
Unit #7 - Optimization, Optimal Marginal Rates

Some problems and solutions selected or adapted from Hughes-Hallett Calculus.

Optimization Introduction

1. Let f(x) = x2 − 10x+ 13, and consider the in-
terval [0, 10].

(a) Find the critical point c of f(x) and com-
pute f(c).

(b) Compute the value of f(x) at the endpoints
of the interval [0, 10].

(c) Determine the global min and max of f(x)
on [0, 10].

(d) Find the global min and max of f(x) on
[0, 1]. (Note: not the same interval as be-
fore)

(a) The critical point of f(x) is the solution to f ′(x) =
0. The derivative isf ′(x) = 2x − 10. Setting this
equal to zero and solving for x gives x = 5. Evalu-
ating f(5) yields −12.

(b) Evaluating f(0) and f(10), we find that each is
equal to 13.

(c) The global min and max values must occur at criti-
cal points or at the endpoints of the interval. Since
the value at the critical point is smaller than the
value at the endpoints, the value of f(5) is a min-
imum, and the value of f(0) (or f(10) since they
are equal) is a maximum.

(d) Since there are no critical points in the interval
[0, 1], so the global min and max values lie at
the endpoints of the interval. Computation yields
f(0) = 13,f(1) = 4, so the minimum is 4 and the
maximum is 13.

2. Find the maximum and minimum values of the

function f(x) =
ln(x)

x
on the interval [1,3].

First we check for critical points. The critical point of
f(x) is the solution to f ′(x) = 0.

The derivative isf ′(x) = x−2 − ln(x)

x2
.

Setting this equal to zero and solving for x gives x =
e1 = e.
Evaluating f(e) yields the value 1

e = 0.3679.
The values of the function at the endpoints of the in-
terval are f(1) = 0, f(3) = 0.3662, so the minimum
value is 0, and the maximum value is 1

e = 0.3679.

3. Find the minimum and maximum values of
y =
√

10θ −
√

5 sec θ on the interval [0, π3 ].

Let f(θ) =
√

10θ −
√

5 sec θ, and taking a derivative
gives f ′(θ) =

√
10−

√
5 sec θ tan θ.

At critical points,
√

10−
√

5 sec θ tan θ = 0

This is a challenging equation to solve, but there are
several ways to go about solving it; what is shown be-
low is just one. We will convert all the trig functions
to sines and see what we get.

√
10−

√
5 sec θ tan θ = 0

√
10 =

√
5 sec θ tan θ

Just sine/cosine:
√

2 =
1

cos θ

sin θ

cos θ

Just sines:
√

2 =
sin θ

1− sin2 θ

Multiplying up:
√

2−
√

2 sin2 θ = sin θ
√

2 sin2 θ + sin θ −
√

2 = 0

Now we can use the quadratic formula to solve for sin θ:

sin θ =
−1±

√
12 − 4

√
2(−
√

2)

2
√

2

=
−1±

√
1 + 8

2
√

2

=
−1± 3

2
√

2

=
2

2
√

2
, or

−4

2
√

2

so sin θ =
1√
2
, or

−2√
2

The second value, −2√
2
≈ −1.414 is impossible for sin θ

to achieve because sin θ cannot go beyond the interval
[−1, 1].

The first value is possible: sin θ = 1√
2

is in the standard

45/45 or pi
4 ,

π
4 triangle, so θ = π

4 is a possible solution,
and it lies on the interval from the question, [0, π3 ].

Since were are on a closed and bounded interval, the
global max and min values of y will occur at either
the one critical point (x = π

4 ) or one of the end points
(x = 0 or x = π

3 ).

Testing the value of f at each of those points, we find
that the minimum value of f on this interval is at
the endpoint θ = 0, where f(0) = −2.2361,
whereas the maximum value over this interval is
f(π4 ) =

√
10(π4 − 1) = −0.6786.

At the second endpoint θ = π
3 ,

f(π3 ) =
√

10π3 − 2
√

5 = −1.1606.
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4. Find the maximum and minimum values of the

function f(x) = x− 125x

x+ 5
on the interval [0,21].

First we check for critical points. The critical point of
f(x) is the solution to f ′(x) = 0.
The derivative isf ′(x) = 1− 625

(x+5)2
.

Setting this equal to zero and solving for x gives
x = −5 ± 25, and of these two critical points only -
5+25=20 lies in our interval.
Evaluating f(−5 + 25) = f(20) yields the value -80.
The values of the function at the endpoints of the inter-
val are f(0) = 0, f(21) = −79.9615, so the minimum
value is -80, and the maximum value is 0.

5. The function f(x) = −2x3 + 21x2 − 36x + 10
has one local minimum and one local maximum.
Find their (x, y) locations.

To identify any local extrema, we start by identifying
critical points. We note that f(x) is a polynomial, so its
derivative is defined everywhere, so only points where
f ′(x) = 0 will be critical points.

f ′(x) = −6x2 + 42x− 36

Setting f ′(x) = 0, 0 = −6x2 + 42x− 36

Factoring, 0 = −6(x2 − 7x+ 6)

0 = −6(x− 1)(x− 6)

The two critical points are at x = 1 and x = 6. Sub-
bing those x values back into the original function f(x)
gives us the points (1, -7) and (6, 118).

Using test points and the first derivative test, or taking
another derivative and using the second derivative test,
you can find that:
there is a local minimum at (1,-7), and
there is a local maximum at (6, 118).

6. A Queen’s University student decided to depart
from Earth after his graduation to find work on
Mars. Before building a shuttle, he conducted
careful calculations. A model for the velocity of
the shuttle, from liftoff at t = 0 s until the solid
rocket boosters were jettisoned at t = 80 s, is
given by

v(t) = 0.001094333t3 − 0.08215t2 + 28.6t− 4.3

(in feet per second). Using this model, estimate
the global maximum value and global minimum
value of the acceleration of the shuttle be-
tween liftoff and the jettisoning of the boosters.

