
 

UNIT - III 

TIME RESPONSE AND STEADY STATE ERRORS 

 
Introduction 

There are two methods to analyze functioning of a control system that are time domain analysis and 

control domain analysis. In time domain analysis the response of a system is a function of time. It 

analyzes the working of a dynamic control system. 

This analysis can only be applied when nature of input plus mathematical model of the control 

system is known. It is not easy to express the actual input signals by simple equations as the input 

signals of the control systems are not fully known. There are two components of any system’s time 

response, transient response and steady response. 

Typical and standard test signals are used to judge the behaviour of typical test signals. The 

characteristics of an input signal are constant acceleration, constant velocity, a sudden change or a 

sudden shock. We discussed four types of test signals that are Impulse Step, Ramp, Parabolic and 

another important signal is sinusoidal signal. In this article we will be discussing first order systems. 

  

First order system 

 
The system whose input-output equation is a first order differential equation is called first order 

system. The order of the differential equation is the highest degree of derivative present in an 

equation. First order system contains only one energy storing element. Usually a capacitor or 

combination of two capacitors is used for this purpose. These cannot be connected to any external 

energy storage element. Most of the practical models are first order systems. If a system with higher 

order has a dominant first order mode it can be considered as a first order system. 

             We now discuss first-order systems without zeros to define a performance specification for 

such a system. A first-order without zeros can be described by the transfer funtion given in the 

figure(a). If the input is a unit step, where R(s) = 1/s, the Laplace transform of the step response is 

C(s), where  

 

. Taking the inverse Laplace  transform, the step response is given by 

 

where the input pole at the origin generated the forced response cf(t)=1, and the system pole at –a, as 

shown in Figure. 



 

 

Let us examine the significance of parameter a, the only parameter needed to describe the transient 

response.  

We now use these equations to define three transient response specifications.  

 

Time Constant : We call  1/a the time constant of the response. From equationthe time constant can 

be described as the time for e
-at

 to decay to 37% of its initial time. Alternately, from equation (**), 

the time constant is the time it takes for the step response to rise to 63% of its final value. Thus, we 

can call the parameter a as exponential frequency.  

 

Rise Time, Tr : Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final 

value.  

Settling Time, T s : Settling time is defined as the time for the response to reach and stay within 2% 

of its final value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

Step Response of Second Order Systems :- 

 

Consider a second order system of the form  

 

In order to obtain intuition about these systems, we will be focusing on a particular form of second 

order system:  

 

The poles of this transfer function are obtained from the quadratic formula as  

 

The location of these poles in the complex plane will vary based on the value of ζ.  

 

We analyze four different cases:  

• ζ =0: The system has two real poles in the CLHP The system is said to be undamped.  

• 0 ≤ ζ < 1: The system has two complex poles in the CLHP (they will be in the OLHP if ζ > 0). The 

system is said to be underdamped.  

• ζ = 1: The system has two repeated poles at s = −ωn. The system is said to be critically damped.  

• ζ > 1: The system has two poles on the negative real axis. The system is said to be overdamped. 

 

 

 

 

Two physically meaningful specificaitons for second-order system.  

 



Natural Frequency, ω n : The natural frequency of a second order system is the frequency of 

oscillation of the system without damping. For example, the frequency of oscillation of a series RLC 

circuit with the resistance shorted would be natural frequency.  

 

Damping Ratio, ζ : We define the damping ratio, ζ, to be  

 
 

 

Transient Response  

In analyzing and designing control systems, we must have a basis of comparison of performance of 

various control systems. This basis may be set up by specifying particular test input signals and by 

comparing the response of various systems to these input signals. Typical test signals: Step function, 

ramp function, impulse function, sinusoid function. The time response of a control system consists of 

two parts: the transient and the steady-state response.  

Transient response corresponds to the behaviour of the system from the initial state to the final state.  

By steady state, we mean the manner in which the system output behaves as time approaches infinity. 

For a step input, the transient response can be characterized by:  

Delay time td: time to reach half the final value for the first time.  

