Unit 8 - Geometry QUADRILATERALS

NAME Period_____

Geometry Chapter 8 – Quadrilaterals

***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. ***

- 1.____ (8-1) Angles of Polygons Day 1- Pages 407-408 13-16, 20-22, 27-32, 35-43 odd
- 2. ____ (8-2) Parallelograms Day 1- Pages 415 16-31, 37-39
- 3. ____ (8-3) Test for Parallelograms Day 1- Pages 421-422 13-23 odd, 25 -31 odd
- 4. ____ (8-4) Rectangles Day 1- Pages 428-429 10, 11, 13, 16-26, 30-32, 36
- 5. ____ (8-5) Rhombi and Squares Day 1 Pages 434-435 12-19, 20, 22, 26 31
- 6.____ (8-6) Trapezoids Day 1– Pages 10, 13-19, 22-25
- 7. ____ Chapter 8 Review

(Reminder!) A little background...

Polygon is the generic term for ______. Depending on the number, the first part of the word - "Poly" - is replaced by a prefix. The prefix used is from Greek. The Greek term for 5 is Penta, so a 5-sided figure is called a _______. We can draw figures with as many sides as we want, but most of us don't remember all that Greek, so when the number is over 12, or if we are talking about a general polygon, many mathematicians call the figure an "n-gon." So a figure with 46 sides would be called a "46-gon."

Vocabulary - Types of Polygons

Equilateral -	 	

Convex - a straight line drawn through a convex polygon crosses at most two sides. Every interior angle is
Concave - you can draw at least one straight line through a concave polygon that crosses more than two sides. At least one interior angle is

Polygon Parts

Exterior Angle	Side -
Interior Angle	Vertex -
Diagonal	Diagonal -
Side	Interior Angle -
	Exterior Angle -

Number of sides of the polygon	Name of the polygon	Number of interior angles	Number of diagonals possible from one vertex point	Number of triangles formed from one vertex point	Sum of the measures of interior angles	One interior angle measure (regular polygon)	One exterior angle measure (regular polygon	Sum of the exterior angles measures
3		3	0	1				
4								
5		5	2	3	540°			
6								
7								
8								
9								
10								
11								
12					1800°			
n								

- a.) Compare the number of triangle to the number of sides. Do you see a pattern?
- b.) How can you use the number of triangles formed by the diagonals to figure out the sum of all the interior angles of a polygon?

c.) Write an expression for the sum of the interior angles of an n-gon, using n and the patterns you found from the table.

Section 8 – 1: Angles of Polygons Notes

Diagonal of a Polygon: A segment that _____

Theorem 8.1: Interior Angle Sum Theorem:

If a convex polygon has *n* sides and *S* is the sum of the measures of its interior angles, then S =

Example #1: Find the sum of the measures of the interior angles of the regular pentagon below.

Example #2: The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.

Example #3: Find the measure of each interior angle.

Theorem 8.2: Exterior Angle Sum Theorem:

If a polygon is convex, then the sum of the measures of the exterior angles, one at

Example #4: Find the measures of an exterior angle and an interior angle of convex regular nonagon *ABCDEFGHJ*.

Find the measure of each interior angle in a quadrilateral in which the measure of each consecutive angle increases by 10.

Warm Up: Measure the following angles with a protractor

2.

Properties of Parallelograms Activity

- *Step 1* Using the lines on a piece of graph paper as a guide, draw a pair of parallel lines that are at least 10 cm long and at least 6 cm apart. Using the parallel edges of your straightedge, make a parallelogram. Label your parallelogram *MATH*.
- *Step 2* Look at the opposite angles. Measure the angles of parallelogram *MATH*. Compare a pair of opposite angles using your protractor.

The opposite angles of a parallelogram are _____.

Step 3 Two angles that share a common side in a polygon are consecutive angles. In parallelogram *MATH*, $\angle MAT$ and $\angle HTA$ are a pair of consecutive angles. The consecutive angles of a parallelogram are also related.

Find the sum of the measures of each pair of consecutive angles in parallelogram *MATH*.

