

UNIT-III

LIFE-CYCLE PHASES

INTRODUCTION:

- If there is a well defined separation between “research and development” activities and

“production” activities then the software is said to be in successful development process.

- Most of the software’s fail due to the following characteristics ,
1) An overemphasis on research and development.
2) An overemphasis on production.

ENGINEERING AND PRODUCTION STAGES :
To achieve economics of scale and higher return on investment, we must move

toward a software manufacturing process which is determined by technological

improvements in process automation and component based development.

There are two stages in the software development process

1) The engineering stage: Less predictable but smaller teams doing design and production

activities. This stage is decomposed into two distinct phases inception and elaboration.

2) The production stage: More predictable but larger teams doing construction, test, and

deployment activities. This stage is also decomposed into two distinct phases

construction and transition.

These four phases of lifecycle process are loosely mapped to the conceptual framework

of the spiral model is as shown in the following figure.

- In the above figure the size of the spiral corresponds to the inactivity of the project with

respect to the breadth and depth of the artifacts that have been developed.
- This inertia manifests itself in maintaining artifact consistency, regression testing,

documentation, quality analyses, and configuration control.
- Increased inertia may have little, or at least very straightforward, impact on changing any

given discrete component or activity.
- However, the reaction time for accommodating major architectural changes, major

requirements changes, major planning shifts, or major organizational perturbations clearly

increases in subsequent phases.

INCEPTION PAHSE:
The main goal of this phase is to achieve agreement among stakeholders on the

life-cycle objectives for the project.
PRIMARY OBJECTIVES

1) Establishing the project’s scope and boundary conditions
2) Distinguishing the critical use cases of the system and the

primary scenarios of operation
3) Demonstrating at least one candidate architecture against

some of the primary scenarios

4) Estimating cost and schedule for the entire project
5) Estimating pot
6) ential risks

ELABORATION PHASE
- It is the most critical phase among the four phases.
- Depending upon the scope, size, risk, and freshness of the project, an executable

architecture prototype is built in one or more iterations.
- At most of the time the process may accommodate changes, the elaboration phase activities

must ensure that the architecture, requirements, and plans are stable. And also the cost and

schedule for the completion of the development can be predicted within an acceptable range.

PRIMARY OBJECTIVES
1) Base lining the architecture as rapidly as practical
2) Base lining the vision
3) Base lining a high-reliability plan for the construction phase

4) Demonstrating that the baseline architecture will support the vision at a

reasonable cost in a reasonable time.

CONSTRUCTION PHASE

During this phase all the remaining components and application features are

integrated into the application, and all features are thoroughly tested. Newly developed

software is integrated where ever required.
- If it is a big project then parallel construction increments are generated.

PRIMARY OBJECTIVES

1) Minimizing development costs

2) Achieving adequate quality as rapidly as practical
3) Achieving useful version (alpha, beta, and other releases) as

rapidly as practical
ESSENTIAL ACTIVITIES

1) Resource management, control, and process optimization
2) Complete component development and testing evaluation criteria

3) Assessment of product release criteria of the vision

TRANSITION PHASE

Whenever a project is grown-up completely and to be deployed in the end-user

domain this phase is called transition phase. It includes the following activities:

1) Beta testing to validate the new system against user expectations
2) Beta testing and parallel operation relative to a legacy system it is replacing
3) Conversion of operational databases
4) Training of users and maintainers
PRIMARY OBJECTIVES

1) Achieving user self-supportability
2) Achieving stakeholder concurrence
3) Achieving final product baseline as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES
1) Synchronization and integration of concurrent construction increments into

consistent deployment baselines
2) Deployment-specific engineering

3) Assessment of deployment baselines against the complete vision and

acceptance criteria in the requirement set.

Artifacts of the Process

- Conventional s/w projects focused on the sequential development of s/w artifacts:
- Build the requirements

- Construct a design model traceable to the requirements &
- Compile and test the implementation for deployment.
-This process can work for small-scale, purely custom developments in which the design

representation, implementation representation and deployment representation are

closely aligned.

This approach is doesn't work for most of today’s s/w systems why because of having

complexity and are composed of numerous components some are custom, some

reused, some commercial products.

THE ARTIFACT SETS

In order to manage the development of a complete software system, we need to gather

distinct collections of information and is organized into artifact sets.

- Set represents a complete aspect of the system where as artifact represents interrelated

information that is developed and reviewed as a single entity.
- The artifacts of the process are organized into five sets:

1) Management 2) Requirements 3) Design

4) Implementation 5) Deployment

here the management artifacts capture the information that is necessary to synchronize
stakeholder expectations. Where as the remaining four artifacts are captured rigorous

notations that support automated analysis and browsing.