For simplicity of presentation, let c3 = 0.001094333 and
c2 = 0.08215, so

v(t) = c3t
3 − c2t2 + 28.6t− 4.3

Differentiating once gives the acceleration

a(t) = 3c3t
2 − 2c2t+ 28.6

To find the critical points of the acceleration, we need
to know when its rate of change is zero:

a′(t) = 6c3t− 2c2

This will have a zero value when

0 = 6c3t− 2c2

t =
2c2
6c3

=
1

3

0.08215

0.001094333
≈ 25.022

Thus t ≈ 25.022 is the only critical point.

We compute the acceleration at the end points of the
interval (t = 0 and 80), and at the critical point:

a(0) = 28.6 ft/s
2

a(25.022) = 26.5444 ft/s
2

a(80) = 36.4672 ft/s
2

The global maximum acceleration is 36.4672 ft/s2 and
occurs at t = 80, while the global minimum accelera-
tion is 26.5444 ft/s2, and it occurs at t = 25.022 s.

7. Use the given graph of the function on the in-
terval (0, 8] to answer the following questions.

(a) Where does the function f have a local
maximum?

(b) Where does the function f have a local min-
imum?

(c) What is the global maximum of f?

(d) What is the global minimum of f?

(a) x =3. (x = 8 is an end-point, and so is not con-
sidered a local max or min using our definitions.)

(b) x =2, 5

(c) none: at the left end, the interval is open, so the
maximum is never reached.

(d) The global minimum of the function occurs at
x = 5, and the value there is f(5) = 0.

2



8. Find the global maximum and minimum values
of the following function on the given interval.

f(t) = 4t
√

4− t2, [−1, 2]

We are on a closed and bounded interval, and the func-
tion is continuous on that interval, so the global max
and global min will occur at either:

• a critical point in the interior of the interval, or

• one of the end points (x = −1 or x = 2).

Looking for critical points, we need the derivative:

f ′(t) = 4(4− t2)1/2 + 4t

(
1

2

1

(4− t2)1/2
(−2t)

)
Setting that equal to zero gives:

0 = 4
√

4− t2 + 4t

(
1

2

1√
4− t2

(−2t)

)
We note that t = 2 is a critical point (undefined deriva-
tive due to the 1√

4−22 term), but since t = 2 is also an

endpoint, we will look at it as a possible min/max later
anyway; we are concerned for now with critical points
in the interior of the the t ∈ [−1, 2] interval.

Back to the f ′(t) = 0 condition, multiplying both sides
by
√

4− t2,

0 = 4(
√

4− t2)2 − 4t2

or 0 = 4(4− t2)− 4t2

Simplifying (dividing all terms by 4) and solving for t,

0 = (4− t2)− t2

0 = 4− 2t2

2t2 = 4

t2 = 2

t = ±
√

2 ≈ ±1.4142

Since only t = +
√

2 is in the domain t ∈ [−1, 2], we
can ignore the other critical point t = −

√
2.

To determine which points are the global max and
global min, we can simply compare the values of f(t)
at the critical points and the end points:

t = −1 f(−1) = 4(−1)
√

4− (−1)2 ≈ −6.9282

t =
√

2 f(
√

2) = 4
√

2
√

4− 2 = 8
t = 2 f(2) = 4(2)

√
4− 4 = 0

By comparing the f(t) values, we find:

• The global maximum occurs at x = 1.4142 and
y = 8.

• The global minimum occurs at x = −1, and
y = −6.9282

9. An object with weight W is dragged along a
horizontal plane by a force acting along a rope
attached to the object. If the rope makes an
angle θ with the plane, then the magnitude of
the force is

F =
µW

µ sin(θ) + cos(θ)

where µ is a positive constant called the coeffi-
cient of friction and where 0 ≤ θ ≤ π/2. Find
the value for tan θ which minimizes the force.
Your answer may depend on W and µ.

To minimize F , we differentiate with respect to θ:

F (θ) = µW (µ sin(θ) + cos(θ))−1

so F ′(θ) = − µW

(µ sin(θ) + cos(θ))2
(µ cos(θ)− sin(θ))

Setting the derivative equal to zero to identify critical
points,

0 = − µW

(µ sin(θ) + cos(θ))2
(µ cos(θ)− sin(θ))

requires 0 = (µ cos(θ)− sin(θ))

sin(θ) = µ cos(θ)

sin(θ)

cos(θ)
= µ

tan(θ) = µ

The question asked for the value of tan(θ), so we have
that now as µ.

The greater the coefficient of friction, µ, the more of
our force should be directed upwards rather than for-
wards, to help minimize the friction effect.

10. Find the global maximum and minimum values
of the following function on the given interval.

f(x) = 7e7x
3−7x, −1 ≤ x ≤ 0

The global maximum occurs at x = −
√

1

3
, y =

7e−7
√

1/27+7
√

1/3

The global minima occur at two points: x = −1 and
x = 0, both with y = 7.

11. Find the global maximum and minimum values
of the following function on the given interval.

f(x) = 7x− 21 ln(x), [1, 4]

The global maximum occurs at x = 1, y = 7.
The global minimum occurs at x = 3, y = −2.071
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12. Find the global maximum and minimum values
of the following function on the given interval.

f(x) = 4e−x − 4e−2x, [0, 1]

The global maximum occurs at x = ln(2), y = 1.
The global minimum occurs at x = 0, y = 0.

13. Find the global maximum and minimum values
of the following function on the given interval.

f(x) = 7x− 14 cos(x), [−π, π]

Looking for critical point in the interior of the interval
[−π, π]:

f ′(x) = 7− (14)(− sin(x))

Setting f ′(x) = 0,

0 = 7 + 14 sin(x)

sin(x) =
−1

2

x =
−π
6

That’s the easy angle to find, but if you check against
the sine graph, or against a unit circle, you will also

find x =
−5π

6
is another solution still in the accept-

able interval for this question.

