Unit: Polynomials: Multiplying and Factoring

Name \qquad Dates Taught \qquad

Specific Outcome	(10I.A.1 - Prime factors - Leastest common factor - Least common multiple		
10I.A.3	Demonstrate an understanding of powers with integral and rational exponents		
10I.A.4	Demonstrate an understanding of the multiplication of polynomial expressions		
10I.A.5	Demonstrate an understanding of common factors and trinomial factoring		

Comments : \qquad

Outcome: 10I.A.4: Multiplying Polynomials (Part 1)

Adding Polynomials: Combine like terms (add \qquad
$(5 a-6 b+3 c)+(8 a+5 b-4 c)=$ \qquad

Subtracting Polynomials: Multiply the \qquad through the brackets $\left(4 x^{2}-2 x+3\right)-\left(3 x^{2}+5 x-2\right)=$ \qquad

$$
=
$$

\qquad

Multiplying Polynomials (Monomial by Monomial):

1) Multiply the coefficients 2 2) Add the exponents
$\left(2 x^{2}\right)(7 x)=$ \qquad
$\left(-4 a^{2} b\right)\left(3 a b^{3}\right)=$ \qquad

Dividing Monomials: 1) Divide the coefficients
2) Subtract the exponents $\frac{20 x^{3} y^{4}}{-5 x^{2} y^{2}}=$ \qquad

Multiplying Monomial by Polynomial:
$5 y^{2}\left(x^{2}-y\right)=$ \qquad
$4 y\left(2 y^{2}+3 y-1\right)=$ \qquad

Binomial by Binomial :

- A technique for multiplying two binomials is using the F.O.I.L. method. The letters F. O. I. L. stand for \qquad _' \qquad , \qquad
\qquad
- We always multiply these terms.

Steps :

1) Identify the first term in each bracket and \qquad them together.
2) Identify the most outside terms of the expression and multiply them together.
3) Identify the most inside terms of the expression and multiply them together.
4) Identify the last term in each bracket and multiply them together.
5) Collect like terms.

Examples:

$(x+2)(x+5)=$

First
Outer
Inner
Last
$(x+6)(x+8)=$ \qquad
$=$ \qquad
$(2 x-y)(3 x+y)=$ \qquad
$=$ \qquad
$(x-2 y)(x+2 y)=$ \qquad
$=$ \qquad

Binomial Squared:

$(x+5)^{2}=$ \qquad
$=$ \qquad
$=$ \qquad
$(2 x-y)^{2}=$ \qquad $=$ \qquad
socs
Try: FOIL game --
http://homepage.mac.com/ma rkgreenberg2/Games/MrGree nbergsGames.html

8005

Homework: Textbook Page 87 \#3-5

Outcome: 10I. A.4: Multiplying Polynomials (Part 2)

Binomial by Trinomial: Distribution Method
Example 1 Multiply:
a) $(y-3)\left(y^{2}-4 y+7\right)=$ \qquad
$=$ \qquad
$=$ \qquad
b) $(2 x-1)\left(2 x^{2}+5 x-3\right)=$ \qquad
$=$ \qquad
$=$ \qquad

Example 2 Expand the following:
a) $3(x-1)(2 x-3)=$ \qquad
b) $(5 a+4)+(a-1)(a+2)-(2 a-3)=$ \qquad
\qquad
\qquad

Homework: Textbook Page 87 \#6-10 and MCAL20S: Exercise 1

Outcome: 10I.A. 1 - Prime Factors

- When a factor of a number has exactly two divisors, one and itself, the factor is a prime factor.
- For example, the factors of 12 are $1,2,3,4,6$, and 12 . The prime factors of 12 are 1,2 , and 3 . To determine the prime factorization of 12 , write 12 as a product of its prime factors: 2×2 $\times 3$, or $2^{2} \times 3$

The first 10 prime numbers are: $2,3,5,7,11,13,17,19,23$, and 29

Natural numbers greater than one that are not prime, are composite.
Example 1: Write the prime factorization of 3300.
Method 1: Factor Tree
Method 2: Repeated Division

Outcome: 10I.A. 1 - Least Common Multiple

- The least common multiple (LCM) is the smallest multiple shared by two or more terms. To generate multiples of a number, multiply the number by the natural numbers; that is, 1, 2, 3, 4, 5 , and so on.
- For example, some multiples of 26 are:

$$
26 \cdot 1=26 \quad 26 \cdot 2=52 \quad 26 \cdot 3=78
$$

- For two or more natural numbers, we can determine their least common multiple.

Example 2: Determine the least common multiple of 15,20 , and 30.

Method 1: Listing Multiples of All Numbers

Method 2: Listing Multiples of the Largest Number (and divide by the other numbers)

Example 3: Mei is stacking toy blocks that are 12 cm tall next to blocks that are 18 cm tall. What is the shortest height at which the two stacks will be the same height?

Outcome: 10I.A. 1 \& Outcome: 10I.A.4: - Common Factoring

- The greatest common factor (GCF) is the largest factor shared by two or more terms. This is the largest number that both terms can be divided by.

For example; The factors of 12 are $1,2,3,4,6$, and 12
The factors of 18 are $1,2,3,6,9$, and 18
The GCD of 12 and 18 is \qquad

Example 1: List the factors of each of the following numbers. Then, identify the Greatest common factor.
a) 15 and 30
b) -24 and -48

Example 2: Determine the greatest common factor of $4 x y$ and $2 x^{2} y$. \qquad

Example 3: Determine the greatest common factor of the following sets of terms:

$$
18 x^{2} y z, \quad 27 x^{2} y^{2} z, \quad 9 x^{2} y^{2}
$$

Common Factoring

Factoring is the \qquad process of \qquad . The better you are at multiplying, the better you will be at factoring.

