Chemical Formulas,

Bonding, \& Molecular

Shapes

© Original Artist

"It's a bit formulaic."

The Elements

- Presently 118 different elements are known
-88 (of which) occur naturally
- The rest are synthetic (created in laboratories)
- Question: Where are the synthetic elements in the periodic table? How can you tell?

- The elements vary tremendously in

 abundance-9 elements account for 98% of the composition of the Earth's crust

Element \%
oxygen 49.2
silicon 25.7
aluminum 7.50 iron
4.71 $\begin{array}{ll}\text { calcium } & 3.39\end{array}$

Element $-\cdots$
sodium $\quad 2.63$
potassium
2.40
magnesiumx 1.93
hydrogen
.67

- The elements in living matter differs from that

 in the earth's crust-10, C, H, \& N form the basis of all biologically important compounds

Element \%	Element \%
oxygen 65	hydrogen 10
carbon 18	nitrogen 3.0

Some trace elements are important for life

- Found in smallquantities
- Example: Cr - helps the body to produce sugars for energy

- As we have seen, elements are fundamental to understanding chemistry

- The names for chemical elements have come from many sources

1. Often derived from Latin, Greek, or German

- Examples:
A. Gold (Au) - aurum (Latinfor "shining down")
B. Lead (Pb) - plumbum (Latin for "heavy")
C. Bromine (Br) - (Greek for "stench")

Also named for the place where it was discovered

- Examples: Francium (Fr), Germanium (Ge), Californium (Cf), \& Berkelium (Bk)

3. Also for famous scientists

- Examples: Einsteinium (Es), \& Nobelium (NO)

Chemical symbols are used to abbreviate the names of the elements

 -The chemical symbols could be:1. The $1^{\text {st }}$ letter in an elements name

- Examples: Carbon (C), Oxygen (O)

2. The $1^{\text {st }}$ letter in an element's name + another letter (usually $2^{\text {nd }}$)

- Examples: Cobalt (Co), Calcium (Ca), Chlorine (Cl)
3.Sometimes derived from Latii, Greek, or German Examples:

Latin - Silver (Ag)	- argentum
B. Greek - Sodium (Na)	- natrium
C. German - Tungsten (W)	- wolfram

Rules:

-The $1^{\text {st }}$ letter is always CAPITALIZED

-If needed, the $\mathbf{2}^{\text {nd }}$ (or $\mathbf{3}^{\text {rd }}$) letter is always
lower case

	1																	$\begin{gathered} 0 \\ 18 \end{gathered}$
1	$\begin{aligned} & 1 \\ & \mathbf{H} \end{aligned}$	$\sqrt{2}$												$\begin{array}{r} 4+ \\ 14 \\ \hline \end{array}$	3	$\begin{array}{r}2 \\ \hline\end{array}$		
2	$\stackrel{3}{4}$	$\begin{gathered} 4 \\ \mathbf{B e} \end{gathered}$					able	xidatio	ntat				5	6	$\begin{aligned} & 7 \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & F \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$										12	$\begin{aligned} & 13 \\ & \text { Al } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathbf{S i} \end{aligned}$	$\begin{gathered} 15 \\ \mathbf{P} \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \end{gathered}$	$\begin{aligned} & 17 \\ & \text { CI } \end{aligned}$	$\begin{aligned} & 18 \\ & \mathbf{A r} \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathbf{C a} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathbf{S C} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T I} \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathbf{C r} \end{aligned}$	$\begin{gathered} 25 \\ \mathbf{M n} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathbf{F e} \end{aligned}$	27	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathbf{C u} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	31	32	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
	$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathbf{S r} \end{aligned}$	$\begin{gathered} 39 \\ \mathbf{Y} \end{gathered}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathbf{N b} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \text { Pd } \end{aligned}$	$\begin{gathered} 47 \\ \mathbf{A g} \end{gathered}$	$\begin{aligned} & 48 \\ & \mathbf{C d} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathbf{S n}^{*} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathbf{S b} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathbf{T e} \end{aligned}$	$\begin{gathered} 53 \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$
6	$\begin{aligned} & 55 \\ & \text { Cs } \end{aligned}$	$\begin{aligned} & 56 \\ & \mathbf{B a} \end{aligned}$	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$	$\begin{aligned} & 72 \\ & \mathbf{H f} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathbf{T a} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathbf{R e} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathbf{H g} \end{aligned}$	$\begin{aligned} & 81 \\ & \mathbf{T i} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathbf{P b}^{*} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathbf{B i} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{array}{l\|} \hline 86 \\ \mathbf{R n} \end{array}$
7	$\begin{aligned} & 87 \\ & \mathbf{F r} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathbf{R a} \end{aligned}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{gathered} 104 \\ \mathbf{R f} \end{gathered}$	$\begin{aligned} & 105 \\ & \mathbf{H a} \end{aligned}$	$\begin{aligned} & 106 \\ & \mathbf{S g} \end{aligned}$	$\begin{aligned} & 107 \\ & \text { Ns } \end{aligned}$	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$	110 Uun	111 Uuu	*In Group 14, Sn and Pb also exhibit $2+$ oxidation states.						