THE MANAGEMENT SET

It captures the artifacts associated with process planning and execution. These artifacts

use ad hoc notation including text, graphics, or whatever representation is required to

capture the “contracts” among,
- project personnel:

project manager, architects, developers, testers,

marketers, administrators

- stakeholders:

funding authority, user, s/w project manager, organization manager,

regulatory agency & between project personnel and stakeholders

Management artifacts are evaluated, assessed, and measured through a combination of
1) Relevant stakeholder review.
2) Analysis of changes between the current version of the artifact and previous versions.
3) Major milestone demonstrations of the balance among all artifacts.

THE ENGINEERING SETS:

1) REQUIREMENT SET:
- The requirements set is the primary engineering context for evaluating the other three

engineering artifact sets and is the basis for test cases.
- Requirement artifacts are evaluated, assessed, and measured through a combination of

1) Analysis of consistency with the release specifications of the mgmt set.
2) Analysis of consistency between the vision and the requirement models.
3) Mapping against the design, implementation, and deployment sets to
evaluate the consistency and completeness and the semantic balance between

information in the different sets.

4) Analysis of changes between the current version of the artifacts and previous versions.

5) Subjective review of other dimensions of quality.

2) DESIGN SET:

- UML notations are used to engineer the design models for the solution.
- It contains various levels of abstraction and enough structural and behavioral

information to determine a bill of materials.
- Design model information can be clearly and, in many cases, automatically translated

into a subset of the implementation and deployment set artifacts.
The design set is evaluated, assessed, and measured through a combination of

1) Analysis of the internal consistency and quality of the design model.
2) Analysis of consistency with the requirements models.

3) Translation into implementation and deployment sets and notations to evaluate the

 consistency and completeness and semantic balance between information in the

 sets.

4) Analysis of changes between the current version of the design model and previous

 versions.
5) Subjective review of other dimensions of quality.

3) IMPLEMENTATION SET:

- The implementation set include source code that represents the tangible implementations of

components and any executables necessary for stand-alone testing of components.

- Executables are the primitive parts that are needed to construct the end product,

including custom components, APIs of commercial components.
- Implementation set artifacts can also be translated into a subset of the deployment

set. Implementation sets are human-readable formats that are evaluated, assessed,

and measured through a combination of
1) Analysis of consistency with design models
2) Translation into deployment set notations to evaluate consistency and
completeness among artifact sets.
3) Execution of stand-alone component test cases that automatically compare expected

results with actual results.
4) Analysis of changes b/w the current version of the implementation set and

previous versions.
5) Subjective review of other dimensions of quality.

4) DEPLOYMENT SET:
- It includes user deliverables and machine language notations, executable software,

and the build scripts, installation scripts, and executable target-specific data necessary

to use the product in its target environment.
Deployment sets are evaluated, assessed, and measured through a combination of

1) Testing against the usage scenarios and quality attributes defined in the requirements

set to evaluate the consistency and completeness and the semantic balance between

information in the two sets.

2) Testing the partitioning, replication, and allocation strategies in mapping components

of the implementation set to physical resources of the deployment system.

3) Testing against the defined usage scenarios in the user manual such as installation,

user-oriented dynamic reconfiguration, mainstream usage, and anomaly management.

4) Analysis of changes b/w the current version of the deployment set and previous

versions.

5) Subjective review of other dimensions of quality.

Each artifact set uses different notations to capture the relevant artifact.
1) Management set notations (ad hoc text, graphics, use case notation) capture the

plans, process, objectives, and acceptance criteria.

2) Requirement notation (structured text and UML models) capture the engineering

context and the operational concept.
3) Implementation notations (software languages) capture the building blocks of the

solution in human-readable formats.
4) Deployment notations (executables and data files) capture the solution in machine-

readable formats.

IMPLEMENTATION SET VERSUS DEPLOYMENT SET

- The structure of the information delivered to the user (testing people) is very different

from the structure of the source code implementation.
- Engineering decisions that have impact on the quality of the deployment set but are

relatively incomprehensible in the design and implementation sets include:
1) Dynamically reconfigurable parameters such as buffer sizes, color palettes,

number of servers, number of simultaneous clients, data files, run-time parameters.
2) Effects of compiler/link optimizations such as space optimization versus speed

optimization.
3) Performance under certain allocation strategies such as centralized versus

distributed, primary and shadow threads, dynamic load balancing.
4) Virtual machine constraints such as file descriptors, garbage collection, heap

size, maximum record size, disk file rotations.
5) Process-level concurrency issues such as deadlock and race condition.