Multiplication

$$
\begin{aligned}
& 5 x(x-2 y)=5 x^{2}-10 x y \\
& (x-3)(x+5)=x^{2}+2 x-15
\end{aligned}
$$

Factoring
$9 x^{2}-15 x=3 x(3 x-5)$
$x^{2}+8 x+15=(x+3)(x+5)$

1) Common Factoring:

- When factoring, \qquad begin by looking for \qquad terms. It could be a number, a variable or both.
- Place this common factor in front of parentheses, with the remaining polynomial \qquad the parentheses.
- Once this is done, the same number of terms as in the original question should be inside. (i.e. a
\qquad leaves a \qquad .)

Examples: Factor the following:
i) $4 x+8=$ \qquad ii) $8 x y-32 y^{2}=$ \qquad
iii) $7 n^{2}-49 n=$ \qquad iv) $15 w^{3}+5 w=$ \qquad
iv) $\quad b-b^{2} r^{3} c=$ \qquad vi) $12 n^{3}-16 n^{2}+32 n=$ \qquad
vii) $3 x^{3}-6 x^{2} y+9 x y^{2}=$ \qquad

- Factoring can always be quickly and easily checked by \qquad the polynomials together to see if the product is the original polynomial.

Homework: Textbook Page 91 \#1, 4, 6, 7

Outcome: 10I.A.4: Trinomial Factoring

- Trinomials will factor to 2 brackets.

Example: $\quad x^{2}+5 x+6=$

Steps:

(1) ALWAYS factor out any \qquad terms/variables first.
(2) Identify the \qquad of the last term of the trinomial.
(3) Next, determine which \qquad of factors either \qquad up to or
(4) Therefore, $x^{2}+5 x+6$ factors to

Examples: Factor the following trinomials fully, if possible:

1. $x^{2}+9 x+18$
2. $y^{2}-2 y-15$
3. $5+b^{2}-6 b$
4. $a^{2}-4 a-60$
5. $x^{2}+8 x y+16 y^{2}$
6. $p^{4}-2 p^{2}-15$

$$
\text { 7. } 2 x^{2}+8 x+6
$$

8. $x^{2}-5 x-6$
9. $3 x^{3}-18 x^{2}+27 x$
10. $2 x^{2} y z^{3}-10 x y z^{3}-48 y z^{3}$

Homework: Textbook Page 95 \#4, 5, 8, 10

Outcome: 10I.A.4: Factoring Difference of Squares
 a) Perfect Square Binomials: $a x^{2}-b y^{2}$

- A difference of squares has 3 main features:

1. The first term is a perfect \qquad .
2. The second term is a \qquad square.
3. They are separated by a \qquad sign.

- The \qquad term is absent because it is \qquad .

$$
\text { Eg. } x^{2}-0 x y-16 y^{2}
$$

- Factoring a perfect square binomial results in two similar binomials, that differ only in the \qquad sign.
- To factor a difference of squares:
(1) Remember to ALWAYS begin factoring by looking for a \qquad factor.
(2) The first term of the binomials' comes from the square \qquad of the
\qquad
(3) The \qquad term of the binomials' comes from the square \qquad of the second term.
(4) Place a \qquad sign in one parentheses and a \qquad in the other.
(5) Check the result by using F.O.I.L.

Example from above: $\quad x^{2}-16 y^{2}=(\square)(\square)$
Examples:

1. $x^{2}-9=($ \qquad)()
2. $225 b^{2}-a^{2}=($ \qquad (
3. $49+x^{2}=($ \qquad)(\qquad)
4. $-y^{2}+36=($ \qquad)()
5. $3 x^{3}-48 x=$ $=$
6. $x^{4}-16=$

B) Perfect Square Trinomials: $x^{2} \pm b x y+c y^{2}$

- A perfect square trinomial has \qquad main features:

1. The first term is a \qquad - \qquad .
2. The \qquad term is a perfect square. The sign of the last term
Example: $x^{2}-8 x y+16 y^{2}$ is always \qquad .
3. The \qquad term can be either positive or negative. It is always double the square root of the last term.

- Factoring a perfect square trinomial results in two \qquad
Example: Factor: $x^{2}-8 x y+16 y^{2}=$

Check:

Examples: Factor the following trinomials fully, if possible.

1. $49+14 x+x^{2}=$
2. $5 b^{3}-40 b^{2}+80 b=$
3. The volume of a rectangular prism is represented by $2 x^{3}-24 x^{2}+72 x$. What are possible dimensions of the prism?

Outcome: 10I.A.4: Factoring $a x^{2}+b x+c$ (leading coefficient) (FOIL Method)

- Use this method anytime there is a \qquad in front of your x^{2} which cannot be factored out.

Examples: Factor the following fully, if possible:

1. $2 y^{2}+y-1=$
2. $3 a^{2}+5 a+2=$
3. $3 x^{2}+9 x+6=$
4. $10 x^{4}+8 x^{2}-2=$
5. $3 b^{4}-5 b^{2}-2=$
6. $2 c^{2}+2 c-3=$
7. $3 d^{3}+10 d^{2}+8 d=$
8. $2 g^{2}-13 g+15=$

Homework: Textbook Page 95 \#6, 7, 9, 11

