Unit II Chemical Formulas, Bonding, & Molecular Shapes © Original Artist With Manual Manuel Reproduction rights obtainable from

THE MOVIE

ww.CartoonStock.com

[&]quot;It's a bit formulaic."

The Elements

- Presently 118 different elements are known
 –88 (of which) occur naturally
 - -The rest are synthetic (created in laboratories)
 - <u>Question</u>: Where are the synthetic elements in the periodic table? How can you tell?

+0 (CM

 The elements vary tremendously in abundance

–9 elements account for 98% of the composition of the Earth's crust

Element	%	Element	<u>%</u>	
oxygen	49.2	sodium	2.63	
silicon	25.7	potassium	2.40	
aluminum	7.50	magnesium	1.93	
iron	4.71	hydrogen	.67	
calcium	3.39			

 The elements in living matter differs from that in the earth's crust

 O, C, H, & N form the basis of all biologically important compounds

Element	%	Element %
oxygen	65	hydrogen 10
carbon	18	nitrogen 3.0

Some trace elements are important for life

- Found in small quantities
- Example: Cr helps the body to produce sugars for energy

+0 (C

 As we have seen, elements are fundamental to understanding chemistry

Early chemists describe the first dirt molecule.

 The names for chemical elements have come from many sources 1. Often derived from Latin, Greek, or German **Examples:** A. Gold (Au) - aurum (Latin for "shining down") **B.** Lead (Pb) - *plumbum* (Latin for "heavy") C. Bromine (Br) – (Greek for "stench")

2. Also named for the place where it was discovered

• Examples: Francium (Fr), Germanium (Ge), Californium (Cf), & Berkelium (Bk)

3. Also for famous scientists

• Examples: Einsteinium (Es), & Nobelium (No)

Chemical symbols are used to abbreviate the names of the elements • The chemical symbols could be: 1. The 1st letter in an elements name • Examples: Carbon (C), Oxygen (O) 2. The 1st letter in an element's name + another letter (usually 2nd) • Examples: Cobalt (Co), Calcium (Ca), Chlorine (CI) 3. Sometimes derived from Latin, Greek, or German **Examples**: A. Latin - Silver (Ag) - argentum **B.** Greek - Sodium (Na) - natrium C. German – Tungsten (W) - wolfram

Rules:
The <u>1st letter</u> is always CAPITALIZED
If needed, the 2nd (or 3rd) letter is always lower case

The lanthanide and actinide elements are not shown in this table.

The Elements Song

Introduction to the Periodic Table

In any room where Chemistry is taught or practiced, a Periodic Table will be sitting on

																		NOD.
	A	Alkalin	е															gases
	1 0	arth m	netals													Н	aloger	15 19
	14		ictais														1	84
	IA																	OA
	4																	2
	1	ž											13	14	15	16	17	2
	H	2A											3A	4A	5A	6A	7A	He
1																		
1	3	4											5	6	7	8	9	10
	Li	Be											В	C	N	0	F	Ne
		200											2				•	1.0
	11	12	3	4	5	6	7	8	9	10	11	12	12	14	15	16	17	10
	11	12				Tra	ansitio	n met	als				15	14	15	10	17	10
Т	Na	Mg	_							-			AI	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
2																		
	37	38	30	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	57	50	55	10	11	72	н <u>э</u>	77	-13	10		10	-12	50	51	52	55	54
	Rb	Sr	Y	Zr	Nb	Мо	Ic	Ru	Rh	Pd	Ag	Cd	In	Sn	SD	Ie	1	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
												0						
	87	88	89	104	105	106	107	108	109	110	111	112						
	57	00	. +	DC	105	100	107	100	105	110	111	112						
	Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
-	-																	

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
[†] Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Alkali metals

the wall

The Periodic Table was first organized by <u>Dmitri Mendeleev</u> (A Russian Chemist) in

Informes Bechering success wals \$

H=1.

Annall un amaen when the alger

8=54.

? = /80.

Pl=106,6 CS=199.

