
@_jon_bell_ICSE 2014 June 5, 2014

Unit Test Virtualization
with VMVM

Jonathan Bell and Gail Kaiser
Columbia University

Fork me on Github

@_jon_bell_ICSE 2014 June 5, 2014

Good news: We have tests!

No judgement on whether they are complete or not,
but we sure have a lot of them

Number of tests
Apache Tomcat 1,734

Closure Compiler 7,949
Commons I/O 1,022

@_jon_bell_ICSE 2014 June 5, 2014

Bad news: We have to run a
lot of tests!

@_jon_bell_ICSE 2014 June 5, 2014

Bad news: We have to run a
lot of tests!

• Much work has focused on improving the situation:

• Test Suite Prioritization

• E.g. Wong [ISSRE ’97], Rothermel [ICSM ’99]; Elbaum
[ICSE ’01]; Srivastava [ISSTA ’02] and more

@_jon_bell_ICSE 2014 June 5, 2014

Bad news: We have to run a
lot of tests!

• Much work has focused on improving the situation:

• Test Suite Prioritization

• E.g. Wong [ISSRE ’97], Rothermel [ICSM ’99]; Elbaum
[ICSE ’01]; Srivastava [ISSTA ’02] and more

• Test Suite Minimization

• E.g. Harrold [TOSEM ’93]; Wong [ICSE ’95]; Chen [IST
’98]; Jones [TOSEM ’03]; Tallam [PASTE ’05]; Jeffrey
[TSE ’07]; Orso [ICSE ’09] Hao [ICSE ’12] and more

@_jon_bell_ICSE 2014 June 5, 2014

Testing still takes too long.

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach:
Unit Test Virtualization

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach:
Unit Test Virtualization

Reduces test execution time by up to 97%, on average 62%

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach:
Unit Test Virtualization

Reduces test execution time by up to 97%, on average 62%

Apache Tomcat: From 26 minutes to 18 minutes

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach:
Unit Test Virtualization

Reduces test execution time by up to 97%, on average 62%

Integrates with JUnit, ant, and mvn on unmodified JVMs.

Apache Tomcat: From 26 minutes to 18 minutes

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach:
Unit Test Virtualization

Reduces test execution time by up to 97%, on average 62%

Integrates with JUnit, ant, and mvn on unmodified JVMs.

Apache Tomcat: From 26 minutes to 18 minutes

Available on GitHub

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test!

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test!

Overhead of restarting the JVM?

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test!

Overhead of restarting the JVM?
Unit tests as fast as 3-5 ms

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test!

Overhead of restarting the JVM?
Unit tests as fast as 3-5 ms

JVM startup time is fairly constant (1.4 sec)

@_jon_bell_ICSE 2014 June 5, 2014

JUnit Test Execution

Start JVM

Execute Test

Terminate App
Begin Test

Start Test Suite

1.4 sec (combined)!
For EVERY test! Up to 4,153%, avg 618%

Overhead of restarting the JVM?
Unit tests as fast as 3-5 ms

JVM startup time is fairly constant (1.4 sec)

*From our study of 20 popular FOSS apps

@_jon_bell_ICSE 2014 June 5, 2014

Do applications really use a
new JVM for each test?

• Checked out the 1,000 largest Java projects from Ohloh

• 81% of projects with more than 1,000 tests do it

• 71% of projects with more than 1 million LOC do it

• Overall: 41% of all of the projects do

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence
• We typically assume that tests are order-

independent

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence
• We typically assume that tests are order-

independent

• Might rely on developers to completely reset the
system under test between tests

• Who tests the tests?

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence
• We typically assume that tests are order-

independent

• Might rely on developers to completely reset the
system under test between tests

• Who tests the tests?

• Dangerous: If wrong, can have false positives or
false negatives (Muşlu [FSE ’11], Zhang [ISSTA
’14])

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence

/**#If#true,#cookie#values#are#allowed#to#contain#an#equals#
character#without#being#quoted.#*/#
public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#
####Boolean.valueOf(System.getProperty("org.apache.tomcat.#
####util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))#
########.booleanValue();

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence

/**#If#true,#cookie#values#are#allowed#to#contain#an#equals#
character#without#being#quoted.#*/#
public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#
####Boolean.valueOf(System.getProperty("org.apache.tomcat.#
####util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))#
########.booleanValue();

This field is set once, when the class that owns it is initialized

@_jon_bell_ICSE 2014 June 5, 2014

Test Independence

/**#If#true,#cookie#values#are#allowed#to#contain#an#equals#
character#without#being#quoted.#*/#
public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#
####Boolean.valueOf(System.getProperty("org.apache.tomcat.#
####util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))#
########.booleanValue();

This field is set once, when the class that owns it is initialized

This field’s value is dependent on an external property

@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

Sets environmental variable to false
Start Tomcat, run test

@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

Sets environmental variable to false
Start Tomcat, run test

But our static field is stuck!