Introduction to the Periodic Table

- In any room where Chemistry is taught or practiced, a Periodic Table will-be sitting on the wall

The Periodic Table was first organized by Dmitri Mendeleev (A Russian Chemist) in

 1869Gathered information about 63 elements He noticed that they had similar and different properties

- So, he decided to organize them (in order of increasing atomic mass)

Mendeleev's table was not perfect

- Some items were misplaced in terms of their properties
- Examples:The mass \# of Cobalt (Co) \& Nickel (Ni) actually decreases from left to right
- The same goes for Copper (Cu) \& Zinc (Zn)
- This problem wastcRearedup 30 years later
- British Scientist, Henry Mosely, determined the atomic number of the elements

Columns of elements are called groups or

 families-Elements in the same group have similar, yet not identical properties

- Often referred to as the number over the column
- There are 18 Families
- Example: Family 1 - Li, Na, K, etc.
- All are white, shiny metals
- Allare highly reactive
- Have 1 electron in their outer orbital
- Some groups have special names:

1 - Alkali metals
2 - Alkaline Earth Metals
17 - Halogens
18 - Noble Gases
3-12 - Transition Elements

*Lanthanides
\dagger Actinides

58	59												
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

There are 7 periods of elements

- Rows have been separated out of 6 \& 7
- Made the P.T. shorter and easier to read
- Elements in these rows are Rare Earth Metals
Most elements in the P.T. are metals
- Located to the left of the stair-step line
- Characteristics of metals:

1 \& 2 Good conductors of heat and electricity
3. Luster
4. Ductility
5. Malleability

GROUPS

Elements to the right of the stair-step line are non-metals

-Physical properties - Opposite of the metals

- Chemical properties - tend to gain electrons Elements to either side of the stair-step line are metalloids
- Show properties of both metals and non-metals

The Modern View of Atomic Structure

Summary of findings:

Particle	Charge	Mass (kg)	Location
Electron	-1	9.109×10^{-31}	Electron cloud
Proton	+1	1.673×10^{-27}	Nucleus
Neutron	0	1.675×10^{-27}	Nucleus

All atoms have atomic mass

- The average mass of all the isotopes
- Atoms with the same number of protons, but a different number of neutrons
- Examples: Carbon $(G)=12.01$, Argon $(\mathrm{Ar})=39.93$

Carbon-12	${ }^{12} \mathrm{C}$	6 protons 6 neutrons	98.89%
Carbon-13	${ }^{13} \mathrm{C}$	6 protons 7 neutrons	1.11%
Carbon-14	${ }^{14} \mathrm{C}$	6 protons 8 neutrons	$<0.01 \%$

All atoms have a mass number

- The sum of the protons (+) and neutrons (0) in the nucleus
- Mass \# = The atomic mass rounded to the nearest whole \#
- Examples: Carbon $(C)=12, \operatorname{Argon}(A r)=40$
- \# of Neutrons (0) = Mass \# - Atomic \#

The number of protens in anacleus is
called the atom's atomic number

- Examples: H (1), He (2), Fe (26)

Fill in the following chart

Ion	Element	Atomic $\#$	Atomic Mass	Mass $\#$	Charge	+	0	-
	Boron	5	10.81	11	0	5	6	5
	Chlorine	17		3.5				
	Gallium	31	69.74	70	+3	31	39	28

on

(charge) $\xrightarrow{\text { I }}$ Ionic Charge

Symbol

Example:

Ion Formation

- If an atom's charge is neutral, we say it has an equal number of " + " 's and " - " 's
- Each energy level in the P.T. can only hold a maximum \# of electrons
- Example: Energy Level Max. \# of Electrons
 electrons to get to this \#

- An ion can be formed by adding or ren

 one or more electrons
- Example:

Neutral sodium atom (Na)

- Shorthand form:

Sodium ion $\left(\mathrm{Na}^{+}\right)$

-A psitive " + " ion is called a cation

- Produced when 1 or more electrons are from a neutral atom
- Example:

Neutral magnesium
atom (Mg)

Magnesium ion $\left(\mathrm{Mg}^{2+}\right)$

- Shorthand form:
\rightarrow
Mg^{2} ${ }^{2+}+2 \mathrm{e}^{-}$
- Produced when 1 or more electrons are gained from a neutral atom
- Example:

$$
\begin{aligned}
& \text { Neutral chlorine } \\
& \text { atom }(\mathrm{Cl})
\end{aligned}
$$

- Shorthand Form:
$\mathrm{Cl}+\mathrm{e}^{-}$
$\rightarrow \mathrm{Cl}^{-}$

Predicting Ionic Charges

Group 1: Lose 1 electron to form 1*ions

Group 2: Loses 2 electrons to form 2 ions

1 1.00794																	
$\begin{gathered} \mathrm{Li}_{6}^{3} \\ \hline 6.941 \\ \hline \end{gathered}$												$\begin{gathered} \hline 5 \\ \mathrm{~B} \\ 10.811 \\ \hline \end{gathered}$			$\stackrel{8}{\mathrm{O}}$		
													$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \\ \hline \end{gathered}$		$\mathrm{S}_{32.066}^{16}$		$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \end{gathered}$
	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.078 \end{gathered}$		${\underset{4}{47.867}}_{22}$		$\begin{gathered} 24 \\ \mathrm{Cr} \\ 519961 \end{gathered}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni} i}$	$\begin{gathered} { }_{63.546}^{29} \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \\ & 65.39 \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ 9.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ \hline 72.61 \end{gathered}$		$\begin{gathered} \hline 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\underset{8180}{\mathrm{Kr}_{36}^{36}}$
$\begin{aligned} & \hline 37 \\ & \mathrm{Rb} \\ & 854678 \end{aligned}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$		$\begin{gathered} { }_{912}^{40} \\ 7 \mathrm{r} \\ 91.224 \end{gathered}$		$\begin{aligned} & 42 \\ & \mathrm{Mo} \\ & 95.94 \end{aligned}$	$\begin{aligned} & \hline{ }^{43} \\ & \mathrm{Tc} \\ & \text { (98) } \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$		$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$				$\underset{118.710}{\substack{50 \\ \mathrm{Sn}}}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ 121.760 \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { Te } \\ 127.60 \end{gathered}$	53 I 26.90447	$\begin{gathered} 5_{13}^{54} \\ \mathrm{Xe} \\ \hline 131.29 \end{gathered}$
		$\mathrm{La}_{138.9055}^{57}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \\ \hline \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$		$\begin{gathered} \hline 76 \\ \mathrm{OS} \\ 150.23 \end{gathered}$	$\mathrm{Ir}_{192.217}^{77}$			$\begin{gathered} 80 \\ \mathrm{Hg}_{200.59} \end{gathered}$		$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 2007.2 \\ \hline \end{gathered}$		$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \stackrel{87}{\mathrm{Fr}} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	89 Ac (227)	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{So} \\ (20.3) \end{gathered}$	$\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \\ & (262) \\ & \hline \end{aligned}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ (265) \end{gathered}$	$\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ (209) \\ \hline \end{gathered}$	$\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$	$\begin{aligned} & 112 \\ & (277) \\ & \hline \end{aligned}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{array}{r} 116 \\ (289) \\ \hline \end{array}$		