1869

Gathered information about 63 elements
He noticed that they had similar and different properties

 So, he decided to organize them (in order of increasing atomic mass) Mendeleev's table was not perfect
 Some items were misplaced in terms of their properties

- Examples: The mass # of Cobalt (Co) & Nickel (Ni) actually decreases from left to right
 - The same goes for Copper (Cu) & Zinc (Zn)
 - This problem was cleared up 30 years later
- British Scientist, <u>Henry Mosely</u>, determined the atomic number of the elements

Columns of elements are called groups or families

 Elements in the same group have similar, yet not identical properties

- Often referred to as the number over the column
- There are 18 Families
- Example: Family 1 Li, Na, K, etc.
 - All are white, shiny metals
 - All are highly reactive

Have 1 electron in their outer orbital

Some groups have special names:
1 – Alkali metals
2 – Alkaline Earth Metals
17 – Halogens
18 – Noble Gases
3-12 – Transition Elements

+0 (CH

																		Noble gases
	1 e 1A	arth n	e 1etals													Н	[aloger	18 18 8A
	1 H	↓ 2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tra	7 ansitio	8 n met	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
J	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac [†]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
	*Lanthanides 58 59 60 61 62 63 64 65 Ce Pr Nd Pm Sm Eu Gd Tb												66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		†A	ctinid	es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Np

Alkali metals

There are 7 periods of elements Rows have been separated out of 6 & 7 Made the P.T. shorter and easier to read Elements in these rows are Rare Earth **Metals** Most elements in the P.T. are metals Located to the left of the stair-step line Characteristics of metals: (CM) **1** & **2.** Good conductors of heat and electricity 3. Luster **4.** Ductility

Malleability

Elements to the right of the stair-step line are non-metals Physical properties – Opposite of the metals Chemical properties – tend to gain electrons Elements to either side of the stair-step line are metalloids Show properties of both metals and non-metals Nonmetals Metals

The Modern View of Atomic Structure

Summary of findings:

Particle	Charge	Mass (kg)	Location
Electron	-1	9.109 x 10 ⁻³¹	Electron cloud
Proton	+1	1.673 x 10 ⁻²⁷	Nucleus
Neutron	0	1.675 x 10 ⁻²⁷	Nucleus

All atoms have <u>atomic mass</u>

- The average mass of all the isotopes
 - Atoms with the same number of protons, but a different number of neutrons

Examples: Carbon (C)= 12.01, Argon (Ar)= 39.93

Isotope	Symbol	Composition of the nucleus	% in nature
Carbon-12	¹² C	6 protons	98.89%
		6 neutrons	
Carbon-13	¹³ C	6 protons	1.11%
		7 neutrons	
Carbon-14	¹⁴ C	6 protons	<0.01%
		8 neutrons	

All atoms have a mass number • The sum of the protons (+) and neutrons (0) in the nucleus • Mass # = The atomic mass rounded to the nearest whole # • Examples: Carbon (C) = 12, Argon (Ar) = 40 • # of Neutrons (0) = Mass # - Atomic # The number of protons in a nucleus is called the atom's atomic number • Examples: H (1), He (2), Fe (26)

Fill in the following chart

Ion	Element	Atomic #	Atomic Mass	Mass #	Charge	+	0	1
	Boron	5	10.81	11	0	5	6	5
	Chlorine	17	35.45	35_	-1	17-	-18<	18
	Gallium	31	69.74	70	+3	31	39	28

Ion Mass # Example: (charge) Ionic Charge +3 Symbol +3 X Atomic # Ga Z 31

- Ion Formation
 If an atom's charge is neutral, we say it has an equal number of "+" 's and "-" 's
 - Each energy level in the P.T. can only hold a maximum # of electrons
 - Example: Energy Level Max. # of Electrons

 An element will either have to gain or release electrons to get to this #

2+0 (8+

18

32

 An ion can be formed by adding or removing one or more electrons

-<u>Example</u>:

– A positive "+" ion is called a <u>cation</u>

- Produced when 1 or more electrons are <u>lost</u> from a neutral atom
- Example:

- A negative "-" ion is called an anion

- Produced when 1 or more electrons are gained from a neutral atom
- Example:

 $Cl + e^- \rightarrow Cl^-$

<u>Shorthand Form</u>:

Predicting Ionic Charges

<u>Group 1</u>: Lose 1 electron to form 1+ ions

H+ Li+ Na+ K+

1 H 1.00794		_															He 4.002602
Li	Be											B	ć	N N	0	9 F	Ne
11 Na 22 989770	12 Mg 24 3050											13 Al	14 Si 28 0855	15 P	16 S	17 Cl 35 4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 187.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		

Group 2:Loses 2 electrons to form 2 + ions Be^{2+} Mg^{2+} Ca^{2+} Ba^{2+}

1 H 1.00794		_															He 4.002602
3 Li	4 Re											5 R	ć	7 N	Å	9 F	10 No
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11 Ma	12 M a											13	14	в р	16	17	18
INA 22.989770	IVI 9 24.3050											AI 26.981538	D1 28.0855	P 30.973761	32.866	35.4527	.AT 39.948
19 12	20 Co	21 S.a	22 T i	23 V	24	25 Mm	26 E-2	27	28 NT:	29	30 7 m	31	32	33	34 C -	35 Dr	$\frac{36}{Vr}$
K 39.0983	Ca 40.078	5C 4.955910	1 1 47.867	V 50.9415	51.9961	1VIII 54.938049	Fe 55.845	CO 58.933200	1N1 58.6934	63.546	Z.11 65.39	69.723	72.61	.A.S 74.92160	5e 78.96	79.904	NI 83.80
37	38	39	40	41	42	43	44 D	45	46	47	48	49	50	51	52 Th	53 T	54
RD 85.4678	Sr 87.62	Y 88.90585	Zľ 91.224	ND 92,90638	M0 95.94	1 C (98)	Ru 101.07	Rh 102 90550	Pd 106.42	Ag 107.8682	Cd 112.411	1n 114.818	Sn 118.710	SD 121.760	1 e 127.60	126 90447	Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
132.90545	137.327	138,9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
57 Er	88 D.0	89 A.C	104 D f	Dh	801 Sa	Dh		Mft	110		112		114		116		
(223)	(226)	(227)	(261)	(262)	(26) (26)	(262)	(265)	(266)	(269)	(272)	(277)		(289) (287)		(289)		

Group 13: Loses 3 electrons to form 3+ ions

1 H 1.00794		_															He 4.002602
3 Li	4 Be											Ř	ć	7 N	Ô	9 F	10 Ne
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15 D	16	17	18
Na 22.989770	Mg 24.3050											AI 26.981538	S1 28.0855	P 30.973761	S 32.866	CI 35.4527	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.0983	Ca 40.078	SC 44.955910	T 1 47.867	V 50.9415	Cr 51.9961	Mn 54.938049	Fe 55.845	CO 58.933200	N1 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	AS 74.92160	Se 78.96	Br 79.904	Kr 83.80
37	38	39 V	40	41	42	43 T	44 D	45	46 D-1	47	48	49 1 -	50	51 Ch	52 TE-	53 T	54 V
KD 85.4678	ST 87.62	Y 88.90585	ZT 91.224	IND 92.90638	IVIO 95.94	1 C (98)	KU 101.07	KD 102.90550	PCI 106.42	Ag 107.8682	112.411	IN 114.818	5n 118.710	SD 121.760	1 e 127.60	1 126.90447	Ae 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Ηf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204 3833	207.2	208.98038	(209)	(210)	(222)
87 Em	88 D.c	89	104 D.£	105 TDb	106	107 Db	108	109	110	111	112		114		116		
PT (223)	(226)	(227)	(261)	(262)	28 (28)	(262)	(265)	1VIU (266)	(269)	(272)	(277)		(289) (287)		(289)		

B3+ AJ3+ Ga3+

Caution! C_2^{2-} and C^{4-} are both called <u>carbide</u>

Group 14: Loses 4 electrons or gains 4 electrons

1 H 1.00794		_															He 4.002602
3 Li 6.941	4 Be 9.912182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 0.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80 ³⁶ 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		