TestDontAllowEqualsInValue

@_jon_bell_ICSE 2014 June 5, 2014

A Tale of Two Tests

TestAllowEqualsInValue TestDontAllowEqualsInValue

Sets environmental variable to true
Start Tomcat, run test

public#static#boolean#ALLOW_EQUALS_IN_VALUE#=#Boolean.valueOf(#
System.getProperty(“org.apache.tomcat.util.http.ServerCookie.#
ALLOW_EQUALS_IN_VALUE","false")).booleanValue();

Sets environmental variable to false
Start Tomcat, run test

TestAllowEqualsInValue

@_jon_bell_ICSE 2014 June 5, 2014

Our Approach

Unit Test Virtualization: Allow tests to leave side-effects.
But efficiently contain them.

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

We think in terms of object graphs

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner
Instance

We think in terms of object graphs

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner
Instance

Test Case 1

references

Accessible!
Objects

references

We think in terms of object graphs

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner
Instance

Test Case 1

references

Test Case 2

references

Accessible!
Objects

references

Accessible!
Objects

references

We think in terms of object graphs

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner
Instance

Test Case 1

references

Test Case 2

references

Accessible!
Objects

references

Accessible!
Objects

references

Accessible!
Objects

references

Test Case n

references

We think in terms of object graphs

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

Test Runner
Instance

Test Case 1

references

Test Case 2

references

Accessible!
Objects

references

Accessible!
Objects

references

Accessible!
Objects

references

Test Case n

references

We think in terms of object graphs

No cross-talk No cross-talk

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

We think in terms of object graphs

Class#A

Static#
Fields

Class#B

Static#
Fields

Static fields: owned by a
class, NOT by an instance

@_jon_bell_ICSE 2014 June 5, 2014

How do Tests Leak Data?
Java is memory-managed, and object oriented

We think in terms of object graphs

Class#A

Static#
Fields

Class#B

Static#
Fields

Static fields: owned by a
class, NOT by an instance
These are leakage points

referencesreferences

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static#
Fields

Class%B

Static#
Fields

Class%C

Static#
Fields

Test 1 Test 2

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static#
Fields

Class%B

Static#
Fields

Class%C

Static#
Fields

Test 1 Test 2

W
rit

es

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static#
Fields

Class%B

Static#
Fields

Class%C

Static#
Fields

Test 1 Test 2

W
rit

es

Reads

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static#
Fields

Class%B

Static#
Fields

Class%C

Static#
Fields

Test 1 Test 2

W
rit

es

Reads W
rit

es

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static#
Fields

Class%B

Static#
Fields

Class%C

Static#
Fields

Test 1 Test 2

W
rit

es Reads
Reads

Static%
Fields

W
rit

es

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit

es Reads
Reads W

rit
es

*In
ter

ce
pt

ion
*

Static%
Fields

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit
es Reads

Rea
ds W

rit
es

*In
ter
ce
pt
ion
*

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit

es Reads
Reads W

rit
es

*In
ter

ce
pt

ion
*

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit

es Reads
Reads W

rit
es

*In
ter

ce
pt

ion
*

So, don’t touch them!

These classes had no
possible conflicts

@_jon_bell_ICSE 2014 June 5, 2014

Isolating Side Effects
Class%A

Static&
Fields

Class%B

Static&
Fields

Class%C

Static&
Fields

Test 1 Test 2

W
rit

es Reads
Reads W

rit
es

*In
ter

ce
pt

ion
*

So, don’t touch them!