6) Platform-specific differences in performance or behavior.

ARTIFACTS EVOLUTION OVER THE LIFE CYCLE

- Each state of development represents a certain amount of precision in the final system

description.
- Early in the lifecycle, precision is low and the representation is generally high. Eventually,

the precision of representation is high and everything is specified in full detail.

- At any point in the lifecycle, the five sets will be in different states of completeness. However,

they should be at compatible levels of detail and reasonably traceable to one another.

- Performing detailed traceability and consistency analyses early in the life cycle i.e.

when precision is low and changes are frequent usually has a low ROI.

Inception phase: It mainly focuses on critical requirements, usually with a secondary

focus on an initial deployment view, little implementation and high-level focus on the

design architecture but not on design detail.

Elaboration phase: It include generation of an executable prototype, involves subsets

of development in all four sets. A portion of all four sets must be evolved to some level

of completion before an architecture baseline can be established.

Fig: Life-Cycle evolution of the artifact sets

Construction: Its main focus on design and implementation. In the early stages the main focus is

on the depth of the design artifacts. Later, in construction, realizing the design in source code and

individually tested components. This stage should drive the requirements, design, and

implementation sets almost to completion. Substantial work is also done on the deployment

set, at least to test one or a few instances of the programmed system through alpha or

beta releases.
Transition: The main focus is on achieving consistency and completeness of the

deployment set in the context of another set. Residual defects are resolved, and

feedback from alpha, beta, and system testing is incorporated.

TEST ARTIFACTS:
Testing refers to the explicit evaluation through execution of deployment set

components under a controlled scenario with an expected and objective outcome.

- What ever the document-driven approach that was applied to software development

is also followed by the software testing people.
- Development teams built requirements documents, top-level design documents, and

detailed design documents before constructing any source files or executable files.
- In the same way test teams built system test plan documents, unit test plan documents, and

unit test procedure documents before building any test drivers, stubs, or instrumentation.

- This document-driven approach caused the same problems for the test activities that

it did for the development activities.
- One of the truly tasteful belief of a modern process is to use exactly the same sets, notations,

and artifacts for the products of test activities as are used for product development.

- The test artifacts must be developed concurrently with the product from inception

through deployment. i.e. Testing a full-life-cycle activity, not a late life-cycle activity.
- The test artifacts are communicated, engineered, and developed within the same

artifact sets as the developed product.
- The test artifacts are implemented in programmable and repeatable formats as

software programs.
- The test artifacts are documented in the same way that the product is documented.

- Developers of the test artifacts use the same tools, techniques, and training as the

software engineers developing the product.
- Testing is only one aspect of the evaluation workflow. Other aspects include

inspection, analysis, and demonstration.
- The success of test can be determined by comparing the expected outcome to the

actual outcome with well-defined mathematical precision.

MANAGEMENT ARTIFACTS:

• Development of WBS is dependent on product management style , organizational culture,

custom performance, financial constraints and several project specific parameters.

• The WBS is the architecture of project plan. It encapsulate change and evolve with

appropriate level of details.

• A WBS is simply a hierarchy of elements that decomposes the project plan into

discrete work task.

• A WBS provides the following information structure
• - A delineation of all significant tasks.
• - A clear task decomposition for assignment of responsibilities.
• - A framework for scheduling ,debugging and expenditure tracking.
• -Most systems have first level decomposition subsystem. subsystems are then

decomposed into their components
• Therefore WBS is a driving vehicle for budgeting and collecting cost.
• The structure of cost accountability is a serious project planning constraints.
Business case:

 :
• Managing change is one of the fundamental primitives of an iterative development

process.

• This flexibility increases the content, quality, and number of iterations that a

project can achieve within a given schedule.
• Once software is placed in a controlled baseline, all changes must be formally

tracked and managed.
• Most of the change management activities can be automated by automating

data entry and maintaining change records online.

“I am not going to learn UML, but I am going to review design”

 Organizations are forced toexchange paper documents

Acronyms and abbreviations should be used only where they are well accepted
jargon
Use proper english words that enables understandable
representations,browsable formats and reduced error rates

 Avoid separate documents to describe all the details of a model,
component or test procedure
 If a document is produced but not used, eliminate it.

 Paper documents are tangible, static and persistant. Online and web
based artifacts can be changed easily and are viewed with more scepticism
 I Support change management, electronic signature which replaces paper.

Short documents are usually more useful than long ones. Software

is primary product, documentation is support material.