-)	Jз- Рз-	- N	litri hosp	de ohid	2	-	-	<u>Gr</u> el	ou eci	ip tro	1 <u>5</u> ns	: (to	Gai fo	ins orn	3 n	
-		1	<mark>3³⁻</mark>	- 4		nide	1		2	3-	- i	ons		>>		E		
1 H 1.00794																	He 4.002602	
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797	
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948	
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80	
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29	
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208 98032	84 Po (209)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)			

		S	02- 52	- 9	Dxid Sulfi Seler	e de nide		-		Gr el 2	rou Iec - i	ip tre	16 ons	: te	Ga o f	ins	; 2 m	
1 H 1.00794 3 Li 6.941 11 Na	4 Be 9.012182 12 Mg		1									5 B 10.811 13 A1	6 C 12.0107 14 Si	7 N 14.00674 15 P	8 O 15.9994 16 S	9 F 18.9984032 17 Cl	2 He 4.002602 10 Ne 20.1797 18 Ar	
2.989770 19 K 39.0983 37 Rb 85.4678 55 Cs 32.90545 87	24.3050 20 Ca 40.078 38 Sr 87.62 56 Ba 137.327 88	21 Sc 44.955910 39 Y 88.90585 57 La 138.90555 89	22 Ti 47.867 40 Zr 91.224 72 Hf 178.49 104	23 V 50.9415 41 Nb 92.90638 73 Ta 180.9479 105	24 Cr 51.9961 42 MO 95.94 74 W 183.84 106	25 Mn 54.938049 43 Tc (98) 75 Re 186.207 107	26 Fe 55.845 44 Ru 101.07 76 OS 190.23 108	27 Co 58.933200 45 Rh 102.90550 77 Ir 192.217 109	28 Ni 58.6934 46 Pd 106.42 78 Pt 195.078 110	29 Cu 63.546 47 Ag 107.8682 79 Au 196.96655 111	30 Zn 65.39 48 Cd 112.411 80 Hg 200.59 112	26.981538 31 Ga 69.723 49 In 114.818 81 Tl 204.3833	28.0855 32 Ge 72.61 50 Sn 118.710 82 Pb 207.2 114	30.973761 33 As 74.92160 51 51 51 121.760 83 Bi 208.98038	32.866 34 Se 78.96 52 Te 127.60 84 PO (209) 116	35.4527 35 Br 79.904 53 I 126.90447 85 At (210)	^{39,948} ³⁶ Kr ^{83,80} ⁵⁴ Xe ^{131,29} ⁸⁶ Rn (222)	
Fr (223)	Ra (226)	Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	(269)	(272)	(277)		(289) (287)		(289)			

<u>Group 17</u>: Gains 1 electron to form 1- ions

Bp1-Bromide

T1- Iodide

CJ1-Chloride

F1-Fluoride

1 H 1.00794																	2 He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.998483	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	28 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	²⁹ Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.9044	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

<u>Group 18</u>: Stable Noble gases <u>do not</u> form ions!

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.998403	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	29 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.9044	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		
<u>Groups 3 - 12</u>: Many transition elements have more than one possible oxidation state.