The consecutive angles of a parallelogram are ______.

Step 4 Next look at the opposite sides of a parallelogram. With your ruler, compare the lengths of the opposite sides of the parallelogram you made.

The opposite sides of a parallelogram are ______.

- Step 5 Finally, consider the diagonals of a parallelogram. Construct the diagonals \overline{MT} and \overline{HA} . Label the point where the two diagonals intersect point *B*.
- **Step 6** Measure *MB* and *TB*. What can you conclude about point *B*? Is this conclusion also true for diagonal \overline{HA} ? How do the diagonals relate?

The diagonals of a parallelogram ______.

Section 8 – 2: Parallelograms Notes

Key Concept ((Parallelogram):
A parallelogra	m is a
Ex:	Symbols:
<u>Theorem 8.3</u> :	Opposite sides of a parallelogram are
<u>Theorem 8.4</u> :	Opposite angles in a parallelogram are
<u>Theorem 8.5</u> :	Consecutive angles in a parallelogram are
<u>Theorem 8.6</u> :	If a parallelogram has one right angle,
<u>Theorem 8.7</u> :	The diagonals of a parallelogram

Example #1: *RSTU* is a parallelogram. Find $m \angle URT$, $m \angle RST$, and y.

Theorem 8.8: Each diagonal of a parallelogram _____

CRITICAL THINKING

Draw a parallelogram on one of the graphs below. Prove that it's a parallelogram. You must use distance, midpoint, and a protractor.

														_		_
																_
														-		_
												_		-		_
														-	_	_
														-	_	_
				-		-			-					-		-
				-	-	-	-	-	-	-		-		-	_	-
				-			-			-		-	-	-	_	-
	-		-	-	-	-	-		-	-			-	-		-
	-		-	-	-	-	-	-	-	-		-	-	\vdash		-
														1		

																	_
-	-	-	-		-	-				-							_
_	-	_			_												_
-	-	-	-		-	-			-								_
-	-	-	-	-	-	-											
																	-
-	-	-	-	-	-	-								 			<u> </u>
-	-	-	-	_	-		-							 	 		
-	-	_	-	_	_	_	_										
																	_
-		-	-	-	-		-									-	-
-		-	-	-	-	-	-							 			

Section 8 – 3: Tests for Parallelograms Notes

<u>Conditions for a Parallelogram</u>: By definition, the opposite sides of a parallelogram are parallel. So, _____

Key Concept (Proving Parallelograms):

Theorem 8.9: If ______

then the quadrilateral is a parallelogram.

Ex:

Theorem 8.10: If ______

then the quadrilateral is a parallelogram.

Ex:

Theorem 8.11: If ______

then the quadrilateral is a parallelogram.

Ex:

<u>Theorem 8.12:</u>_____

then the quadrilateral is a parallelogram.

Ex:

Example #1: Find x and y so that each quadrilateral is a parallelogram and justify your reasoning.

Given: //VZRQ and //WQST

Prove: $\angle Z \cong \angle T$

Statements	Reasons
1. / VZRQ	1.
2. $\angle Z \cong \angle Q$	2.
3. WQST	3.
$4. \qquad \angle Q \cong \angle T$	4.
5. $\angle Z \cong \angle T$	5.

CRITICAL THINKING

Is quadrilateral BCDE a parallelogram? Why or why not? B (0, 0), C (4, 1), D (6, 5), E (2, 4)

																	-
\vdash																	-
\vdash		-	-		-		-			-	-					_	_
\vdash		-	-		-		-			-	-					_	
								_			_						
		-			-												
\vdash			-														-
\vdash	-	-			-	-			-			-					
				L									I				

Section 8 – 4: Rectangles Notes

<u>Rectangle</u>:

✓ A quadrilateral with _____

✓ Both pairs of opposite angles are _____

✓ A rectangle has _____

Theorem 8.13: If a parallelogram is a rectangle, then ______

Key Concept (Rectangle):

Properties:

Ex:

Example #1: Quadrilateral *RSTU* is a rectangle. If RT = 6x + 4 and SU = 7x - 4, find x.