Group 13: Loses 3 electrons to form $3+$ ions

												1					
Li_{6941}^{3}												$\begin{gathered} 5 \\ \mathrm{~B} \\ 10.811 \\ \hline \end{gathered}$				$\stackrel{9}{\mathrm{~F}}$	$\begin{gathered} \hline 10 \\ \mathrm{Ne} \\ 20.1797 \\ \hline \end{gathered}$
													$\underset{28.0855}{14}$	15 P 30973761	$\stackrel{S}{32.066}_{16}^{S}$		$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \end{gathered}$
	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$		${\underset{47.867}{22}}_{\mathrm{Ti}_{4}}$	$\begin{array}{\|c} 23 \\ \mathrm{~V} \\ 50.9415 \end{array}$	$\stackrel{24}{\mathrm{Cr}}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.546 \end{gathered}$	$\begin{aligned} & \hline \begin{array}{c} 30 \\ \mathrm{Zn} \\ 65.39 \end{array} \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ 9.723 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \end{gathered}$		$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\stackrel{35}{\mathrm{Br}}$	$\begin{gathered} \mathrm{K}_{83}^{36} \\ \mathrm{Kr} \end{gathered}$
$\begin{gathered} 37 \\ \mathrm{Rb} \\ 854678 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$		$\begin{gathered} { }_{912}^{40} \\ 7 \mathrm{r} \\ 91.224 \end{gathered}$		$\begin{aligned} & 42 \\ & \mathrm{Mo} \\ & 95.94 \end{aligned}$	$\begin{aligned} & \hline{ }^{43} \\ & \mathrm{Tc} \\ & \text { (98) } \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$		$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$			$\operatorname{In}_{114.818}^{49}$	$\underset{118.710}{\substack{50 \\ \mathrm{Sn}}}$	\qquad	$\begin{gathered} \frac{52}{\mathrm{Te}} \\ 127.60 \end{gathered}$	53 126.90447 126.904	$\begin{gathered} { }_{54}^{54} \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
	5^{56} Ba 137.327		$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$		$\begin{gathered} 74 \\ W \\ 183.84 \\ \hline \end{gathered}$		76 OS 150.23				$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \\ \hline \end{gathered}$		$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{gathered}$	Bi 208.98038	$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{array}{\|c} \hline 88 \\ \mathrm{Ra} \\ (226) \\ \hline \end{array}$	$\begin{gathered} \hline 89 \\ \mathrm{Ac} \\ (227) \\ \hline \end{gathered}$	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{So} \\ (20.3) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ (265) \end{gathered}$	$\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ (209) \\ \hline \end{gathered}$	$\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} \hline 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} \hline 116 \\ (289) \\ \hline \end{gathered}$		

Calution! $\mathrm{C}_{2}{ }^{2-}$ and C^{4} are both called carbide.

Group 14: Loses 4 electrons or gains 4 electrons

1 ${ }_{1}^{\mathrm{H}}$																	
Li_{6941}^{3}												$\begin{gathered} 5 \\ \mathrm{~B} \\ 10.811 \\ \hline \end{gathered}$					
																	$\underset{39.948}{\underset{3}{18}}$
	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$		${\underset{4}{T 7.867}}_{22}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	$\stackrel{24}{\mathrm{Cr}}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 558.845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}}$	$\begin{gathered} { }_{63}^{29} \\ \mathrm{Cu} \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathrm{Ga} \\ \omega 9.723 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \end{gathered}$		$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\underset{83.80}{36}$
$\begin{aligned} & \mathrm{Rb}_{854678}^{37} \end{aligned}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr}_{87.62} \end{gathered}$		$\begin{gathered} { }_{90}^{40} \\ \mathrm{Zr}_{1}^{2} \mathrm{r} 24 \end{gathered}$			$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & (98) \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$	$\mathrm{Rh}_{102.50550}^{45}$	46 Pd 10642			$\operatorname{In}_{114.818}^{49}$		$\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ 121.760 \end{array}$	$\begin{gathered} \frac{52}{\mathrm{Te}} \\ 127.60 \end{gathered}$	53 I 1269047	$\begin{gathered} { }^{54} \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
			$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \\ \hline \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$		76 OS 150.23	$\begin{gathered} 77 \\ \mathrm{Ir}_{192.217} \\ \hline \end{gathered}$	$\begin{gathered} \hline 78 \\ \mathrm{Pt} \\ 195.078 \\ \hline \end{gathered}$		$\begin{gathered} 80 \\ \mathrm{Hg}_{200.59} \end{gathered}$		82 Pb 2072	\square	$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (208) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathrm{Rf} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (20,5) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ (265) \end{gathered}$	$\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & (209) \\ & \hline \end{aligned}$	$\begin{gathered} 111 \\ (272) \\ \hline \end{gathered}$	$\begin{aligned} & 112 \\ & (277) \\ & \hline \end{aligned}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} 116 \\ (289) \\ \hline \end{gathered}$		