3+

Iron(III) =

 $Iron(II) = Fe^{2+}$

Н He 1.007944.002602 10 F Be В С Ν Li Ne Ο 9.012182 14.00674 15.999418.9984032 6.941 10.811 12.0107 20.1797 11 12 13 14 15 18 16 17 Mg Na A1 Si Р S ClAr 22.989770 24.3050 6.981538 28.0855 30.973761 32.066 35,4527 39.948 19 20 31 33 34 35 21 Τi 26 Ni 30 32 36 23 24 25 27 29 M V Fe Cr Ĉο Zn Kr Κ Са ScCu Ga Ge As Se Br 51.9961 55.845 8.933200 58.6934 10 0021 40.078 4.955910 47.86758.9415 54,9380 63.546 65.3969.72372.6174.92160 78.96 79.904 83.80 40 42 43 46 47 48 49 50 51 52 53 54 37 38 39 41 45 Y Zr Tc Ag 107.8682 Xe Rb Sr Nb Mo Ru Rh Pd Cd In Sn SbTe I 88,90585 91.224 92.90638 95.94 101.07 106.42 112.411 114.818 127.60 131.29 85,4678 87.62 (98)102.90550 118.710121.760 126.90447 72 77 55 56 -57 73 74 75 76 78 81 82 83 84 85 86 7980 Ba Hf Та W Re Ir Ρt T1Pb Bi Po At Cs La Os Au Hg Rn 208.59 138,9055 204.3833 132.9054 137.327 178.49 180.9479 192.217 207.2 183.84 186.207 190.23 195.078 196.9665 208.98038 (209)(210)(222)87 104 105 106 107 108 109 112 88 89 110 111 114 116 Sg Ra Rf Db Bh Hs Mt Fr Ac (289)(223)(227)(261)(262)(226)(262)(265)(277)(266)(269)(272)(289)287)

<u>Groups 3 - 12</u>: Some transition elements have only one possible oxidation state.

Silver = Ag

 $Zinc = Zn^{2+}$

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182									5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797		
11 Na 22.989770	12 Mg 24.3050					1						13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 4.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	Cu	30 Zn 65.39	31 Ga 9.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y \$8.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 12.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

QuickTime Player File Ldlt View Window Help

62032PropertiesMarter" = HUGLSLPhatesmicTheory* = 000051* = EPNTeteriaP =

How to Determine the Number of Electrons, Protons, and Neutrons

Tri 16.26 William Habiger

Page 1 of 31 Hest Fill

21

Quantifying pt, n', + e-pt- proton nº - neutron e- electron

Dalton's Atomic Theory

- As scientists studied materials in the 18th century, 3 things became clear:
 - Most natural materials are mixtures of pure substances
 - Pure substances are either elements or compounds
 - A given compound contains the same proportions (by mass) of the elements

-#3 is known as the Law of Constant Composition A given compound always has the same composition, regardless of where it comes from John Dalton (1766 – 1844) was aware of these observations -In 1808 he published A New System of Chemical Philosophy

-In this text, he said... 1. All elements are composed of extremely small particles called atoms 2. Atoms of a given element are identical in size, mass, and other properties -Atoms of different elements differ in size, mass and other properties 3. Atoms can not be subdivided, created, nor destroyed 4. Atoms of different elements combine in simple whole number ratios to form chemical compounds **5.** In chemical reactions, atoms are combined, separated, or rearranged

 Modern Atomic Theory says...
 – Several changes have been made to Dalton's Theory:

-<u>Change 1</u>:

Dalton said...

Atoms of a given element are identical in size, mass and other properties; atoms of different elements differ in size, mass, and other properties

Modern Theory States...

Atoms of elements have characteristic average masses which is unique to that element

- <u>Change #2</u>:

• Dalton said...

Atoms cannot be subdivided, created, or destroyed

Modern Theory States...

Atoms cannot be subdivided, created, or destroyed in ordinary chemical reactions. However, the changes can occur in <u>nuclear reactions</u>

+0 (CH

Section 4.3

Dalton's Atomic Theory

Observations about the nature of matter

- Most natural materials are <u>mixtures</u> of pure substances.
- Pure substances are either <u>elements</u> or combinations of elements called <u>compounds</u>.
- A given compound always contains the same proportions (by mass) of the elements.