Example #2: Quadrilateral *LMNP* is a rectangle.

Theorem 8.14: If the diagonals of a parallelogram are congruent, then______ Ex: A______B

CRITICAL THINKING

Compare and contrast parallelograms and rectangles. What is the same? What is different?

																			L
			_	 															\vdash
		 		 															\vdash
	_	 	_	 															\vdash
									<u> </u>										-
	-		-			-		-			-		-				-		\vdash
_			-			-	-	-	-	-	-		-	-			-		\vdash
_	_	 -			-	-	-	-		-	-	-	-	-			-		\vdash
_	-	 _	-	 			-	-		-			_	-					⊢
				 		-	-	\vdash	-	-			-	-			-		┝
		 		 		-	-	\vdash	-	-	-		-	-	-		-	-	┝

Date: _____

Section 8 – 5: Rhombi and Squares Notes

<u>Rhombus</u>:

- ➢ A ______ is a special type of parallelogram called a ______.
- A rhombus is a quadrilateral ______
- All of the properties of _____ can be applied to rhombi.

Key Concept (Rhombus):

Theorem 8.15: The diagonals of a rhombus are ______.

Ex:

Theorem	<u>8.16</u> :	If	the	diagonals	of	a	parallelogram	are
perpendicu	ılar , thei	า						·
Ex:								

р

Theorem 8.17: Each diagonal of a rhombus_____

Ex:

Example #1: Use rhombus *LMNP* and the given information to find the value of each variable.

- a.) Find y if $m \angle 1 = y 54$
- b.) Find $m \angle PNL$ if $m \angle MLP = 64$.

Square:

≻ If	a	quadrilateral	is	both	a		and	a	,
th	en it	is a				·			
≻ A	ll of	the properties of	of			and			can be applied
to)		_						

Construct a rhombus. Prove it's a rhombus as many ways as possible.

																	_	_	_
																			<u> </u>
-															-	-	-		-
\vdash	-	-	-	-	-	-	-	-	-	-		 	 	 -	-	-	-		-
-																-	-		-
-																<u> </u>	<u> </u>		
-	-	-	-	-	-														
L																			

Section 8 – 6: Trapezoids Notes

Trapezoid:

- A quadrilateral with exactly ______.
 The parallel sides are called ______.
 The base angles are formed by ______.
- ➤ The nonparallel sides are called _____.

Isosceles Trapezoid:

A trapezoid that has ______.

- Theorem 8.18: Both pairs of base ______ of an isosceles trapezoid are ______.
 Ex:
- <u>Theorem 8.19</u>: The diagonals of an isosceles trapezoid are ______.
 Ex:

Theorem 8.20: The median of a trapezoid is ______ to the bases, and its measure is ______ the sum of the measures of the bases.

Ex:

Example #1: *DEFG* is an isosceles trapezoid with median \overline{MN} .


```
a.) Find DG if EF = 20 and MN = 30.
```

b.) Find $m \angle 1$, $m \angle 2$, $m \angle 3$, and $m \angle 4$ if $m \angle 1 = 3x + 5$ and $m \angle 3 = 6x - 5$.

CRITICAL THINKING

Construct a trapezoid whose bases are not horizontal segments.

																1
																_
		-			-						-	-	-	-	-	
														-	-	
-		-			-						-	-	-	-	-	
-																
-	_						_	_	_	_	_	_	_			
-																
																_
-			 	 		 										
																_

 	 		 			_		 _		 _		 	 _		
_	-		-			-	_	-	-	-				-	
		-												-	
_	-	_	-	_		-	_	 -	_	-				_	
_		_					_	 _	_	_				_	
				-					-		-				
 -	-	_	-	_		-	_	 -	_	 -				_	
_					<u> </u>										

												1
												1
												1
												-
												_
									-			_
												_