Using either the first or second derivative test will show:

• x =
−π
6

is a local minimum, and

• x =
−5π

6
is a local maximum, and

To identify the global max and min, we need to look
at the actual f(x) values at:

• the critical points x =
−π
6

and x =
−5π

6
, and

• the end points x = −π and π.

x f(x) Comment
−π −7π − 14(−1) ≈ −7.99
−5π

6
7−5π6 − 14(−

√
3/2) ≈ −6.20

−π
6

7−π6 − 14(
√

3/2) ≈ −15.79 Smallest

π 7π − 14(−1) ≈ 35.99 Largest

The global maximum occurs at x = π, y = 7(2 + π) ≈
35.99.
The global minimum occurs at x = −π/6, y = −7π/6−
14
√
3
2 ) ≈ −15.79

14. Find the global and local maximum and mini-
mum values of f(x) = 6x2, 0 < x ≤ 6.

There is a single global maximum at (6, 216). This is
an endpoint; there are no critical points on the interval
(0, 6]
Due to the open interval at the left end, x > 0, there
is no single point where there is a global minimum.
f(x) will keep decreasing as x approaches zero, but
will never reach a final

15. Find the global maximum and minimum values
of the following function over the given interval.

f(x) =
3 cosx

20 + 10 sinx
, 0 ≤ x ≤ 2π

The derivative is

f ′(x) =
−3 sin(x)(20 + 10 sin(x))− (3 cos(x))(10 cos(x))

(20 + 10 sin(x))2

Expanding and simplifying,

f ′(x) =
−60 sin(x)− 30 sin2(x)− 30 cos2(x)

(20 + 10 sin(x))2

=
−60 sin(x)− 30(sin2(x) + cos2(x))

(20 + 10 sin(x))2

=
−60 sin(x)− 30

(20 + 10 sin(x))2

Setting the derivative equal to zero to look for critical
points,

0 =
−60 sin(x)− 30

(20 + 10 sin(x))2

0 = −60 sin(x)− 30

sin(x) =
−1

2

x =
7π

6
,

11π

6
on the given domain [0, 2π]

We now compare the value of f(x) at the critical points,
and the end points.

x f(x)

0
3

20 + 10(0)
=

3

20
= 0.15

7π
6

3(−
√
3

2 )

20 + 10(−12 )
≈ -0.1732 Lowest

11π
6

3(+
√
3

2 )

20 + 10(−12 )
≈ 0.1732 Highest

2π
3

20 + 10(0)
=

3

20
= 0.15

The global maximum occurs at x =
11π

6
, y ≈ 0.1732.

The global minimum occurs at x =
7π

6
, y ≈ −0.1732.

16. Find the global and local maximum and mini-
mum values of f(t) = 10/t+ 4, 0 < t ≤ 1.
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Due to the open interval at t > 0, and that f(t) is
a decreasing function, there is no global max on the
interval (0, 1]. There is a global minimum at the end
point t = 1, f(1) = 14.

This function has no critical points on the domain we
are looking at, so it has no local min or max points.

17. Find the global and local maximum and mini-
mum values of f(θ) = 3 tan θ,−π/4 ≤ θ < π/2.

The function is increasing for all x on the given inter-
val (based on knowledge of the graph of tan, or the
derivative 3 sec2(θ), which will always be positive).

The highest point will be at the end of the interval,
but since that end is open (x < π/2, not x ≤ π/2),
there is no single point that will have the highest value.
Therefore the function has no global maximum.

The left-end point of the function will be the global
minimum (that endpoint is included in the interval).
θ = −π/4, f(π/4) = −3 will be the global minimum.

18. Find the exact global maximum and minimum
values of the function f(t) = 3t

8+t2 if its domain
is all real numbers.

Differentiating using the quotient rule gives

f ′(t) =
3(8 + t2)− 3t(28t)

(8 + t2)2
=

3(8− t2)

(8 + t2)2
.

The critical points are the solutions to 3(8−t2)
(8+t2)2 = 0,

which are t = ±
√

8.

Since f ′(t) > 0 for −
√

8 < t <
√

8 and f ′(t) < 0 other-
wise, there is a local minimum at t = −

√
8 and a local

maximum at t =
√

8.

As t → ±∞, we have f(t) → 0. Thus, the local maxi-

mum at t =
√

8 is a global maximum of f(
√

8) = 3
√
8

8+8 ,

and the local minimum at t = −
√

8 is a global mini-

mum of f(−
√

8) = −3
√
8

2(8) .

19. A ball is thrown up on the surface of a moon.
Its height above the lunar surface (in feet) after
t seconds is given by the formula

h = 217t− 7

4
t2.

(a) Find the time that the ball reaches its max-
imum height.

(b) Find the maximal height attained by the
ball.

(a) When the ball reaches its maximum, the velocity
will be zero, so we can solve for when velocity =
h′(t) = 0.

h′(t) = 217− 7

2
t

setting h’=0, 0 = 217− 7

2
t

t =
2

7
217 = 62 s

(b) At the time of zero velocity, the height will be
h(62) = 6727 feet.

20. In a certain chemical reaction, substance A
combines with substance B to form substance
Y . At the start of the reaction, the quantity
of A present is a grams, and the quantity of B
present is b grams. Assume a < b and y ≤ a.
At time t seconds after the start of the reaction,
the quantity of Y present is y grams. For cer-
tain types of reactions, the rate of the reaction,
in grams/sec, is given by

Rate = k(a− y)(b− y),

where k is a positive constant.

(a) Sketch a graph of the rate against y.

(b) For what values of y is the rate non-
negative?

(c) Use your graph to find the value of y at
which the rate of the reaction is fastest.

(a)

(b) If we expect the rate to be non-negative, we must
have 0 ≤ y ≤ a or b ≤ y. Since we assume a < b,
we restrict y to 0 ≤ y ≤ a.

In fact, the expression for the rate is non-negative
for y greater than a but these values of y are not
meaningful for the reaction. See the figure above
(which shows the rate with k = 1).

(c) From the graph, we see that the maximum rate
occurs when y = 0; that is, at the start of the
reaction.

21. At what value(s) of x on the curve y = 1 +
250x3 − 3x5 does the tangent line have the
largest slope?

The slope of the tangent line is given by y′ = 750x2 −
15x4.