Mailant Int TOX

 Compounds & Bonding
 A compound is a distinct substance that is composed of the atoms of <u>2</u> or more elements

- Always contains the same relative masses of those elements
- Examples:
 - Empirical Formulas: H2O (2:1 ratio)
 - Molecular Formulas: H₄O₂

$$H_{6}O_{3}$$
 "
 $H_{8}O_{4}$ "
 $H_{10}O_{5}$ "

"

Forces that hold atoms together in compounds are called chemical bonds • There are 3 types of bonds: **1.** Ionic Bond A bond between a metal and a nonmetal Electrons are transferred Electronegativity differences are > 1.7 Cations (ions) & Anions (-ions) • Type's I & II 2. Covalent Bond A bond between 2 nonmetals Electrons are shared Electronegativity differences between 0 & 0.3 Type III

3. Polar Covalent Bond Between ionic and covalent bonds Electrons are completely transferred and an unequal sharing of electrons results • Electronegativity differences between .3 & 1 7 Always involves a hydrogen (+ ion) and another nonmetal • Example:

(a)

 δ^+

b)

Bonding Summary:

TABLE 12.1

The Relationship Between Electronegativity and Bond Type

A resulting collection of bonds is called a molecule

Can be represented in <u>3</u> main ways:

- All representations for H₂O
 - **1. Structural Formula**

2. Ball & Stick

3. Space Filling

Naming Compounds You can figure out chemical formulas with the help of <u>oxidation numbers</u>

 A + or – number assigned to an element to show its combining ability in a compound

	1-	+																0	
	1																	18	6
1	1 H	2-1											3- 13	+ 4- 3 14	+ 3-	- 2- 5 16	- 1 5 17	2 He	/
2	3 Li	4 Be				Var	iable o	xidatio	on state	es			5 B	6 C	7 N	8 0	9 F	10 Ne	/
3	11 Na	12 Mg		3 4	5	5 6	5 7	7 8	3 9) 1	0 1	1 12	13 Al	14 Si	15 P	16 S	17 CI	18 Ar	/
4	19 K	20 Ca	21 Sc	22 TI	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	/
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn *	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb *	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 Uun	111 Uuu	*In 2-	Group + oxid	o 14, Sr ation s	n and I tates.	b also	exhibi	t	

The lanthanide and actinide elements are not shown in this table.

Oxidation numbers are useful in showing how binary compounds form Composed of 2 elements Can divide into 2 classes: **1. Metal and Nonmetal (Ionic Bond)** Type I & Type II Compounds • **Examples**: Type I → Calcium phosphide $(Ca_{3}P_{2});$ **Type I** \rightarrow Iron (III) oxide (Fe₂O₃) **2. 2 Nonmetal's (Covalent Bond)** Type III Compounds Example: Type III → Diphosphorous trisulfide (P_2O_3)

Type I Compounds The cation (+ ion) is in Families 1-2, or 13 Rules for naming Type | Compounds: 1. The cation (+) is named 1st & the anion (-) is named 2nd 2. The cation takes its name from the name of the element 3. Take the root of the anion and add -ide to the end • Note: If a polyatomic ion is used, just write the name of the entire polyatomic ion itself • Don't take the anion root and add -ide

Writing Type I chemical formulas can be used using the swap-n-drop method • The charge of one ion will be the # of atoms of the other element/ion (& vice - versa) The # of atoms must always be in their lowest terms Example 1: sodium chloride Natt Write down the ions Swap them Na₁Cl₁ Always reduce the terms NaCl

• Write down the ions Ca^{+2} • Swap them $Ca_{4}C_{2}$

C -4

 Ca_2C

+0 (CH

Always reduce the terms

Type II Compounds
The cation is in Families 3-12, or the element is Sn, Pb, Sb, or Bi

- Examples:
 - A. Lead (Pb) = Pb^{+2} or Pb^{+4}
 - **B.** Gold (Au) = Au^{+1} or Au^{+3}
 - If we saw the compound gold chloride, we would not know which ion (+1 or +3) was present
 - Chemists use a Roman Numeral to specify the charge on the cation

• <u>Note</u>: Otherwise, follow the rules for writing Type I compounds

Example 1: Fe₂O₃ Iron (?) oxide • The charge to iron can be a +2 or +3 Do a reverse swap-n-drop • Example: Fe₂O₃ Fe⁺³ 0⁻² iron (III) oxide CY This can not be done for subscripts that are: • 1:1 ratio \rightarrow NiS (Ni⁺² & S⁻²) • 1:2 ratio \rightarrow SnSe₂ (Sn⁺⁴ & Se⁻²) • 2:1 ratio \rightarrow Pb₂C (Pb⁺² & C⁻⁴)