		_	 _	_	 					_	 	 		 	_	
																1
																_
											-		-			
				_									_			-
																_
																1
																-
-	-						-		-		-		-			_
		_		-							_		_			
																_
-							-		-		-		-			-
	-						-		-		-		-			
		_									_		_			
\vdash		-					-		-		-		-			-

	-				-				-		-		-	-	
											-		-		
	-	-	-		-	-		-		-	-	-	-		⊢
	-	-			-		 -		-		-		-	-	-
_	-	-			-		-		-		-		-		
	_						 _				_		_		
		_									_		_		
							 _		_		_		_		
-															

_	 	_	 	_					_								
		-													-		_
-		-		-					-						-	_	
		_							_						_		
																	_
				-													_
-				_					-								_
		_		_											_		_
-		-						-	-						-		_
-		-							-						-		_
1																	
			_		_	_	_	_		_		_		_		_	

		-									-			
_		_	_			_					_			
-		-	-	-		-		_		_	-			
_		_	-			_					-			
\vdash														\vdash
-		-	-								-			
			-								_			

	-						-			-		-			-
	_				_		_								
	-				-					-		-			-
-	_		-		_		_							-	
															-
	_				_		_			_					
-	-		-		-		-			-					-
-					-		-			_		_			
L															

_	_				_			_								_
																l
											-		-			<u> </u>
				-			-		-		-		-			-
				_									_			-
																I
																l
																1
				-	-		-		-		-		-			-
-					-		-	-	-		-		-			-
																_
																İ.
																<u> </u>
-											-		-			<u> </u>
				-									-			-
		_					_		_		_		_			-
																<u> </u>
																Ĺ
-								-				-		-	-	-
		-		-	-		-	-	-		-		-			-

 		_	 	 											
									-				-		
		-							-				-		
												-	-		-
							_								
							_		_						
						-		-							
	-		-		-	-					-		-		-
		-					-		-			-	-		-
		-					-		-				-		

	 _	_	_	_	_	_	 	 							
\vdash															-
-		-	-												-
-		-											-		
-		-	_	-				-		-			-		
-					-										
		_								_			_		
L															

-				
_				
_				
-	-	-	-	-

																	-
				-				-			-		-	-		-	
-			-	-	-		-	-			-		-	-	-	-	-
-			-	-	-		-				-		-	-	-	-	
			-	_			-				 -	-	-	-			-
				_				_						<u> </u>			
								_									
																	-
		-															
	-	-	-	-	-		-				-		-	-		-	-
			-		-		-		-		-		-	-	-		-

_															
	-														
-	-		-		-	-									_
L															
						_		_							
-															
-			-			-		-							
-	-			-		-		-							_
															_
				L											

												-		-	
-				-			-		-			-		-	
				_								_			
-												-		-	
	-	-		-								-		_	
							_		_			_		_	
														-	-
\vdash	-	-					-		-			-		-	-
-		_					-		-			_		_	
L	I														

Type of FigureDraw an ExampleSpecial Characteristics(Some things to ask yourself:diagonals equal, diagonals bisect each other, diagonals bisect angle, diagonals perpendicular, angle
measures equal, angle measures supplementary, sides equal, sides parallel, etc...)

1 , 8	11 57 1	
1. Quadrilateral		
2. Parallelogram		
2 Sauces		
3. Square		
4. Rectangle		
5. Rhombus		
6. Trapezoid		
7. Isosceles Trapezoid		
-		

Property	Parallelogram	Rectangle	Rhombus	Square	Trapezoid	Isosceles Trapezoid
Diagram of the figure						Tupezotu
Both pairs of opposite sides are						
Exactly 1 pair of opposite sides are						
Diagonals are ⊥						
Diagonals are ≅						
Diagonals bisect each other						
Diagonals bisect pair of opposite ∠s						
Both pairs of opposite sides are ≅						
Exactly 1 pair of opposite sides are ≅						
Exactly 1 pair of consecutive sides are ≅						
All sides are ≅						
Both pairs of opposite ∠s are ≅						
Exactly 1 pair of opposite ∠s are ≅						
All ∠s are ≅						
All ∠s are supplementary to 2 consecutive ∠s						