Consider this to be a new function, g(x), that we want
to maximize (to get the largest slope). To maximize
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g(x), we differentiate to find critical points:

g(x) = 750x2 − 15x4

so g′(x) = 1500x− 60x3

set g′ = 0: 0 = 1500x− 60x3

0 = 60x(25− x2)

0 = 60x(5− x)(5 + x)

x = 0, 5,−5

These are the critical points of the slope function. To
determine which is a max, and which is a min, we can
use either the first or second derivative tests. Let’s use

the 2nd here because differentiation of g′ will be easy:
g′′(x) = 1500− 180x2

g′′(−5) = −3000 < 0: concave down; x = −5 is a local
max.
g′′(0) = 1500 > 0: concave up; x = 0 is a local min.
g′′(5) = −3000 < 0: concave down; x = 5 is a local
max.

The values of g(−5) = 9375 and g(5) = 9375 are the
slopes of the original function at x = −5 and x = 5.
They are equal, so they are both the common global
maximum slope of 9375.

Optimization Word Problems

22. Some airlines have restrictions on the size of
items of luggage that passengers are allowed to
take with them. Suppose that one has a rule
that the sum of the length, width and height of
any piece of luggage must be less than or equal
to 192 cm. A passenger wants to take a box of
the maximum allowable volume.

(a) If the length and width are to be equal,
what should the dimensions be?

(b) In this case, what is the volume?

(c) If the length is be twice the width, what
should the dimensions be?

(d) In this case, what is the volume?

Include units in all your answers.

Let the length, width and height of the box be L, w
and h, respectively. Then the volume of the box is
V = Lwh. The sum L + w + h = 192, and, for the
first part, we know that L = w. Thus 2w + h = 192,
so h = 192 − 2w, and the volume equation becomes
V = Lwh = w · w · (192− 2w) = 192 · w2 − 2w3. Since
we need h ≥ 0 and h = 192− 2w, the domain for w is
0 ≤ w ≤ 96.

Critical points are where dV
dw = 2 · 192 · w − 6 · w2 = 0,

so w = 0 or w = 64. The global maximum must occur
either at this point or at the end points. V (64) > 0
while V (0) = V (96) = 0, so the global maximum is at
L = w = 64, in which case h = 64 as well. The volume
is then V = 643 = 262144cm3.

If L = 2w, 2w + w + h = 192, so V = (2w)(w)(192 −
3w) = 384w2 − 6w3. Proceeding as before, we find
w = 128

3 , L = 256
3 and h = 64, so that V = 2097152

9 .

23. A wire 3 meters long is cut into two pieces. One
piece is bent into a square for a frame for a
stained glass ornament, while the other piece is
bent into a circle for a TV antenna.

(a) To reduce storage space, where should the
wire be cut to minimize the total area of
both figures?

(b) Where should the wire be cut to maximize
the total area?

(a) Note that we are interested in the total area en-
closed by the two figures . Our first task is there-
fore to find an equation for this area, which will be
the sum of the areas of the two figures.

Suppose we cut x meters of wire to make the cir-
cular antenna. Then there are 3−x meters left for
the square. To find the area of the circle we need
its radius. The circumference of a circle of radius
r is C = 2πr, so the radius of the circle is given by
2πr = x, and so r = x

2π . The area of the circular
antenna is therefore

Ac = πr2 = π
( x

2π

)2
= π

x2

4π2
=

1

4π
x2

Then the perimeter of a square with side length s
is P = 4s = 3−x, so the side length is s = 1

4 (3−x).
Then the area of a square is As = s2, so the area
of the square is As = ( 1

16 )(3− x)2.

The total area is therefore

A =
1

4π
x2+(

1

16
)(3−x)2 =

1

4π
x2+

1

(16)
(9−6x+x2).

The domain for x is 0 ≤ x ≤ 3.

The maximum and minimum of A will occur at
critical or end points. Critical points are where
dA/dx = 0, or, where

1

2π
x+

1

(16)
(2x− 6) = 0.
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Collecting all terms in x we have(
1

2π
+

2

(16)

)
x =

6

16
,

so, after simplifying,

x =
3π

4 + π
.

To determine if this is a local maximum or mini-
mum, we use the second derivative test.

A′′ =

(
1

2π
+

2

(16)

)
> 0,

so the function is concave up everywhere and this
is a local minimum. Also, because this is the only
critical point, this is also a global minimum for the
area.

Thus to minimize area we use 3π
4+π meters of wire

for the circle and 3− 3π
4+π meters for the square.

(b) To maximize the area, we can’t use our critical
point, which was a minimum; instead we must use
the endpoints. The areas at the endpoints are

A(0) =
9

16
≈ 0.56 and A(3) =

9

4π
approxapprox0.72,

the larger of which is A(3), so the maximum area
occurs when all of the wire is used for the circle
and none for the square.

24. A printed poster is to have a total area of 799
square inches with top and bottom margins of
6 inches and side margins of 4 inches. What
should be the dimensions of the poster so that
the printed area be as large as possible? Let x
denote the width of the poster and let y denote
the length.

(a) Write the function of x and y that you need
to maximize.

(b) Express that function in terms of x alone.

(c) Find the critical points of the function.

(d) Use the second derivative test to verify that
f(x) has a maximum at this critical point

(e) Find the optimal dimensions of the poster,
and the resulting area. Include units.

(a) Area = A = (x− 2 · 4)(y − 2 · 6) = (x− 8)(y − 12)

(b) By using the requirement that 799 = xy, we get
A = (x− 8)

(
799
x − 12

)
(c) To find the critical points, we differentiate and set

the derivative equal to zero. For this function, it
is easier to expand it first before differentiating, to
avoid use of the product rule.

A = (x− 8)

(
799

x
− 12

)
A = 799− 6392

x
− 12x+ 96

A = 895− 6392

x
− 12x

Differentiating,

dA

dx
= 0 +

6392

x2
− 12

Setting the derivative equal to zero,

0 =
6392

x2
− 12

12 =
6392

x2

x2 =
6392

12
= 532.6667

x = ±23.08

The critical points are at x = −23.08 and +23.08
inches, but only the positive length is in the domain
for this problem: x = 23.08.

(d) Since
dA

dx
=

6392

x2
− 12, the second derivative of A

is given by

d2A

dx2
= −2 · 6392

x3

The second derivative of A will be negative at
x = 23.08, so A is concave down there, indicat-
ing x = 23.08 is a local maximum for the printed
area.

