$$
\text { Unit } 8 \text { - Geometry }
$$
 QUADRILATERALS

NAME
Period

Geometry Chapter 8 - Quadrilaterals

***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. ***

1. \qquad (8-1) Angles of Polygons - Day 1- Pages 407-408 13-16, 20-22, 27-32, 35-43 odd
2. \qquad (8-2) Parallelograms - Day 1- Pages 415 16-31, 37-39
3. \qquad (8-3) Test for Parallelograms - Day 1- Pages 421-422 13-23 odd, 25 -31 odd
4. \qquad (8-4) Rectangles - Day 1- Pages 428-429 10, 11, 13, 16-26, 30-32, 36
5. \qquad (8-5) Rhombi and Squares - Day 1 - Pages 434-435 12-19, 20, 22, 26 - 31
6. \qquad (8-6) Trapezoids - Day 1- Pages 10, 13-19, 22-25
7. \qquad Chapter 8 Review

(Reminder!) A little background...

Polygon is the generic term for \qquad .
Depending on the number, the first part of the word - "Poly" - is replaced by a prefix. The prefix used is from Greek. The Greek term for 5 is Penta, so a 5 -sided figure is called a
\qquad We can draw figures with as many sides as we want, but most of us don't remember all that Greek, so when the number is over 12 , or if we are talking about a general polygon, many mathematicians call the figure an "n-gon." So a figure with 46 sides would be called a "46-gon."

Vocabulary - Types of Polygons
Regular - \qquad

Irregular - \qquad

Equiangular

\qquad
Equilateral - \qquad

Convex - a straight line drawn through a convex polygon crosses at most two sides. Every interior angle is \qquad ـ.

Concave - you can draw at least one straight line through a concave polygon that crosses more than two sides. At least one interior angle is

Polygon Parts

Number of sides of the polygon	Name of the polygon	Number of interior angles	Number of diagonals possible from one vertex point	Number of triangles formed from one vertex point	Sum of the measures of interior angles	One interior angle measure (regular polygon)	One exterior angle measure (regular polygon	Sum of the exterior angles measures
$\mathbf{3}$		3	0	1				
$\mathbf{4}$								
$\mathbf{5}$		5	2	3	50°			
$\mathbf{6}$								
$\mathbf{7}$								
$\mathbf{8}$								
$\mathbf{9}$								
$\mathbf{1 0}$								
$\mathbf{1 1}$								
$\mathbf{1 2}$					1800°			
\mathbf{n}								

a.) Compare the number of triangle to the number of sides. Do you see a pattern?
b.) How can you use the number of triangles formed by the diagonals to figure out the sum of all the interior angles of a polygon?
c.) Write an expression for the sum of the interior angles of an n-gon, using n and the patterns you found from the table.

\qquad

Section 8-1: Angles of Polygons

Notes

Diagonal of a Polygon: A segment that \qquad

Theorem 8.1: Interior Angle Sum Theorem:

If a convex polygon has n sides and S is the sum of the measures of its interior angles, then $\mathrm{S}=$

Example \#1: Find the sum of the measures of the interior angles of the regular pentagon below.

Example \#2: The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.

Example \#3: Find the measure of each interior angle.

Theorem 8.2: Exterior Angle Sum Theorem:

If a polygon is convex, then the sum of the measures of the exterior angles, one at
\qquad .

Example \#4: Find the measures of an exterior angle and an interior angle of convex regular nonagon $A B C D E F G H J$.

CRITICAL THINKING "~
Find the measure of each interior angle in a quadrilateral in which the measure of each consecutive angle increases by 10 .

Warm Up:

Measure the following angles with a protractor

Properties of Parallelograms Activity

Step 1 Using the lines on a piece of graph paper as a guide, draw a pair of parallel lines that are at least 10 cm long and at least 6 cm apart. Using the parallel edges of your straightedge, make a parallelogram. Label your parallelogram MATH.

Step 2 Look at the opposite angles. Measure the angles of parallelogram MATH. Compare a pair of opposite angles using your protractor.

The opposite angles of a parallelogram are \qquad .

Step 3 Two angles that share a common side in a polygon are consecutive angles. In parallelogram MATH, $\angle M A T$ and $\angle H T A$ are a pair of consecutive angles. The consecutive angles of a parallelogram are also related.

Find the sum of the measures of each pair of consecutive angles in parallelogram MATH.

The consecutive angles of a parallelogram are \qquad .

Step 4 Next look at the opposite sides of a parallelogram. With your ruler, compare the lengths of the opposite sides of the parallelogram you made.

The opposite sides of a parallelogram are \qquad .

Step 5 Finally, consider the diagonals of a parallelogram. Construct the diagonals $\overline{M T}$ and $\overline{H A}$. Label the point where the two diagonals intersect point B.

Step 6 Measure $M B$ and $T B$. What can you conclude about point B ? Is this conclusion also true for diagonal $\overline{H A}$? How do the diagonals relate?

The diagonals of a parallelogram \qquad .
\qquad

Section 8-2: Parallelograms

Notes

Key Concept (Parallelogram):

A parallelogram is a \qquad
Ex:

Symbols:

Theorem 8.3: Opposite sides of a parallelogram are \qquad .

Theorem 8.4: Opposite angles in a parallelogram are \qquad .

Theorem 8.5: Consecutive angles in a parallelogram are \qquad .

Theorem 8.6: If a parallelogram has one right angle, \qquad .

Theorem 8.7: The diagonals of a parallelogram \qquad .