N^{3-}
 p3-
 A5-
 Group 15: Gains 3 electrons to form 3-ions

0^{2-}
 $5^{2-} 5$ fid ide
 $5 e^{2-}$
 Group 16: Gains 2 electrons to form 2-ions

F1-Fluoride

(c) $]^{1-}$

B $s^{1-B r o m i d e}$

-1 $=$

Group 17: Gains 1 electron to form

 1-ions| 1
 $\stackrel{1}{H}$
 1.00794
 3 | | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Li_{6941}^{3} | | | | | | | | | | | | $\begin{gathered} 5 \\ \mathrm{~B} \\ 10.811 \\ \hline \end{gathered}$ | | | $\stackrel{8}{\mathrm{O}_{15.9994}^{8}}$ | $\stackrel{9}{\mathrm{~F}}$ | |
| | $\underset{24.3050}{12}$ | | | | | | | | | | | 13
 Al
 26981538 | $\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \end{gathered}$ | | | $\begin{gathered} 17 \\ \stackrel{17}{\mathrm{Cl}} \\ \hline 35.4527 \end{gathered}$ | $\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{gathered}$ |
| | $\begin{gathered} { }^{20} \mathrm{Ca} \\ 40.078 \end{gathered}$ | | ${\underset{4}{27.867}}_{22}$ | | $\stackrel{24}{\mathrm{Cr}}$ | | $\begin{gathered} 26 \\ \mathrm{Fe} \\ 55845 \end{gathered}$ | | | $\stackrel{29}{\mathrm{C}_{63}^{29} \mathrm{u}}$ | $\begin{aligned} & 30 \\ & \mathrm{Zn}_{65.39} \end{aligned}$ | $\begin{gathered} 31 \\ \text { Ga } \\ 9.723 \end{gathered}$ | $\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \end{gathered}$ | | $\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$ | $\begin{gathered} 3_{79.904}^{35} \\ \mathrm{Br} \end{gathered}$ | $\underset{81.80}{36}$ |
| $\begin{array}{\|c\|} \hline 37 \\ \mathrm{Rb} \\ 85.4678 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 38 \\ \mathrm{Sr}_{87.62} \\ \hline \end{array}$ | | $\stackrel{40}{\mathrm{Zr}}$ | | $\begin{gathered} 42 \\ \mathrm{Mo} \\ 95.94 \end{gathered}$ | $\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \hline(98) \\ & \hline \end{aligned}$ | $\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \\ \hline \end{gathered}$ | | 46 Pd 106.42 | | | $\operatorname{In}_{114.818}^{49}$ | | $\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ 121.760 \\ \hline \end{array}$ | $\begin{gathered} \hline 52 \\ \mathrm{Te}_{127.60} \\ \hline \end{gathered}$ | 53 I 126.9044 | $\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$ |
| | | | $\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$ | | $\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \\ \hline \end{gathered}$ | | $\begin{gathered} 76 \\ \mathrm{OS}_{\mathrm{S}} \\ 150.23 \end{gathered}$ | | $\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.078 \end{gathered}$ | | $\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$ | | $\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{gathered}$ | Bi
 208.98038 | $\begin{gathered} \hline 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (208) \\ \hline \end{gathered}$ | $\begin{gathered} 85 \\ \mathrm{At} \\ 2101 \end{gathered}$ | $\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$ |
| $\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$ | $\begin{array}{\|c\|} \hline 88 \\ \mathrm{Ra} \\ (226) \\ \hline \end{array}$ | $\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \\ \hline \end{gathered}$ | $\begin{aligned} & 104 \\ & \mathrm{Rf} \\ & (261) \end{aligned}$ | $\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$ | $\begin{aligned} & 106 \\ & \mathrm{Sg} \\ & (203) \end{aligned}$ | $\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$ | $\begin{gathered} \hline 108 \\ \mathrm{Hs} \\ (265) \end{gathered}$ | $\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \end{aligned}$ | $\begin{aligned} & 110 \\ & (209) \\ & \hline \end{aligned}$ | $\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$ | $\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$ | | $\begin{gathered} \hline 114 \\ (289) \\ (287) \\ \hline \end{gathered}$ | | $\begin{array}{r} 116 \\ (289) \\ \hline \end{array}$ | | |

Group 18: Stable Noble gases do not form ions!