These classes had no
possible conflicts

Key Insight:!
No need to re-initialize the entire application in order

to isolate tests

@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting

JVM

@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting

JVM

• Integrates easily with ant, maven, junit

@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting

JVM

• Integrates easily with ant, maven, junit

• Implemented completely with application byte
code instrumentation

@_jon_bell_ICSE 2014 June 5, 2014

VMVM: Unit Test Virtualization
• Isolates in-memory side effects, just like restarting

JVM

• Integrates easily with ant, maven, junit

• Implemented completely with application byte
code instrumentation

• No changes to JVM, no access to source code
required

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Release lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Release lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Release lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Release lock on T Acquire lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Mark init done

Release lock on T Acquire lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Mark init done

Release lock on T

Release lock on T Acquire lock on T
No

t in
itia

liz
ed

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Mark init done

Release lock on T

Release lock on T Acquire lock on T
No

t in
itia

liz
ed

First new instance or static
reference of T per test

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Mark init done

Release lock on T

Release lock on T Acquire lock on T

Re-initialize T’s
super classes

No
t in

itia
liz

ed
First new instance or static

reference of T per test

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
Emulate exactly what happens when a class is initialized the first time

First new instance or
static reference of T

Acquire lock on T

Check initialization
status

Initialize T’s super
classes

Run initializer for T

Mark init done

Release lock on T

Release lock on T Acquire lock on T

Re-initialize T’s
super classes

No
t in

itia
liz

ed
First new instance or static

reference of T per test

Re-initialize T

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
• Does not require any modifications to the JVM and

runs on commodity JVMs

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
• Does not require any modifications to the JVM and

runs on commodity JVMs

• The JVM calls a special method, <clinit> to initialize a
class

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
• Does not require any modifications to the JVM and

runs on commodity JVMs

• The JVM calls a special method, <clinit> to initialize a
class

• We do the same, entirely in Java

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
• Does not require any modifications to the JVM and

runs on commodity JVMs

• The JVM calls a special method, <clinit> to initialize a
class

• We do the same, entirely in Java

• Add guards to trigger this process

@_jon_bell_ICSE 2014 June 5, 2014

Efficient Reinitialization
• Does not require any modifications to the JVM and

runs on commodity JVMs

• The JVM calls a special method, <clinit> to initialize a
class

• We do the same, entirely in Java

• Add guards to trigger this process

• Register a hook with test runner to tell us when a new
test starts

@_jon_bell_ICSE 2014 June 5, 2014

Experiments

• RQ1: How does VMVM compare to Test Suite
Minimization?

@_jon_bell_ICSE 2014 June 5, 2014

Experiments

• RQ1: How does VMVM compare to Test Suite
Minimization?

• RQ2: What are the performance gains of VMVM?

@_jon_bell_ICSE 2014 June 5, 2014

Experiments

• RQ1: How does VMVM compare to Test Suite
Minimization?

• RQ2: What are the performance gains of VMVM?

• RQ3: Does VMVM impact fault finding ability?

@_jon_bell_ICSE 2014 June 5, 2014

RQ1: VMVM vs Test Minimization

• Study design follows Zhang [ISSRE ‘11]’s
evaluation of four minimization approaches

@_jon_bell_ICSE 2014 June 5, 2014

RQ1: VMVM vs Test Minimization

• Study design follows Zhang [ISSRE ‘11]’s
evaluation of four minimization approaches

• Compare to the minimization technique with least
impact on fault finding ability, Harrold [TOSEM
‘93]'s technique

@_jon_bell_ICSE 2014 June 5, 2014

RQ1: VMVM vs Test Minimization

• Study design follows Zhang [ISSRE ‘11]’s
evaluation of four minimization approaches

• Compare to the minimization technique with least
impact on fault finding ability, Harrold [TOSEM
‘93]'s technique

• Study performed on the popular Software
Infrastructure Repository dataset

@_jon_bell_ICSE 2014 June 5, 2014

0% !
10%!
20%!
30%!
40%!
50%!
60%!
70%!
80%!
90%!

Ant
v1
!

Ant
v2
!

Ant
v3
!

Ant
v4
!

Ant
v5
!

Ant
v6
!

Ant
v7
!

Ant
v8
!

JM
ete

r v
1!

JM
ete

r v
2!

JM
ete

r v
3!

JM
ete

r v
4!

JM
ete

r v
5!

jto
pas

 v1
!

jto
pas

 v2
!

jto
pas

 v3
!

xm
l-s

ec
 v1
!

xm
l-s

ec
 v2
!

xm
l-s

ec
 v3
!

Re
du

ct
io

n
in

 T
es

tin
g

Ti
m

e!