Example \#1: RSTU is a parallelogram. Find $m \angle U R T, m \angle R S T$, and y.

Theorem 8.8: Each diagonal of a parallelogram \qquad

CRITICAL THINKING ت~

Draw a parallelogram on one of the graphs below. Prove that it's a parallelogram.
You must use distance, midpoint, and a protractor.

\qquad
Section 8-3: Tests for Parallelograms
Notes
Conditions for a Parallelogram: By definition, the opposite sides of a parallelogram are parallel. So, \qquad

Key Concept (Proving Parallelograms):
Theorem 8.9: If \qquad then the quadrilateral is a parallelogram.

Ex:

Theorem 8.10: If \qquad then the quadrilateral is a parallelogram.

Ex:

Theorem 8.11: If \qquad then the quadrilateral is a parallelogram.

Ex:

Theorem 8.12:

\qquad then the quadrilateral is a parallelogram.

Ex:

Example \#1: Find x and y so that each quadrilateral is a parallelogram and justify your reasoning.
a.)

b.)

Given: \square VZRQ and \square WQST
Q

$\frac{\text { Statements }}{1 . \square \mathrm{VZRQ}}$
2. $\angle \mathrm{Z} \cong \angle \mathrm{Q}$
3. $\square \mathrm{WQST}$
4. $\angle \mathrm{Q} \cong \angle \mathrm{T}$
5. $\angle \mathrm{Z} \cong \angle \mathrm{T}$

Reasons
1.
2.
3.
4.
5.

CRITICAL THINKING

Is quadrilateral BCDE a parallelogram?
Why or why not?
B (0,0$), \mathrm{C}(4,1), \mathrm{D}(6,5), \mathrm{E}(2,4)$

\qquad

Section 8 - 4: Rectangles

 Notes
Rectangle:

\checkmark A quadrilateral with \qquad
\checkmark Both pairs of opposite angles are \qquad
\checkmark A rectangle has \qquad

Theorem 8.13: If a parallelogram is a rectangle, then \qquad Ex:

Key Concept (Rectangle):

Properties:

$>$ Opposite sides are \qquad .

Ex:

$>$ Opposite angles are \qquad .

Ex:
$>$ Consecutive angles are \qquad .

Ex:

All four angles are \qquad .

Ex:

Example \#1: Quadrilateral $R S T U$ is a rectangle. If $R T=6 x+4$ and $S U=7 x-4$, find x.

Example \#2: Quadrilateral $L M N P$ is a rectangle.

a.) Find x.
b.) Find y.

Theorem 8.14: If the diagonals of a parallelogram are congruent, then \qquad
Ex:

CRITICAL THINKING

Compare and contrast parallelograms and rectangles. What is the same? What is different?

\qquad

Section 8-5: Rhombi and Squares Notes

Rhombus:

$>\mathrm{A}$ \qquad is a special type of parallelogram called a \qquad .
$>$ A rhombus is a quadrilateral \qquad .

All of the properties of \qquad can be applied to rhombi.

Key Concept (Rhombus):

Theorem 8.15: The diagonals of a rhombus are \qquad .

Ex:

Theorem 8.16: If the diagonals of a parallelogram are perpendicular, then \qquad .

Ex:

Theorem 8.17: Each diagonal of a rhombus \qquad

Ex:

Example \#1: Use rhombus $L M N P$ and the given information to find the value of each variable.

a.) Find y if $m \angle 1=y-54$
b.) Find $m \angle P N L$ if $m \angle M L P=64$.

Square:

\rightarrow If a quadrilateral is both a \qquad and a \qquad then it is a \qquad .
$>$ All of the properties of \qquad and \qquad can be applied to \qquad .

cemcan munner $\%$:

Construct a rhombus. Prove it's a rhombus as many ways as possible.

Date:

\qquad

Section 8-6: Trapezoids

Notes

Trapezoid:
> A quadrilateral with exactly \qquad .
> The parallel sides are called \qquad .
$>$ The base angles are formed by \qquad
> The nonparallel sides are called \qquad .

Isosceles Trapezoid:

$>$ A trapezoid that has \qquad .

$>$ Theorem 8.18: Both pairs of base ___ of an isosceles trapezoid are \qquad .

Ex:
$>$ Theorem 8.19: The diagonals of an isosceles trapezoid are \qquad . Ex:

Median: The segment that \qquad

Theorem 8.20: The median of a trapezoid is __ to the bases, and its measure is the sum of the measures of the bases.

Ex:

Example \#1: $D E F G$ is an isosceles trapezoid with median $\overline{M N}$.

a.) Find $D G$ if $E F=20$ and $M N=30$.
b.) Find $m \angle 1, m \angle 2, m \angle 3$, and $m \angle 4$ if $m \angle 1=3 x+5$ and $m \angle 3=6 x-5$.

CRITICAL THINKING

Construct a trapezoid whose bases are not horizontal segments.

												-				\square

										,								
										-			-					

													-						
															,				
													-						

(Some things to ask yourself: diagonals equal, diagonals bisect each other, diagonals bisect angle, diagonals perpendicular, angle measures equal, angle measures supplementary, sides equal, sides parallel, etc...)

1. Quadrilateral		
2. Parallelogram		
3. Square		
4. Rectangle		
6. Trapezoid		

Property	Parallelogram	Rectangle	Rhombus	Square	Trapezoid	Isosceles Trapezoid
Diagram of the figure						
Both pairs of opposite sides are ॥						
Exactly 1 pair of opposite sides are ॥						
Diagonals are \perp						