(e) The dimensions of the poster with the largest
printed area will be 23.08×34.62, with a net printed
area of 341.09 in2.

25. A box with an open top has vertical sides, a
square bottom, and a volume of 32 cubic me-
ters. If the box has the least possible surface
area, find its dimensions.

This is the same question studied in the course videos.
Let the dimensions of the box be w and h; the bottom
is square so w can represent the length of both sides of
the bottom. These combine to produce

A = w2 + 2(wh) + 2(wh), V = w2h = 32

7



Solving for h in the V equation, h = 32/w2, we can
write A as just a function of w:

A = w2 + 4w(32/w2)

A = w2 + 128/w

Differentiating and setting A′ = 0, you will find w = 4,
and consequently h = 32/w2 = 2.

26. Find the dimensions of the rectangle of largest
area that can be inscribed in an equilateral tri-
angle with sides of length 2 if one side of the
rectangle lies on the base of the triangle.

There are several ways to define the dimensions of the
rectangle. We will do so using x as the half-width of
the rectangle, to make some of the later calculations a
bit simpler. Here are two examples of possible rectan-
gles:

x x

We can choose x, and want to find a formula for the
resulting area A of the rectangle.

x
2x

yA

A = width× height = (2x)(y)

To make this a function of just 1 variable, x, we need
to find a formula relating y and x. We can do this by
looking at the similar triangles on the right hand side
of the diagram.

x

1

1− x

y

√

3

The large triangle has a ratio of height-to-base of

√
3

1
,

and the smaller triangle in the right corner has a ratio

of
y

(1− x)
. Equating these ratios, because the triangles

are similar,

√
3

1
=

y

1− x
y =
√

3(1− x)

Subbing this into the Area formula,

A = 2xy = 2x(
√

3(1− x)) = 2
√

3(x− x2)

We can now look for critical points of A by looking for

where
dA

dx
= 0:

dA

dx
= 2
√

3(1− 2x)

Setting the derivative equal to zero gives

0 = 2
√

3(1− 2x)

0 = (1− 2x)

2x = 1

x =
1

2

Going back to the formulas for the final width, y and
A, we then find

width = 2x = 2(1/2) = 1

y =
√

3(1− 1/2) =

√
3

2

A = 2xy = 2

(
1

2

) √
3

2
=

√
3

2
square units

8



The optimal rectangle will be 2x = 1 unit length on

the base, have height

√
3

2
units, and an overall area of

√
3

2
units squared.

1

2

1

√

3

2

27. Find the minimum distance from the parabola

x− y2 = 0

to the point (0,3).

The first step to solving this problem is to sketch the
scenario. The parabola defined by x − y2 = 0 is the
sideways parabola opening right (x = y2).

0

1

2

3

4

−1

−2

1 2 3 4

x

y

b

b (x, y)

We want to minimize the length of the blue line, while
we get to select the point (x, y) on the parabola.

We note first that the length of the line is the hy-
potenuse of a triangle with side lengths x and (3− y):

0

1

2

3

4

0 1 2

b

b

x

(3− y)L

Also, from the equation of the parabola, we have x =
y2, so we can compute the length of the hypotenuse (L)
which is the distance from the point on the parabola
to the point (0, 3) as

L =
√
x2 + (3− y)2

=
√

(y2)2 + (3− y)2

=
√
y4 + (3− y)2

Take the derivative with respect to y,

dL

dy
=

1

2

1√
y4 + (3− y)2

(4y3 + 2(3− y)(−1))

When we set that equal to zero to look for critical
points,

0 =
1

2

1√
y4 + (3− y)2

(4y3 + 2(3− y)(−1))

Cross-multiplying the denominator,

0 = 4y3 + 2(3− y)(−1)

0 = 4y3 − 6 + 2y

or dividing by 2 0 = 2y3 + y − 3

Looking for factors, we try some easy integers and see
that y = 1 satisfies the equation, so (y − 1) is a factor.
Doing long division or any other factoring technique
gives the second factor:

0 = (y − 1) (2y2 + 2y + 3)︸ ︷︷ ︸
has no real roots

This gives us the only critical point at y = 1.

Either the first or second derivative test (not shown
here) will show that this only critical point is a local
minimum for the distance L(y).

9



This means that The point of closest approach will oc-
cur at y = 1 (and x = y2 = 12 = 1), and that will give
a distance of

√
12 + (3− 1)2 =

√
5 to the point (0, 3).

28. I have enough pure silver to coat 2 square me-
ters of surface area. I plan to coat a sphere and
a cube.

(a) Allowing for the possibility of all the silver
going onto one of the solids, what dimen-
sions should they be if the total volume of
the silvered solids is to be a maximum?

(b) Now allowing for the possibility of all the
silver going onto one of the solids, what di-
mensions should they be if the total volume
of the silvered solids is to be a minimum?

Note that we can answer both of these parts at the same
time, doing our usual critical-point-and-end-point anal-
ysis for optimization on a closed and bounded domain.

To create our variables, we define r as the radius of the
sphere, s as the length of each side of the cube, A the
total area (both sphere and cube together), and V the
total volume (both sphere and cube together). Then
the area of silver and volumes of the resulting solids
are given by:

A = 4πr2 + 6s2

and

V =
4

3
πr3 + s3.

Note that A = 2 in the question, but we will try as
much as possible to write it as A throughout to keep
the solution as general as possible until we need to com-
pute any final values.

We will eliminate s from the equations, so we can use
r as our only input variable. If we do this, note that
we can then use the A equation to bound the domain
of r:

• r = 0 is clearly the smallest radius we can use (all
cube, no sphere), and

• s = 0 (no cube, all sphere) leads to A = 4πr2 or

r =

√
A

4π
≈ 0.3989

The area of silver available, A, is fixed or constant, so
we can use that equation to solve for the relationship
between r and s:

Solving the area equation for s gives

s =

√
A− 4πr2

6
.

Substituting this value in the volume equation gives

V =
4

3
πr3 +

(
A− 4πr2

6

) 3
2

.

