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Good news: We have tests!

No judgement on whether they are complete or not, 
but we sure have a lot of them

Number of tests
Apache Tomcat 1,734

Closure Compiler 7,949
Commons I/O 1,022
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Bad news: We have to run a 
lot of tests!

• Much work has focused on improving the situation:

• Test Suite Prioritization

• E.g. Wong [ISSRE ’97], Rothermel [ICSM ’99]; Elbaum 
[ICSE ’01]; Srivastava [ISSTA ’02] and more

• Test Suite Minimization

• E.g. Harrold [TOSEM ’93]; Wong [ICSE ’95]; Chen [IST 
’98]; Jones [TOSEM ’03]; Tallam [PASTE ’05]; Jeffrey 
[TSE ’07]; Orso [ICSE ’09] Hao [ICSE ’12] and more
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Testing still takes too long.
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Our Approach: 
Unit Test Virtualization

Reduces test execution time by up to 97%, on average 62%

Integrates with JUnit, ant, and mvn on unmodified JVMs.

Apache Tomcat: From 26 minutes to 18 minutes

Available on GitHub
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Execute Test

Terminate App
Begin Test
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JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test! Up to 4,153%, avg 618%

Overhead of restarting the JVM?
Unit tests as fast as 3-5 ms

JVM startup time is fairly constant (1.4 sec)

*From our study of 20 popular FOSS apps
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Do applications really use a 
new JVM for each test?

• Checked out the 1,000 largest Java projects from Ohloh

• 81% of projects with more than 1,000 tests do it

• 71% of projects with more than 1 million LOC do it

• Overall: 41% of all of the projects do
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Test Independence
• We typically assume that tests are order-

independent

• Might rely on developers to completely reset the 
system under test between tests

• Who tests the tests?

• Dangerous: If wrong, can have false positives or 
false negatives (Muşlu [FSE ’11], Zhang [ISSTA 
’14])
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Test Independence

/**#If#true,#cookie#values#are#allowed#to#contain#an#equals#
character#without#being#quoted.#*/#
public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#
####Boolean.valueOf(System.getProperty("org.apache.tomcat.#
####util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))#
########.booleanValue();
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Test Independence

/**#If#true,#cookie#values#are#allowed#to#contain#an#equals#
character#without#being#quoted.#*/#
public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#
####Boolean.valueOf(System.getProperty("org.apache.tomcat.#
####util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))#
########.booleanValue();

This field is set once, when the class that owns it is initialized

This field’s value is dependent on an external property



@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
# System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
# ALLOW_EQUALS_IN_VALUE","false")).booleanValue();
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A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true  
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
# System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
# ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

Sets environmental variable to false  
Start Tomcat, run test

But our static field is stuck!

TestDontAllowEqualsInValue
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A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true  
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
# System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
# ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

Sets environmental variable to false  
Start Tomcat, run test

TestAllowEqualsInValue
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Our Approach

Unit Test Virtualization: Allow tests to leave side-effects. 
But efficiently contain them.
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How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner 
Instance

Test Case 1

references

Test Case 2

references

Accessible!
Objects

references

Accessible!
Objects

references

Accessible!
Objects

references

Test Case n

references

We think in terms of object graphs

No cross-talk No cross-talk
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Java is memory-managed, and object oriented
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Static fields: owned by a 
class, NOT by an instance
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How do Tests Leak Data?
Java is memory-managed, and object oriented

We think in terms of object graphs

Class#A

Static#
Fields

Class#B

Static#
Fields

Static fields: owned by a 
class, NOT by an instance
These are leakage points

referencesreferences
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Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit

es Reads
Reads W

rit
es

*In
ter

ce
pt

ion
*

So, don’t touch them!

These classes had no 
possible conflicts

Key Insight:!
No need to re-initialize the entire application in order 

to isolate tests



@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting 

JVM



@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting 

JVM

• Integrates easily with ant, maven, junit



@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting 

JVM

• Integrates easily with ant, maven, junit

• Implemented completely with application byte 
code instrumentation



@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting 

JVM

• Integrates easily with ant, maven, junit

• Implemented completely with application byte 
code instrumentation

• No changes to JVM, no access to source code 
required 
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Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or 
static reference of T

Acquire lock on T

Check initialization 
status

Initialize T’s super 
classes

Run initializer for T

Mark init done

Release lock on T

Release lock on T Acquire lock on T

Re-initialize T’s 
super classes

No
t in

itia
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ed
First new instance or static 

reference of T per test

Re-initialize T
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Efficient Reinitialization
• Does not require any modifications to the JVM and 

runs on commodity JVMs

• The JVM calls a special method, <clinit> to initialize a 
class

• We do the same, entirely in Java

• Add guards to trigger this process

• Register a hook with test runner to tell us when a new 
test starts
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Experiments

• RQ1: How does VMVM compare to Test Suite 
Minimization?

• RQ2: What are the performance gains of VMVM?

• RQ3: Does VMVM impact fault finding ability?
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RQ1: VMVM vs Test Minimization

• Study design follows Zhang [ISSRE ‘11]’s 
evaluation of four minimization approaches

• Compare to the minimization technique with least 
impact on fault finding ability, Harrold [TOSEM 
‘93]'s technique

• Study performed on the popular Software 
Infrastructure Repository dataset
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RQ2: Broader Evaluation

• Previous study: well-studied suite of 4 projects, 
which average 37,000 LoC and 51 test classes

• This study: manually collected repository of 20 
projects, average 475,000 LoC and 56 test classes

• Range from 5,000 LoC - 5,692,450 LoC; 3 - 292 
test classes; 3.5-15 years in age
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RQ2: Broader Evaluation

0%! 20% ! 40%! 60%! 80%! 100%!
upm!
JTor !

Openfire !
Trove for Java!

FreeRapid Downloader !
JAXX!

Commons Validator !
Commons Codec!
Closure Compiler !

betterFORM!
Apache Ivy !

mkgmap!
gedcom4j!

btrace !
Apache River !
Commons IO!

Jetty !
Apache Tomcat !

Apache Nutch !
Bristlecone!

Relative Speedup !

Max: 97%

Average: 62%

Larger is better
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reduction

• Looked for relationships between number of tests, 
lines of code, age of project, total testing time, time 
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Factors that impact 
reduction

• Looked for relationships between number of tests, 
lines of code, age of project, total testing time, time 
per test, and VMVM’s speedup

• Result: Only average time per test is correlated with 
VMVM’s speedup (in fact, quite strongly; p < 
0.0001)
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RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)
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RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)

• Does VMVM correctly isolate tests though?

• Compared false positives and negatives between un-
isolated execution, traditionally isolated execution, 
and VMVM-isolated execution for these 20 complex 
applications

• Result: False positives occur when not isolated. 
VMVM shows no false positives or false negatives.
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Conclusions

• Most large applications isolate their test cases

• VMVM provides up to a 97% reduction in testing 
time through more efficient isolation (average 62%)

• VMVM does not risk a reduction in fault finding
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Unit Test Virtualization 
with VMVM

Jonathan Bell and Gail Kaiser 
Columbia University

https://github.com/Programming-Systems-Lab/vmvm

See a demo of VMVM at 2:30 today! Room MR G1-3

Fork me on Github