Li_{6941}^{3}												$\begin{gathered} 5 \\ \mathrm{~B} \\ 10.811 \\ \hline \end{gathered}$					
													$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \end{gathered}$		$\begin{gathered} 16 \\ S \\ 32.066 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.4527 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{array}$
	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$		${\underset{4}{T 7.867}}_{22}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	$\stackrel{24}{\mathrm{Cr}}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.546 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ \omega 9.723 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \end{gathered}$		$\begin{gathered} \hline 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\begin{gathered} \mathrm{K}_{83}^{36} \\ \mathrm{Kr} \end{gathered}$
$\begin{gathered} 37 \\ \mathrm{Rb} \\ 854678 \end{gathered}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr}_{8} \\ 87.62 \\ \hline \end{gathered}$		$\begin{gathered} { }^{40} \\ \mathrm{Zr}^{21.224} \end{gathered}$		$\begin{aligned} & 42 \\ & \mathrm{Mo} \\ & 95.94 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & (98) \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$		${ }_{10}^{46}$ Pd 106.42					$\begin{gathered} \hline 51 \\ \mathrm{Sb} \\ 121.760 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \mathrm{Te}_{127.60} \\ \hline \end{gathered}$		$\begin{gathered} 5_{5}^{54} \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
	$\begin{array}{\|c\|} \hline 56 \\ \mathrm{Ba} \\ 137.327 \\ \hline \end{array}$	${\underset{138}{L 8} \mathrm{La}}_{57}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$		$\begin{gathered} \hline 76 \\ \text { OS } \\ 150.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir}_{192.217} \end{gathered}$			$\begin{gathered} 80 \\ \mathrm{Hg}_{200.59} \end{gathered}$		$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \end{gathered}$		$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rnn}_{m} \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathrm{Rf} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (20,5) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$	$\begin{gathered} 108 \\ \mathrm{HS} \\ (265) \end{gathered}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \\ & (266) \end{aligned}$	$\begin{aligned} & 110 \\ & (2029) \\ & \hline \end{aligned}$	$\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$	$\begin{gathered} 112 \\ (277) \\ \hline \end{gathered}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{array}{r} 116 \\ (289) \\ \hline \end{array}$		

Groups 3-12: Many transifion elements have more than one possible oxidation state.

H													Hie				
					${ }^{3}$												
															is		
为	\because	No	No							${ }^{\text {cin }}$		\%			sb		
cos_{5}°	La	${ }^{\text {in }}$		Re	${ }^{\circ} \mathrm{s}$	${ }_{i f}{ }^{\text {in }}$	${ }_{p i}{ }_{\text {An }}$	\%i ${ }^{\text {Hex }}$	T1		Bi						

Groups 3-12: Some transition elements have only one possible oxidation state.

How to Determine the Number of Electrons, Protons, and Neutrons

Quantifying $p^{+}, n^{+},+e^{-}$
p^{+}- proton
n° - neutron
e^{-}- electron

Dalton's Atomic Theory

- As scientists studied materials in the $18^{\text {th }}$ century, 3 things became clear:

1. Most natural materials are mixtures of pure substances
2. Pure substances are either elements or compounds
3. A given compound contains the same proportions (by mass) of the (elements
-\#3 is known as the Law of Constant Composition

- A given compound always has the samte composition, regardless of where it comes from

John Dalton (1766-1844) was aware of these

 observations- In 1808 he published A New System of Chemical Philosophy
- In this text, he said...

1. All elements are composed of extremely small particles called atoms
2. Atoms of a given element are identical sin size, mass, and other properties
-Atoms of different elements differ in size, mass, and other properties
3. Atoms can not be subdivided, created, nor destroyed
4. Atoms of different elements combine insimple whole number ratios to form chemrical compourrid
In chemical reactions, atoms are combined, separateu, orrearranged

- Several changes have been made to Dalton's Theory:
- Change 1:
- Dalton said...

Atoms of a given element are identical in size, mass and other properties; atoms of different elements differ in size, mass, and other properties

- Modern Theory States. 0

Atoms of elements have characteristic average masses which is unique to that element

- Dalton said...

Atoms cannot be subdivided, created, or destroyed

- Modern Theory States...

Atoms cannot be subdivided, created, or destroyed in ordinary chemical reactions. However, the changes can occur in nuclear reactions

Section 4.3

Dalton's Atomic Theory

Observations about the nature of matter

1. Most natural materials are mixtures of pure substances.
2. Pure substances are either elements or combinations of elements called compounds.
3. A given compound always contains the same proportions (by mass) of the elements.

Compounds \& Bonding

 A compound is a distinct substance that is composed of the atoms of $\underline{2}$ or more elements- Always contains the same relative masses of those elements
- Examples:
- Empirical Formulas; $\mathrm{H}_{2} \mathrm{O}$ (2:2 ratio)
- Molecular Formulas: $\mathrm{H}_{4} \mathrm{O}_{2}$ $\mathrm{H}_{6} \mathrm{O}_{3}$ $\mathrm{H}_{8} \mathrm{O}_{4}$ $\mathrm{H}_{10} \mathrm{O}_{5}$ "

Forces that hold atoms together in

 compounds are called chemical bonds- There are $\underline{3}$ types of bonds:

1. Ionic Bond

- A bond between a metal and a nonmetal
- Electrons are transferred
- Electronegativity differences are > 1.7
- Cations (
- Type's I \& II

2. Covalent Bond

A bond between 2 nonmetals

- Electrons are shared
- Electronegativity differences between 0 \& 0.3
- Type III

Polar Covalent Bond

Between ionic and covalent bonds

- Electrons are completely transferred and an unequal sharing of electrons results
- Electronegativity differences between 3 \& 17
- Always involves a hydrogen (+ ion) and another nonmetal
- Example:

$$
\delta^{+} \quad \delta^{-}
$$

(a)
(b)

Bonding Summary:

TABLE 12.1

The Relationship Between Electronegativity and Bond Type

Electronegativity Difference Between the Bonding Atoms	Bond Type	Covalent Character	Ionic Character
Zero	Covalent		
\downarrow	\downarrow		
Intermediate	Polar covalent		
\downarrow	\downarrow		
Large	Ionic		

A resulting collection of bonds is called a

 molecule- Can be represented in $\underline{3}$ main ways:
- All representations for $\mathrm{H}_{2} \mathrm{O}$

1. Structural Formula
2. Ball \& Stick

3. Space Filling

Naming Compounds

You can figure out chemical formulas with the help of oxidation numbers

- A + or - number assigned to an element to show its combining ability in a compound