◆ The metallic valences can also be noted by utilizing the *latinized endings* -ic → The higher of the 2 charges -ous → The lower of the 2 charges

TABLE 4.2

Common Type II Cations

lon	Systematic Name	Older Name
Fe ³⁺	iron(III)	ferric
Fe ²⁺	iron(II)	ferrous
Cu ²⁺	copper(II)	cupric
Cu^+	copper(l)	cuprous
Co ³⁺	cobalt(III)	cobaltic
Co ²⁺	cobalt(II)	cobaltous
Sn ⁴⁺	tin(IV)	stannic
Sn ²⁺	tin(II)	stannous
Pb^{4+}	lead(IV)	plumbic
Pb^{2+}	lead(II)	plumbous
Hg ²⁺	mercury(II)	mercuric
Hg_2^{2+*}	mercury(I)	mercurous

*Mercury(I) ions always occur bound together in pairs to form $Hg_2^{2^+}$.

ype III Compounds Contains only nonmetals Otherwise, the 1st element is not in... A. Families 1-2, 13 B. Families 3-12, or Sn, Pb, Sb, or Bi Rules for naming Type || Compounds: 1. The 1st element in the formula is named 1st (full elemental name) 2. The 2nd element is named as if it were an anion (i.e. root) +0 3. Prefixes denote the number of atoms present 4. The prefix mono- is never used for naming the 1st element • $CO \rightarrow carbon monoxide, not monocarbon$

monoxide

List of <u>covalent</u> prefixes:

	Prefix	Number	
	mono-	1	
5	di-	2	And
	tri-	3	
	tetra-	4	
	penta-	5	
	hexa-	6	+
	hepta- *	C LCI	
	octa-	8	
	nona-	9	
	deca-	10	

Several polyatomic ions exist that have different numbers of oxygen atoms These are called oxyanions When 2 members are in a series... A. The smaller # ends in -ite B. The larger # ends in <u>-ate</u> Much like the -ous/-ic endings when naming metals • Examples: $SO_3^{-2} = sulfite; SO_4^{-2} = sulfate$ $BO_2^{-3} = borite; BO_3^{-3} = borate$

When more than 2 oxyanions make up a series, hypo- (less than) and per- (more than) are used as prefixes

(CH

- Examples:
 - CIO⁻ = hypochlorite
 - $ClO_2^- = chlorite$ $ClO_3^- = chlorate$ $ClO_4^- = perchlorate$

Rules for Naming Acids 1. If the anion does not contain oxygen... • Use the prefix hydro- with the suffix -ic attached to the root name for the element Place the term "acid" at the end • Examples: HCN = hydrocyanic acid $H_2S = hydrosulfuric acid$ +0 (0'

2. When the anion does contain oxygen... • When the anion name ends in -ate, the suffix Name Anion • Examples: Acid H_2SO_4 SO_4^{-2} (sulfate) sulfuric acid H₃PO₄ PO₄-3 (phosphate) phosphoric acid • When the anion name ends in -ite, the suffix +0 -ous is used Examples: Acid Anion Name H₂SO₃ SO₃⁻² (sulfite) sulfurous acid HNO_2 NO_2^{-2} (nitrite) nitrous acid

 Lewis Structures
 The Lewis Structure is a representation of a molecule that shows how valence electrons are arranged in atoms of a molecule

 Most important...Atoms achieve a noble gas configuration
 diatomic fluorine

Valence Electron Chart

3. Draw in single lines between the central atom(s) and the other atoms in the compound These lines represent single bonds Represents 2 electrons • Example: (-)... C – 0 4. Add in single dots to the remaining atoms in the compound non-bonding electrons н:0:н **These represent** H unbonded electrons bonding electrons

5. Make sure that the elements in the compound follow 1 of the following rules:
A. Duet rule

- Only applies to H
- Forms stable molecules when it shares 2 electrons
- In effect, this gives H a filled 1st valence shell
 B. Octet Rule
 - Applies to most other elements

Exceptions: B & Be (6), S (12)

Advanced Octet Rule Comments...