Differentiating with respect to r and setting to zero
gives:

V ′ =4πr2 − 3

2
× 8πr

6

(
A− 4πr2

6

) 1
2

= 0

4πr2 − 2πr

(
A− 4πr2

6

) 1
2

= 0

Factoring out a common 2πr ,

2πr

(
2r −

(
A− 4πr2

6

) 1
2

)
= 0

Since we know r = 0 is an endpoint we will look at
later, just need to focus on the term in brackets. If it
equals zero, then

2r −
(
A− 4πr2

6

) 1
2

= 0

so 2r =

√
A− 4πr2

6
.

Squaring gives

4r2 =
A− 4πr2

6

which gives

r =

√
A

24 + 4π
≈ 0.2339 meters.

This is the only critical point for our function V (r).
Since V (r) is continuous, and bounded by r = 0 and

r =

√
A

4π
≈ 0.3989, we can find the global max and

global min of V (r) by comparing the volume at:

• the endpoints of the domain, r = 0 and r ≈
0.3989, and

• the single critical point in the interior of the do-
main, r ≈ 0.2339.

Using the earlier formula

V =
4

3
πr3 +

(
A− 4πr2

6

) 3
2

,

here are those volumes in table form:
r V (r) Comment
0 0.1925

0.2339 0.1559 Lowest V : global min
0.3989 0.2660 Highest V : global max

So the final answer to the original question is:
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(a) The global maximum for the volume is achieved
by using r = 0.3989, which also meant s = 0, or
using all the silver to coat a sphere, with no cube
(s = 0). The resulting enclosed volume was 0.226
cubic meters.

(b) The global minimum for the volume is achieved
by splitting the silver between the sphere and the
cube, using a radius of r = 0.2339 m, and a cube

side length of s =

√
A− 4π(0.2339)2

6
≈ 0.4677

m.

29. Suppose that 241 ft of fencing are used to en-
close a corral in the shape of a rectangle with a
semicircle whose diameter is a side of the rect-
angle as the following figure:

Find the dimensions of the corral with maxi-
mum area.

From the picture, we see that x is the width of the cor-
ral, and therefore the diameter of the semicircle,
and that y is the height of the rectangular section.
Thus the perimeter of the corral can be expressed
by the equation 2y + x+ π

2x = 2y + (1 + π
2 )x = 241 ft

or equivalently,
y = 1

2 (241 − (1 + π
2 )x). Since x and y must both be

non-negative, it follows that x must
be restricted to the interval [0, 241

1+π/2 ]. The area of the

corral is the sum of the area of the
rectangle and semicircle, A = xy + π

8x
2. Making the

substitution for y from the
constraint equation,

A(x) = 1
2x(241 − (1 + π

2 )x) + π
8x

2 = 120.5x − 1
2 (1 +

π
2 )x2 + π

8x
2.

Now, A′(x) = 120.5 − (1 + π
2 )x + π

4x = 0 implies
x = 120.5

(1+π
4 ) ≈ 67.4919.

With A(0) = 0,

A( 120.5
(1+π

4 ) ) ≈ 4066.39 and A( 241
1+π

2
) ≈ 3451.11,

it follows that the corral of maximum area has dimen-
sions

x = 120.5
1+π

4
and y = 1

2 (241 − (1 + π
2 ) 120.5

1+π
4

) ≈
33.746.

30. Find the maximum area of a triangle formed in
the first quadrant by the x-axis, y-axis and a
tangent line to the graph of f = (x+ 2)−2.

Let P
(
t, 1

(t+2)2

)
be a point on the graph of the curve

y = 1
(x+2)2 in the first quadrant. The tangent line to

the curve at P is

L(x) =
1

(t+ 2)2
− 2(x− t)

(t+ 2)3
,

which has x-intercept a = 3t+2
2 and y-intercept b =

3t+2
(t+2)3 . The area of the triangle in question is

A(t) =
1

2
ab =

(3t+ 2)2

4(t+ 2)3
.

Solve

A′(t) =
(3t+ 2)(3 · 2− 3t)

4(t+ 2)4
= 0

for 0 ≤ t to obtain t = 2. Because A(0) = 1
4·2 ,

A(2) = 1
2·2 and A(t) → 0 as t → ∞, it follows that

the maximum area is A(2) = 0.25.

31. A box is constructed out of two different types
of metal. The metal for the top and bottom,
which are both square, costs $4 per square foot
and the metal for the sides costs $6 per square
foot. Find the dimensions that minimize cost if
the box has a volume of 35 cubic feet.

Let x > 0 be the length of a side of the square base and
z > 0 the height of the box. With volume x2z = 35,
we have z = 35/x2 and cost

C(x) = 4 · 2 · x2 + 6 · 4 · xz = 8x2 + 840
1

x
.

Solve C ′(x) = 8 · 2x − 840x−2 = 0 to obtain x =(
35·6
4

)1/3
. Since C(x)→∞ as x→ 0+ and as x→∞,

the minimum cost is C
(
( 35·6

4 )1/3
)
≈ $336.499 when

x ≈ 3.74444 ft and z ≈ 2.49629 ft.

32. A rectangle is inscribed with its base on the
x axis and its upper corners on the parabola
y = 12 − x2. What are the dimensions of such
a rectangle with the greatest possible area?

To solve this problem, we need to find an expression
for the area of the rectangle in terms of one of its di-
mensions, and then use derivatives to maximize this
area. First, however, we can simply things quite a bit
by noting that the parabola given by y = 12 − x2 is
symmetric about the y-axis. Therefore, the inscribed
rectangle will also be symmetric about the y-axis. So it
is enough to find the dimensions of half of this rectangle
and double the x value.

Our rectangle will therefore have the bottom left cor-
ner (0, 0) and the top right corner (x, 12 − x2) where
x is the width of the rectangle, and 12 − x2 is its
height. Thus, the area of the rectangle is given by
f(x) = x(12− x2) = 12x− x3 where x is the width of
the rectangle. We now find the derivative of this and
solve for zero to find critical points.