$\begin{gathered} 1+ \\ 1 \end{gathered}$													$\begin{array}{ccccc} 3+ & 4+ & 3- & 2- & 1- \\ 13 & 14 & 15 & 16 & 17 \\ \hline \end{array}$					$\begin{gathered} 0 \\ 18 \end{gathered}$
1	1 H																	
2	$\stackrel{3}{\text { Li }}$	4 Be	Variable oxidation states										5 B	6	7 \mathbf{N}	8	9	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathbf{M g} \end{aligned}$								1		12	$\begin{aligned} & 13 \\ & \text { Al } \end{aligned}$	$\begin{aligned} & 14 \\ & \text { Si } \end{aligned}$	$\begin{gathered} 15 \\ \mathbf{P} \end{gathered}$	$\begin{gathered} 16 \\ 5 \end{gathered}$	$\begin{aligned} & 17 \\ & \text { Cl } \end{aligned}$	$\begin{aligned} & 18 \\ & \mathbf{A r} \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathbf{C a} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T I} \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathbf{C r} \end{aligned}$	$\begin{gathered} 25 \\ \mathbf{M n} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathbf{C u} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathbf{G a} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathbf{R} \mathbf{b} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathbf{S r} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathbf{N b} \end{aligned}$	42 Mo	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	45	$\begin{aligned} & 46 \\ & \text { Pd } \end{aligned}$	$\begin{aligned} & 47 \\ & \mathbf{A g} \end{aligned}$	$\begin{aligned} & 48 \\ & \text { Cd } \end{aligned}$	49	$\begin{aligned} & 50 \\ & \mathbf{S n}^{*} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathbf{S b} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathbf{T e} \end{aligned}$	$\begin{gathered} 53 \\ \text { I } \end{gathered}$	$\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$
6	$\begin{aligned} & 55 \\ & C_{s} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathbf{B a} \end{aligned}$	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$	$\begin{aligned} & 72 \\ & \mathbf{H f} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathbf{T a} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathbf{R e} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathbf{H g} \end{aligned}$	81	$\begin{aligned} & 82 \\ & \mathbf{P b}^{*} \end{aligned}$	83	$\begin{aligned} & 84 \\ & \mathbf{P o} \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & 86 \\ & \mathbf{R n} \end{aligned}$
7	$\begin{gathered} 87 \\ \mathrm{Fr} \end{gathered}$	$\begin{aligned} & 88 \\ & \mathbf{R a} \end{aligned}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{gathered} 104 \\ \text { Rf } \end{gathered}$	$\begin{aligned} & 105 \\ & \mathbf{H a} \end{aligned}$	$\begin{gathered} 106 \\ \mathbf{S g} \end{gathered}$	$\begin{aligned} & 107 \\ & \text { Ns } \end{aligned}$	$\begin{gathered} 108 \\ \text { Hs } \end{gathered}$	$\begin{aligned} & 109 \\ & \text { Mt } \end{aligned}$	110 Uun	111 Uuu	${ }_{2}^{*} \mathrm{Ir}$	$\begin{gathered} \text { Grol } \\ \text { oxi } \end{gathered}$	$\begin{aligned} & 14, \mathrm{Sn} \\ & \text { ition st } \end{aligned}$	and tes.	als	xhib	

Oxidation numbers are useful in showing how binary compounds form

- Composed of 2 elements
- Can divide into 2 classes̃:

1. Metal and Nonmetal (lonic Bond)

- Type 1 \& Type II Compounds
- Examples: Type I \rightarrow Calcium phosphide $\left(\mathrm{Ca}_{3} \mathrm{P}_{2}\right)$;

2. 2 Nonmetal's (Covalent Bond)

- Type IIICompounds
- Example: Type III \rightarrow Diphosphorous trisulfide $\left(\mathrm{P}_{2} \mathrm{O}_{3}\right)$

Type I Compounds

The cation (+ion) is in Families 1-2, or 13

Rules for naming

1. The cation (+) is named 15 \& the anion ($)$ is named $2^{\text {nd }}$
2. The cation takes its name from the name of the element
3. Take the root of the anionardd add fich to the end

- Note: If a polyatomic ion is used, just write the name of the entire polyatomic ion itself
- Don't take the anion root and add -ide

Writing Type I chemical formulas can be

 used using the swap-n-drop method- The charge of one ion will be the \# of atoms of the other element/ion (\& vice-versa)
- The \# of atoms must always be in their lowest terms

Example 1: sodium chloride

- Write down the ionst O
- Swap them

- Always reduce the terms
- Always reduce the terms
MgBr_{2}
- Example 3: boron oxide

Write down the ions

- Swap them
- Always reduce the terms

Example 4: calcium carbide

- Write down the ions
$\mathrm{Ca}+{ }^{+2}$
- Swap them
- Always reduce the terms
$\mathrm{Ca}_{4} \mathrm{C}_{2}$
$\mathrm{Ca}_{2} \mathrm{C}$

Example 5: gallium borate

- Write down the ions

Ga+3

- Swap them

$\mathrm{Ga}_{3}{ }^{4}\left(\mathrm{BO} \mathrm{O}_{3}\right)_{3}$

- Always reduce the terms

Example 6: strontium phosphate
Write down the ions

- Swap them
- Always reduce the terms

Type II Compounds

The cation is in Families 3-12, or the element is $\mathrm{Sn}, \mathrm{Pb}, \mathrm{Sb}$, or Bi

- Examples:

A. Lead $(\mathrm{Pb})=\mathrm{Pb}^{+2}$ or Pb^{+4}
B. Gold $(A u)=A u^{+1}$ or $A u^{+3}$

- If we saw the compound gold chloride, we would not know which ion $(+1$ or +3$)$ waspresent
- Chemists use a Roman Numeral to specify the charge on the cation
- Note: Otherwise, follow the rules for writing Type I compounds
- The charge to iron can be a +2 or +3
- Do a reverse swap-n=drop
- Example:

$\mathrm{Fe}^{+3} \quad \mathrm{O}^{-2}$

iron (II) (oxide

This can not be done for subscripts that are:
$-1: 1$ ratio $\Rightarrow \mathrm{NiS}\left(\mathrm{Ni}^{+2} \& \mathrm{~S}^{-2}\right)$
-1:2 ratio $\rightarrow \mathrm{SnSe}_{2}\left(\mathrm{Sn}^{+4} \& \mathrm{Se}^{-2}\right)$
-2:1 ratio $\rightarrow \mathrm{Pb}_{2} \mathrm{C}\left(\mathrm{Pb}^{+2} \& \mathrm{C}^{-4}\right)$

The metallic valences can also be noted

 by utilizing the latinized endings - -ic \rightarrow The higher of the 2 charges \bullet-ous \rightarrow The lower of the 2 charges
TABLE 4.2

Common Type II Cations

Ion	Systematic Name	Older Name
Fe^{3+}	iron(III)	ferric
Fe^{2+}	iron(II)	ferrous
Cu^{2+}	copper(II)	cupric
Cu^{+}	copper(I)	cuprous
Co^{3+}	cobalt(III)	cobaltic
Co^{2+}	cobalt(II)	cobaltous
Sn^{4+}	tin(IV)	stannic
Sn^{2+}	tin(II)	stannous
Pb^{4+}	lead(IV)	plumbic
Pb^{2+}	lead(II)	plumbous
Hg^{2+}	mercury(II)	mercuric
$\mathrm{Hg}_{2}^{2+\star}$	mercury(I)	mercurous

*Mercury (l) ions always occur bound together in pairs to form $\mathrm{Hg}_{2}{ }^{2+}$.

Contains only nonmetals

- Otherwise, the $1^{\text {st }}$ element is not in...
A. Families 1-2, 13
B. Families 3-12, or $\mathrm{Sn}, \mathrm{Pb}, \mathrm{Sb}$, or Bi

Rules for naming

1. The $1^{\text {st }}$ element in the formula is named $1^{\text {st }}$ (full elemental name)
2. The $2^{\text {nd }}$ element is named as if it were an anion (i.e. root)

Prefixes denote the number of atoms present
4. The prefix mono- is never used for naming the $1^{\text {st }}$ element

- CO \rightarrow carbon monoxide, not monocarbon monoxide

List of covalent prefixes:

Prefix	Number
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Several polyatomic ions exist that have

 different numbers of oxygen atoms-These are called oxyanions

- When 2 members are in a series...
A. The smaller \# ends in-ite
B. The larger \# ends in -ate
- Much like the -ous/-ic endings when naming metals
- Examples: $\mathrm{SO}_{3}^{-2}=$ sulfite; $\mathrm{SO}_{4}^{-2}=$ sulfatic $\mathrm{BO}_{2}^{-3}=$ borite $; \mathrm{BO}_{3}^{-3}=$ borate
- When more than 2 oxyanions make up a series, hypo- (0 than) and per-(more than) are used as prefixes
- Examples:
$\mathrm{ClO}=$ hypochlorite
$\mathrm{ClO}_{2}^{-}=$chlorite
$\mathrm{ClO}_{3}^{-}=$chlorate $\mathrm{ClO}_{4}^{-}=$perchlorate

Rules for Naming Acids

 1. If the anion does not contain oxygen...- Use the prefix hydro-with the suffix -ic attached to the root name for the element
- Place the term "acid" at the end
- Examples: $\mathrm{HCN}=$ hydrocyanic acid $\mathrm{H}_{2} \mathrm{~S}=$ hydrosulfuric acid

When the anion does contain oxygen...

- When the anion name ends in -ate, the suffix Lic is used
- Examples: Acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{PO}_{4}^{-3}$ (phosphate) phosphoric acid
- When the anion name ends in -ite, the suffix -ous is used

- Examples: $\frac{\text { Acid }}{\mathrm{H}_{2} \mathrm{SO}_{3}} \frac{\text { Anion }}{\mathrm{SO}_{3}^{-2}}$

 $\mathrm{HNO}_{2} \quad \mathrm{NO}_{2}^{-2}$ (nitrite) nitrous acid
Lewis Structures

The Lewis Structure is a representation of a molecule that shows how valence electrons are arranged in atoms of a

 molecule- Most important...Atoms achieve a noble gas configuration

diatomic fluorine

$F \underset{1 s}{\dagger \frac{\downarrow}{2 s}} \quad \frac{\downarrow}{2 s} \quad \frac{\downarrow}{2 p}$

Lewis Structure Rules

Only include the valence electrons

- Count the total number in the compound
- Represented by dots

2. Identify the central atom(s)

- It will have the largest atomic radii
- It is generally the afom that is most singular

Valence Electron Chart

$\begin{array}{lllllllllllllllllll}\text { Group } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$ Number
Valence IA IIA IIB IVB VB VIB VIIB VIIIB
IB IIB IIA IVA VA VIA VIIA Electron

II
TI
Pb

Draw in single lines between the central

 atom(s) and the other atoms in the compound- These lines represent single-bonds
- Represents 2 electrons
- Example: (-)... C-0

4. Add in single dots to the remaining atoms

in the compound \rightarrow

These represent $H: \ddot{\mathrm{O}}: \mathrm{H}$ unbondedelectrons

Make sure that the elements in the

 compound follow 1 of the following rules:A. Duet rule

- Only applies to H
- Forms stable molecules when it shares-2 electrons
- In effect, this gives H a filled $1^{\text {st }}$ valence shell
B. Octet Rule
- Applies to most othèr elements