- 2nd row elements (C, N, O, F) observe the octet rule
- 2nd row elements (B, Be) often have fewer than 8 electrons around themselves – they are very reactive
- 3rd row and heavier elements CAN exceed the octet rule using empty valence d orbitals
- When writing Lewis Structures, satisfy octets first, then place electrons around elements having available d orbitals

6. Recheck the total number of valence electrons • Remember \rightarrow 1 dot = 1 electron 1 line (-) = 2 electrons If the # matches, you are done If the # is too many, you will need to add double or triple bonds A. Double bond – involves sharing 2 pairs of electrons Represented by a double line (=)

B. <u>Triple bond</u> – involves the sharing of 3 pairs of electrons

• Represented by a triple line (\equiv)

7. Double check your work
If the total # of valence electrons does not work out, go back to step 6
Examples:

• Single Bonds

Double Bonds

Н

 Triple Bonds (Alk<u>yne</u>s)

:N·+:N· → :N:::N: or IN≡NI

each N has an octet of e⁻s

(Alk<u>enes</u>)

(Alkanes)

How to Draw Lewis Structures

1.

Resonance

Sometimes it is possible for more than 1 Lewis Structure to be drawn for a given molecule

- **Example**: CO₂ (16 valence electrons)
 - $: \overset{\circ}{O} C \equiv O$: $\overset{\circ}{O} = C = \overset{\circ}{O}$ $: O \equiv C \overset{\circ}{O}$
- <u>Note</u>: The total number of valence electrons still add up
 <u>Example</u>: NO₃ ion (23 valence electrons)

- <u>Note</u>: lons use brackets [] to symbol that they posses more electrons than they should
- Represented with double-sided arrows

Other resonance examples: Carbonate ion (CO₃²⁻)

• Acetate ion $(C_2H_3O_2)$

Molecular Structure Molecular structure is extremely important in determining chemical properties The valence shell electron-pair repulsion (VSEPR) model is useful in predicting molecular geometry Main postulate of model...the structure around a given atom is determined by minimizing electron-pair repulsions

• Example 1: BeCl₂

C1:

• Example 2: BF₃

: Cl—Be—

VSEPR Chart:

X + E	Overall Structure	Forms	Bond Angle(s)
2	Linear	AX ₂	180
3	Trigonal Planar	AX_3, AX_2E	120
4	Tetrahedral	AX_4, AX_3E, AX_2E_2	109.5
5	Trigonal bipyramidal	$AX_5, AX_4E, AX_3E_2, AX_2E_3$	90 / 120
6	Octahedral	AX_5, AX_5E, AX_4E_2	90 / 90

A = central atom

- X = atoms bonded to A
- **E** = nonbonding electron pairs on A

VSEPR Examples: Bent (90°)

• Example: H₂0

(not previously mentioned)

+0 (CH

• Linear (180°) • Example: CO_2 : Cl - Be - Cl :

Trigonal Planar (120°)
Examples:
BF₃ (AX₃)

• SnCl₂ (AX₂E)

(CH

O

Tetrahedral (109.5°)
 Examples:

• CCI_4 (AX₄)

 PCI_3 (AX₃E)

(CH

+0

• Cl₂O (AX₂E₂)

Trigonal bipyramidal (90° & 120°)
Examples:

• PCI_5 (AX₅)

• CIF₃ (A \times_3 E₂)

 (AX_3E_3)

Octahedral (90° & 90°) Examples:

• **SF**₆ (AX₆)

BrF_5 (AX₅E)

+0 (CH

• ICl_4^- (A×₄E₂)

Number of Electron Pairs	Arrangeme	ent of Electron Pairs	Example
2	Linear		9-0-9
3	Trigonal planar		
4	Tetrahedral		
5	Trigonal bipyramidal	120° 90°	
6	Octahedral	90° 90°	

-

TABLE 8.6 Arrangements of Electron Pairs Around an Atom Yielding Minimum Repulsion