The derivative is f ′(x) = 12 − 3x2. Setting this equal
to 0 and recalling that we are talking about widths, so
that all x values should be positive, we get:
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f ′(x) = 0

12− 3x2 = 0

3x2 = 12

x2 =
12

3
= 4

x =
√

4 = 2

It is easy to check that the second derivative of f(x)
is negative everywhere, so this is a maximum of f(x).
Therefore, this is the width of the rectangle with the
maximum area. Actually, it is the width of half of that
rectangle, since we were ignoring the half on the left
side of the y-axis. So the width of the whole rectangle is
2 ·2 = 4. The height is given by plugging x = 2 into the
formula for the parabola, giving 12−(2)2 = 12−4 = 8.

33. Centerville is the headquarters of Greedy Ca-
blevision Inc. The cable company is about to
expand service to two nearby towns, Springfield
and Shelbyville. There needs to be cable con-
necting Centerville to both towns. The idea is
to save on the cost of cable by arranging the
cable in a Y-shaped configuration. Centerville
is located at (8, 0) in the xy-plane, Springfield
is at (0, 5), and Shelbyville is at (0,−5). The
cable runs from Centerville to some point (x, 0)
on the x-axis where it splits into two branches
going to Springfield and Shelbyville. Find the
location (x, 0) that will minimize the amount
of cable between the 3 towns and compute the
amount of cable needed. Justify your answer.

(a) What function of x needs to be minimized
to solve this problem?

(b) Find the critical points of f(x).

(c) Use the second derivative test to verify that
f(x) has a minimum at this critical point.

(d) Compute the minimum amount of wire
needed.

(a) Draw a sketch.

With x being the horizontal component of the di-
agonal lines, the total length of the cable will be
L(x) = 2

√
x2 + 52 + (8− x).

(b) Taking the derivative and finding critical points of
L(x) yields x = 2.89.

(c) The second derivative of L(x) will be positive at
x = 2.89, indicating that the critical point is a lo-
cal minimum for the length of cable.

(d) L(2.89) = 2
√

(2.89)2 + 25+(8−2.89) = 16.66 units
of cable.

34. A cylinder is inscribed in a right circular cone
of height 4 and radius (at the base) equal to
3.5. What are the dimensions of such a cylin-
der which has maximum volume?

As we are attempting to maximize the volume of the in-
scribed cylinder, we must first come up with a formula
for the volume of this cylinder. Let x be the radius
of the cylinder, v(x) the volume. We know from basic
geometry that the formula for volume is give by πx2h
where x is the radius and h is the height of the cylin-
der. So in order to come up with a formula for volume
in terms of x only, we need to relate x to h.

This is where the information about the cone comes in
handy. The cone is a right circular cone. Thus, in-
scribing the cylinder will fill up some of the base of the
cone, and just touch the slanted side, leaving a similar
right circular cone at the top. This new cone will have
a radius of x and a height of 4−h where x and h are as
in the formula for the volume of our cylinder. As this
cone is similar to the original, we can use ratios to get:

x

3.5
=

4− h
4

Simplifying this, we get h = 4 − 4
3.5x. Therefore,

our formula for volume in terms of x becomes v(x) =
πx2(4− 4

3.5x) = (4π)x2 − ( 4
3.5π)x3

Now, we want to maximize this. So we will first take the
derivative. Using the rules for differentiation of poly-
nomials, the derivative is v′(x) = 2(4π)x − 3( 4

3.5π)x2.
Solving for zero, we get, as we don’t want x = 0, the
following.

v′(x) = 0

2(4π)x− 3(
4

3.5
π)x2 = 0

πx(2(4)− 3
4

3.5
x) = 0

2(4)− 3
4

3.5
x = 0

3
4

3.5
x = 2(4)

x =
2

3
(3.5) = 2.333

Then, using the formula for height we came up with
before, the height can be determined by:

h = 4− 4

3.5
(2.333) = 1.333
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35. A small island is 3 miles from the nearest point
P on the straight shoreline of a large lake. If
a woman on the island can row a boat 2 miles
per hour and can walk 3 miles per hour, where
should the boat be landed in order to arrive at
a town 8 miles down the shore from P in the
least time? Let x be the distance (in miles) be-
tween point P and where the boat lands on the
lakeshore.

(a) Enter a function T (x) that describes the to-
tal amount of time the trip takes as a func-
tion of the distance x.

(b) What is the distance x = c that minimizes
the travel time?

(c) What is the least travel time?

See the similar example in the course notes.

(a)

T (x) =
water dist

water speed
+

land dist

land speed

=

√
9 + x2

2
+

(8− x)

3

(b) The minimum of T (x) will occur when x = 2.68
miles.

(c) For that landing point, the travel time will be
T (2.68) = 3.78 hours or about 3 hours and 45 min-
utes.

36. The illumination at a point is inversely propor-
tional to the square of the distance of the point
from the light source and directly proportional
to the intensity of the light source. Suppose two
light sources are s feet apart and their intensi-
ties are I and J , respectively. Let P be the
point between them where the sum of their illu-
minations is a minimum: find the distance from
P to I.

(Your answer will depend on I, J , and s.)

From the proportionality statement, the illumination

on a point is be given by illum =
brightness

(Dist. to source)
2

We want the total illumination at our point from the
two sources, which will be given by the illumination
from each source, added together to get a total:

Q =
I

x2
+

J

(s− x)2
.

To find the x value that minimizes Q, we look for crit-
ical points of Q(x). Differentiating with respect to x
gives

Q′ = −2I

x3
+

2J

(s− x)3
.

Setting the derivative to zero and multiplying with the
denominators gives

−2I(s− x)3 + 2Jx3 = 0.

This can be rewritten as

I

J
=

x3

(s− x)3

Taking cube roots of both sides,

(
I

J

)1/3

=
x

(s− x)

Solving for x: (s− x)

(
I

J

)1/3

= x

s

(
I

J

)1/3

− x
(
I

J

)1/3

= x

s

(
I

J

)1/3

= x

(
I

J

)1/3

+ x

s

(
I

J

)1/3

= x(1 +

(
I

J

)1/3

)

or x =
s
(
I
J

)1/3
(1 +

(
I
J

)1/3
)

This can be tidied up a little by expanding putting
everything on a common denominator of J1/3,

x =
sI1/3

J1/3 + I1/3

37. How far from A should the point P be chosen
so as to maximize the angle θ?

Define the distance PA to be x, so PB is (3− x).

