene overshadows all of the others. Albinism is caused by this type of gene

Albinism is a autosomal recessive trait. Because the allele is recessive, individuals who are heterozygous for the trait express their normal skin color, sot he presence of the allele is "hidden" by the dominance of the normal allele. Albinos are unable to synthesize melanin, the pigment molecule responsible for most human skin coloring

a. Phenotype is more than sum of gene expression b. Sex of sea turtles depends on genes and environment. Temperature when eggs develop determine sex c. Human traits also affected by environment (nutrition and health care) d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype 2. This in turn affects how cells read the genes	3. The environment interacts with genotype	
c. Human traits also affected by environment (nutrition and health care) d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype	a. Phenotype is more than sum of gene expression b. Sex of sea turtles depends on genes and	
d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype	Temperature when eggs	
d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
d. Epigenetics- Epigenetics is the study of potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype	Spar property	
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
potentially heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype		
changes to the underlying DNA sequence 1. A change in the heritable phenotype without a change in genotype	potentially heritable changes in gene expression	
change in genotype	changes to the underlying DNA sequence	
	change in genotype	
Gre Gree	Gene	

- III. Gene Linkage and Mapping (7.3)
 - A. Gene linkage was explained through fruit

- 1. **Thomas Hunt Morgan** worked with fruit flies (Drosophila melanogaster)
- 2. Some traits seemed to be inherited together. Morgan called them linked traits. (found on same chromosome)

3. Morgan concluded that because linked genes were not inherited together every time that chromosomes must exchange homologous genes during meiosis (crossing over)

- B. Linkage maps estimate **distances** between genes
 - 1. Closer together- more likely inherited together
 - 2. **Further apart-** more likely will be **separated** during meiosis.

IV. Human Genetics and Pedigrees (7.4)	
A. Human genetics follows the patterns seen in other organisms	
Meiosis independently assorts chromosomes when gametes are made for sexual reproduction	
Human heredity involves same relationships between alleles (dominant/recessive, polygenic,	
sex-linked, etc)	
B. Inheritance of some traits very complex	
1. Multiple genes and alleles can interact	
2. Single-gene traits can still be observed	
a. Many examples of single-gene traits	
(hairline-widows peak)	
Widow's Peak Present (PP, Pp) Absent (pp)	
(PP, Pp)	
b. Many genetic disorders also caused by single-	
gene traits (Huntington's disease, hemophilia, Duchenne's muscular dystrophy)	
The state of the s	
West of the second	

c. Much of what is known about human genetics comes from studying genetic disorders Out: Of Earth Of The Colony (1786-00) Mark White of Control <u>□</u> □ □ 0 0 фф According to Section 1 Od d **₽** $\overline{\mathsf{O}}$ 2000 00000 THE HISTORY OF HEMOPHILIA IN THE **ROYAL FAMILIES OF EUROPE** C. Females can carry a sex-linked genetic disorder 1. Both male and females can be carriers of autosomal disorders 2. Only females can be carriers of sexlinked disorders 3. Many genetic disorders carried on Xchromosome a. Male who has gene for disorder on X-chromosome will have disorder b. Males more likely to have this disorder Normal male Carrier daughter Noncarrier female Normal daughter Carrier (heterozygous) female Affected male Possible carrier female Normal son Son with hemophili

- D. A pedigree is a chart for tracing genes in a family
 - 1. **Phenotypes** are used to <u>infer</u> **genotypes** on a pedigree
 - 2. **Autosomal genes** show <u>different patterns</u> on a pedigree than **sex-linked genes**.

a. Autosomal genes

b. Sex-linked genes

E. Several methods help map human chromosomes	
1. Human genome so large difficult to map	
2. Several methods used a. Pedigrees used for	
studying genetics in family	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
THE SECOND STREET STREE	
human genome contains 20 000 to 22 000 genes	
Much lower than earlier estimates of 80,000 to	
140,000 1. Contains 3164.7 million chemical nucleotide bases	
(A, C, T and G) 2. 99.9% of all nucleotide	
bases are exactly the same in all people	
3. Less than 2% of genome actually codes for proteins	
G. Karyotypes- picture of all chromosomes in a cell	
Stains used to produce patterns of bands	
1/ 11 1/ 11 11 11	
1 2 3 4 5 6	
7 8 9 10 11 12	
13 14 15 16 17 18	
19 20 21 22 X	

SPREAD DWGE NWE: E900090	TRUSOMY 21 2 9000902K	
111	16	11 18
	3	4 5
H # 1		
6 7	8 9 10	11 12
14 14	1 26	78 78
	15 16	17 18