Exceptions: B \& Be (6), S (12)

- Advanced Octet Rule Comments...
- $2^{\text {nd }}$ row elements (C, N, O, F) observe the octet rule
- $2^{\text {nd }}$ row elements $(\mathrm{B}, \mathrm{Be})$ often have fewer than 8 electrons around themselves they are very reactive
- $3^{\text {rd }}$ row and heavier elements CAN exceed the octet rule using empty valence d orbitals
- When writing Lewis Structures, satisfy octets first, then place electrons around elements having available d orbitals

Recheck the total number of valence

electrons

- Remember $\rightarrow 1$ dot $=1$ electron 1 line $(-)=2$ electrons
- If the \# matches, you are done
- If the \# is too many, you will need to add double or triple bonds
A. Double bond - involves sharing 2 pairs of electrons

Represented by a double line (=)
B. Triple bond - involves the sharing of 3 pairs of electrons

- Represented by a triple line (\equiv)

Double check your work

- If the total \# of valence electrons does not work out, go back to step 6

Examples:

- Single Bonds

(Alkanes)
- Double Bonds

(Alkenes)
- Triple Bonds (Alkynes)

$$
: \dot{N} \cdot+: \dot{N} \cdot \longrightarrow: N::: N: \text { or }|N \equiv N|
$$ each N has an octet of e^{-s}

How to Draw
 Lewis Structures
 2

Resonance

Sometimes it is possible for more than 1 Lewis Structure to be drawn for a given molecule

- Example: CO_{2} (16 valence electrons)

$$
\because-\mathrm{C} \equiv \mathrm{O}: \quad \mathrm{O}=\mathrm{C}=\mathrm{O} \quad: \mathrm{O} \equiv \mathrm{C}-\ddot{\mathrm{O}}:
$$

- Note: The total number of valence electrons still add up
- Example: NO_{3} ion (23 valence electrons)

- Note: lons use brackets [] to symbol that they posses more electrons than they should
- Represented with double-sided arrows

Other resonance examples:

- Carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$

- Acetate ion $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)$

- Molecular Structure

Molecular structure is extremely important in determining chemical properties

- The valence shell election-pair repulsion (VSEPR) model is useful in predicting molecular geometry
- Main postulate of model...the structure around a given atom is determined by minimizing electron-pair repulsions
- Example : BeCl_{2}
$: \ddot{\mathrm{Cl}}-\mathrm{Be}-\ddot{\mathrm{C}} \mathrm{I}: \underset{\mathrm{s} \mathrm{l} 0^{\circ}}{\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}}$
- Example 2: BF_{3}

VSEPR Chart:

+E	Overall Structure	Forms	Bond Angle(s)
2	Linear	AX_{2}	180
3	Trigonal Planar	$\mathrm{AX}_{3}, \mathrm{AX}_{2} \mathrm{E}$	120
4	Tetrahedral	$\mathrm{AX}_{4}, \mathrm{AX}_{3} \mathrm{E}, \mathrm{AX}_{2} \mathrm{E}_{2}$	109.5
5	Trigonal bipyramidal	$\mathrm{AX}_{5}, \mathrm{AX}_{4} \mathrm{E}, \mathrm{AX}_{3} \mathrm{E}_{2}, \mathrm{AX}_{2} \mathrm{E}_{3}$	$90 / 120$
6	Octahedral	$\mathrm{AX}_{5}, \mathrm{AX}_{5} \mathrm{E}, \mathrm{AX}_{4} \mathrm{E}_{2}$	$90 / 90$

$A=$ central atom
$X=$ atoms bonded to A
$E=$ nonbonding electron pairs on A

VSEPR Examples:

- Bent (90°)
- Example: $\mathrm{H}_{2} \mathrm{O}$
(not previously mentioned)
- Linear $\left(180^{\circ}\right)$
- Example: CO_{2}

- Examples:
- $\mathrm{BF}_{3}\left(\mathrm{AX}_{3}\right)$

- $\mathrm{SnCl}_{2}\left(\mathrm{AX}_{2} \mathrm{E}\right)$

- tuanedra $\left(109.5^{\circ}\right)$

- Examples:
- $\mathrm{CCI}_{4}\left(\mathrm{AX}_{4}\right)$

$\mathrm{PCl}_{3}\left(\mathrm{AX}_{3} \mathrm{E}\right)$

- $\mathrm{Cl}_{2} \mathrm{O}\left(\mathrm{AX}_{2} \mathrm{E}_{2}\right)$

al bipyramidal $\left(90^{\circ} \& 120^{\circ}\right)$

- Examples:
- $\mathrm{PCl}_{5}\left(\mathrm{AX}_{5}\right)$
$\mathrm{SF}_{4}\left(\mathrm{AX}_{4} \mathrm{E}\right)$

- CIF $_{3}\left(\mathrm{AX}_{3} \mathrm{E}_{2}\right)$
$+0$

${ }_{3}-\left(A X_{3} E_{3}\right)$

$\left(90^{\circ} \& 90^{\circ}\right)$

- Examples:
- $\mathrm{SF}_{6}\left(\mathrm{AX}_{6}\right)$

- $\mathrm{ICl}_{4}{ }^{-}\left(\mathrm{A} \mathrm{X}_{4} \mathrm{E}_{2}\right)+\mathrm{O}$

$\mathrm{BrF}_{5}\left(\mathrm{~A}{ }_{5} \mathrm{E}\right)$

Number of Electron Pairs

Arrangement of Electron Pairs
Example
2
Linear

Trigonal planar

4
Tetrahedral

5
Trigonal bipyramidal

6
Octahedral