The angle θ = π − ( angle in PB triangle +
angle in PA triangle).
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θ = π − (arctan(2/(3− x)) + arctan(5/x)

Finding crit pnts:

θ′ = − 1

1 + (2/(3− x))2

(
−2

(3− x)2

)
(−1)

− 1

1 + (5/x)2

(
−5

x2

)
=

−2

(3− x)2 + 4
+

5

x2 + 25

Setting θ′ = 0:

0 =
−2

(3− x)2 + 4
+

5

x2 + 25

2

(3− x)2 + 4
=

5

x2 + 25

2(x2 + 25) = 5((3− x)2 + 4)

2x2 + 50 = 45− 30x+ 5x2 + 20

0 = 3x2 − 30x+ 15

Using the quadratic formula, x = 0.5279 and x =
9.4721, but clearly only x = 0.5279 is in the accept-
able domain.

Therefore to maximize the angle θ, we should move the
point P to be 0.5279 units away from A.

38. Two vertical poles PQ and ST are secured by
a rope PRS going from the top of the first pole
to a point R on the ground between the poles
and then to the top of the second pole as in the
figure. If R is chosen to minimize the length of
the rope, find the resulting relationship between
θ1 and θ2 in terms of a and b, where a is the
length of PQ and b is the length of ST.

Here is a diagram, showing the variable lengths x and
L− x, and the constant lengths a and b.

The length of the rope is given by

R(x) =
√
a2 + x2 +

√
(L− x)2 + b2

Taking the derivative to identify critical points,

R′(x) =

(
1

2

)
1√

a2 + x2
(2x)

+

(
1

2

)
1√

(L− x)2 + b2
2(L− x)(−1)

Setting R′(x) = 0:

0 =
x√

a2 + x2
+

−(L− x)√
(L− x)2 + b2

(L− x)√
(L− x)2 + b2

=
x√

a2 + x2

We could continue with the analysis of the optimal x
value, but the question actually asks about the rela-
tionship between the angles θ1 and θ2. We note that
in the two triangles,

cos(θ1) =
x√

a2 + x2

and cos(θ2) =
L− x√

(L− x)2 + b2

But wait! Those are exactly the same expression we
have in our current R′(x) = 0 equation!

(L− x)√
(L− x)2 + b2︸ ︷︷ ︸

cos(θ2)

=
x√

a2 + x2︸ ︷︷ ︸
cos(θ1

So at the optimal length of the rope, we must have

cos(θ1) = cos(θ2)

and since both angles must be in the range [0, π/2], the
only possible way to have that equality in the cosines
is to have

θ1 = θ2
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In words, the shortest rope length will be made when
both of the angles in the triangles are the same.

39. The Nearsighted Cow Problem: A Calculus
Classic.

A rectangular billboard 7 feet in height stands
in a field so that its bottom is 13 feet above
the ground. A nearsighted cow with eye level
at 4 feet above the ground stands x feet from
the billboard. Express θ, the vertical angle sub-
tended by the billboard at her eye, in terms of x.
Then find the distance x0 the cow must stand
from the billboard to maximize θ(x).

(a) Here is a diagram with more information added,
including the definition of two related angles, θ1
and θ2, defined so that our desired θ = θ1 − θ2.

For the diagram,

θ = θ2 − θ1
= arctan((7 + 9)/x)− arctan(9/x)

= arctan(16/x)− arctan(9/x)

(b) To find the optimal viewing distance, we want to
find x that maximizes θ. Taking the derivative with

respect to x,

θ′ =
1

1 + (16/x)2

(
−16

x2

)
− 1

1 + (9/x)2

(
−9

x2

)

Setting the derivative equal to zero to find critical
points gives:

1

1 + (16/x)2

(
16

x2

)
=

1

1 + (9/x)2

(
9

x2

)
Cross-multiplying:

16x2(1 + (81/x2)) = 9x2(1 + (256/x2))

Bringing in the x2:

16(x2 + 81) = 9(x2 + 256)

16x2 + 1296 = 9x2 + 2304

7x2 = 1008

x2 = 144

so the optimal viewing distance for the advertising-
loving myopic bovine is

x = 12

feet from the sign.
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40. While waiting for their babies to mature, a
bird parent feeds the babies worms. To collect
worms, the bird flies to a site where worms are
to be found, picks several up, then flies back to
its nest. The loading curve below shows how the
number of worms (the load) a bird collects de-
pends on the time it spends searching for them.

The curve is concave down because the bird can
pick up worms more efficiently when its beak
is empty (initial rate of collection); when its
beak is partly full, the bird becomes less effi-
cient (slower rate of collection later). The trav-
eling time (from the nest to the site and back) is
represented by the distance PO in the diagram.

The bird wants to maximize the rate at which
it brings worms back to the nest, averaged over
multiple trips, so

Rate worms arrive =
Load/Trip

(Travel + Search Time)/Trip

(a) Draw a line in the figure whose slope is the
desired rate.

(b) Using the graph, estimate the load which
maximizes this rate.

(c) If the traveling time is increased (i.e. PO
length made longer), does the optimal load
increase or decrease? Why?

(a)

The line shown above has the slope equal to the
rate worms arrive at the nest. To understand why,
look at vertical change/rise in that line (total load
collected/trip), and the horizontal length/run (to-
tal time spent on the trip).

For any point Q on the loading curve, the line PQ
has slope

QT

PT
=

QT

PO +OT

=
Load/Trip

(Travel + Search Time)/Trip

= Rate worms arrive

(b)

The slope of the line PQ is maximized (line made
steepest) when the line is tangent to the loading
curve, which happens with line (2). The load is
then approximately 7 worms.

(c) If the traveling time is increased, e.g. the point P
moves to the left, to point P ′. If line (3) is tan-
gent to the curve, it will be tangent to the curve
further to the right than line (2), so the optimal
load is larger.

This makes sense: if the bird has to fly further
on each trip, you’d expect it to bring back more
worms each time to make the additional travel
time worthwhile in the overall average. Note that
the resulting optimal slope (3) is still shallower
than the slope in (2), indicating that even with the
optimal strategy, birds that have to travel further
to collect food will be disadvantaged because they
are limited to a lower food gathering rate overall.
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