Rise time tr: time required for the response to rise from 10% to 90% for overdamped systems, and 

from 0% to 100% for underdamped systems  

Peak time tp: time required to reach the first peak of the overshoot Percent Overshoot Mp. 



Settling time ts: time required for the response curve to reach and stay within 2% or 5% of the final 

value. Is a function of the largest time constant of the control system. 

 

 

 



 

 



 

 



 

 



 

 



 

Steady-state error is defined as the difference between the input (command) and the output of a 

system in the limit as time goes to infinity (i.e. when the response has reached steady state). 

The steady-state error will depend on the type of input (step, ramp, etc.) as well as the system type 

(0, I, or II). 

Calculating steady-state errors 

Before talking about the relationships between steady-state error and system type, we will show how 

to calculate error regardless of system type or input. Then, we will start deriving formulas we can 

apply when the system has a specific structure and the input is one of our standard functions. Steady-

state error can be calculated from the open- or closed-loop transfer function for unity feedback 

systems. For example, let's say that we have the system given below. 

 

This is equivalent to the following system, where T(s) is the closed-loop transfer function. 

 

We can calculate the steady-state error for this system from either the open- or closed-loop transfer 

function using the Final Value Theorem. Recall that this theorem can only be applied if the 

subject of the limit (sE(s) in this case) has poles with negative real part. 

(1)  

(2)  

Now, let's plug in the Laplace transforms for some standard inputs and determine equations to 

calculate steady-state error from the open-loop transfer function in each case. 

� Step Input (R(s) = 1 / s): 

(3)  

� Ramp Input (R(s) = 1 / s^2): 

(4)  

� Parabolic Input (R(s) = 1 / s^3): 

(5)  

When we design a controller, we usually also want to compensate for disturbances to a system. Let's 

say that we have a system with a disturbance that enters in the manner shown below. 



 

We can find the steady-state error due to a step disturbance input again employing the Final Value 

Theorem (treat R(s) = 0). 

(6)  

When we have a non-unity feedback system we need to be careful since the signal entering G(s) is no 

longer the actual error E(s). Error is the difference between the commanded reference and the actual 

output, E(s) = R(s) - Y(s). When there is a transfer function H(s) in the feedback path, the signal 

being substracted from R(s) is no longer the true output Y(s), it has been distorted by H(s). This 

situation is depicted below. 

 

Manipulating the blocks, we can transform the system into an equivalent unity-feedback structure as 

shown below. 

 

Then we can apply the equations we derived above. 

System type and steady-state error 

If you refer back to the equations for calculating steady-state errors for unity feedback systems, you 

will find that we have defined certain constants (known as the static error constants). These constants 

are the position constant (Kp), the velocity constant (Kv), and the acceleration constant (Ka). 

Knowing the value of these constants, as well as the system type, we can predict if our system is 

going to have a finite steady-state error. 

First, let's talk about system type. The system type is defined as the number of pure integrators in the 

forward path of a unity-feedback system. That is, the system type is equal to the value of n when the 

system is represented as in the following figure. It does not matter if the integrators are part of the 

controller or the plant. 

 

 



Therefore, a system can be type 0, type 1, etc. The following tables summarize how steady-state error 

varies with system type. 

Type 0 system Step Input Ramp Input Parabolic Input 

Steady-State Error Formula 1/(1+Kp) 1/Kv 1/Ka 

Static Error Constant Kp = constant Kv = 0 Ka = 0 

Error 1/(1+Kp) Infinity infinity 

Type 1 system Step Input Ramp Input Parabolic Input 

Steady-State Error Formula 1/(1+Kp) 1/Kv 1/Ka 

Static Error Constant Kp = infinity Kv = constant Ka = 0 

Error 0 1/Kv infinity 

Type 2 system Step Input Ramp Input Parabolic Input 

Steady-State Error Formula 1/(1+Kp) 1/Kv 1/Ka 

Static Error Constant Kp = infinity Kv = infinity Ka = constant 

Error 0 0 1/Ka 

 

 

 



 

 



 

 

 

 

 

 



P, PI and PID Controllers

• The controller (an analogue/digital

variable such as temperature,

called the set point (SP).

• A feedback control system

difference between where

where it should be. 

• Based upon the error signal,

signal to the actuator. 

The proportional (P), the integral

Types of controllers: P, I, D, PI,

• Proportional Control 

With proportional control, the actuator

of error: 

Outputp = system output due to proportional

Kp = proportional constant for the

E = error, the difference between

PV. 

One way to decrease the steady-state

instability problems. 

Increasing Kp independently without

• Integral Control 

The introduction of integral control

Integral control applies a restoring

by time. 

OutputI = controller output due to

KI = integral gain constant (sometimes

∑(E×∆t) = sum of all past errors 

For a constant value of error ∑(E

larger and larger. 

Eventually, the restoring force will

variable in a direction to eliminate

• Derivative Control 

One solution to the overshoot problem

brakes,’ slowing the controlled variable

OutputD = controller output due to

KD = derivative gain constant 

P, PI and PID Controllers 

analogue/digital circuit, and software), is trying to

temperature, liquid level, motor velocity, robot joint angle,

. 

system does this by looking at the error (E) signal,

where the controlled variable (called the process variable

signal, the controller decides the magnitude and

integral (I), and the derivative (D), are all basic controllers.

PI, PD, and PID controllers 

actuator applies a corrective force that is proportional

Outputp = Kp × E 

proportional control 

the system called gain 

between where the controlled variable should be and where

state error is to increase the system gain (Kp), but

without limit is not a sound control strategy. 

control in a control system can reduce the steady-state

restoring force that is proportional to the sum of all past

OutputI = KI × ∑(E×∆t) 

to integral control 

(sometimes expressed as 1/TI) 

 (multiplied by time) 

E×∆t) will increase with time, causing the restoring

will get large enough to overcome friction and move

eliminate the error. 

problem is to include derivative control. Derivative

variable just before it reaches its destination. 

 

to derivative control 

to keep the controlled 

angle, at a certain value 

signal, which is the 

variable (PV)) is, and 

and the direction of the 

controllers. 

proportional to the amount 

where it is.E = SP – 

but high Kpcan lead to 

state error to zero. 

past errors, multiplied 

restoring force to get 

move the controlled 

Derivative control ‘applies the 



=

• Combining P, I and D controllers

As proportional, integral and derivative

they are often combined so that their

Many industrial controllers are a

controllers respectively. 

• PID control 

A proportional–integral–derivative

mechanism (controller) widely used

A PID controller attempts to correct

setpoint by calculating and then outputting

accordingly. 

The foundation of the system is proportional

eliminate steady-state error, but increases

reducing the tendency to overshoot.

Simply adding together the three

system. 

OutputPID = output from PID controller

KP = proportional control gain 

KI = integral control gain 

KD = derivative control gain 

E = error (deviation from set point)

∑(E×∆t) = sum of all past errors 

 = rate of change of error 

Equation is: 

When you are designing a PID controller

a desired response. 

= error rate of change (slope of error curve) 

controllers 

derivative controllers have their individual strengths

their strengths are maximised, whilst minimising

 combination of P + I, or P + D, and are referred

derivative controller (PID controller) is a generic control

used in industrial control systems. 

correct the error between a measured process variable

outputting a corrective action that can adjust the

proportional control. Adding integral control provides

increases overshoot. Derivative control increases

overshoot. 

three required control components generates the response

 
controller 

point) 

 (area under the error/time curve) 

 (slope of the error curve) 

 

controller for a given system, follow the steps shown

strengths and weaknesses, 

minimising their weaknesses. 

referred to as PI and PD 

control loop feedback 

variable and a desired 

the process 

 

provides a means to 

increases stability by 

response of the PID 

 

shown below to obtain 



1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response. 

The characteristics of P, I, and D controllers 

• A proportional controller (Kp) will have the effect of reducing the rise time and will reduce 

,but never eliminate, the steady-state error. 

• An integral control (Ki) will have the effect of eliminating the steady-state error, but it may 

make the transient response worse. 

• A derivative control (Kd) will have the effect of increasing the stability of the system, 

reducing the overshoot, and improving the transient response. 

 