Application!

Test Suite Minimization ! VMVM! Combined!

RQ1: VMVM vs Test Minimization

Larger is
 bette

r

@_jon_bell_ICSE 2014 June 5, 2014

0% !
10%!
20%!
30%!
40%!
50%!
60%!
70%!
80%!
90%!

Ant
v1
!

Ant
v2
!

Ant
v3
!

Ant
v4
!

Ant
v5
!

Ant
v6
!

Ant
v7
!

Ant
v8
!

JM
ete

r v
1!

JM
ete

r v
2!

JM
ete

r v
3!

JM
ete

r v
4!

JM
ete

r v
5!

jto
pas

 v1
!

jto
pas

 v2
!

jto
pas

 v3
!

xm
l-s

ec
 v1
!

xm
l-s

ec
 v2
!

xm
l-s

ec
 v3
!

Re
du

ct
io

n
in

 T
es

tin
g

Ti
m

e!

Application!

Test Suite Minimization ! VMVM! Combined!

13%

RQ1: VMVM vs Test Minimization

Larger is
 bette

r

@_jon_bell_ICSE 2014 June 5, 2014

0% !
10%!
20%!
30%!
40%!
50%!
60%!
70%!
80%!
90%!

Ant
v1
!

Ant
v2
!

Ant
v3
!

Ant
v4
!

Ant
v5
!

Ant
v6
!

Ant
v7
!

Ant
v8
!

JM
ete

r v
1!

JM
ete

r v
2!

JM
ete

r v
3!

JM
ete

r v
4!

JM
ete

r v
5!

jto
pas

 v1
!

jto
pas

 v2
!

jto
pas

 v3
!

xm
l-s

ec
 v1
!

xm
l-s

ec
 v2
!

xm
l-s

ec
 v3
!

Re
du

ct
io

n
in

 T
es

tin
g

Ti
m

e!

Application!

Test Suite Minimization ! VMVM! Combined!

13%

46%

RQ1: VMVM vs Test Minimization

Larger is
 bette

r

@_jon_bell_ICSE 2014 June 5, 2014

0% !
10%!
20%!
30%!
40%!
50%!
60%!
70%!
80%!
90%!

Ant
v1
!

Ant
v2
!

Ant
v3
!

Ant
v4
!

Ant
v5
!

Ant
v6
!

Ant
v7
!

Ant
v8
!

JM
ete

r v
1!

JM
ete

r v
2!

JM
ete

r v
3!

JM
ete

r v
4!

JM
ete

r v
5!

jto
pas

 v1
!

jto
pas

 v2
!

jto
pas

 v3
!

xm
l-s

ec
 v1
!

xm
l-s

ec
 v2
!

xm
l-s

ec
 v3
!

Re
du

ct
io

n
in

 T
es

tin
g

Ti
m

e!

Application!

Test Suite Minimization ! VMVM! Combined!

13%

46%
49%

RQ1: VMVM vs Test Minimization

Larger is
 bette

r

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

• Previous study: well-studied suite of 4 projects,
which average 37,000 LoC and 51 test classes

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

• Previous study: well-studied suite of 4 projects,
which average 37,000 LoC and 51 test classes

• This study: manually collected repository of 20
projects, average 475,000 LoC and 56 test classes

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

• Previous study: well-studied suite of 4 projects,
which average 37,000 LoC and 51 test classes

• This study: manually collected repository of 20
projects, average 475,000 LoC and 56 test classes

• Range from 5,000 LoC - 5,692,450 LoC; 3 - 292
test classes; 3.5-15 years in age

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

0%! 20% ! 40%! 60%! 80%! 100%!
upm!
JTor !

Openfire !
Trove for Java!

FreeRapid Downloader !
JAXX!

Commons Validator !
Commons Codec!
Closure Compiler !

betterFORM!
Apache Ivy !

mkgmap!
gedcom4j!

btrace !
Apache River !
Commons IO!

Jetty !
Apache Tomcat !

Apache Nutch !
Bristlecone!

Relative Speedup !
Larger is better

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

0%! 20% ! 40%! 60%! 80%! 100%!
upm!
JTor !

Openfire !
Trove for Java!

FreeRapid Downloader !
JAXX!

Commons Validator !
Commons Codec!
Closure Compiler !

betterFORM!
Apache Ivy !

mkgmap!
gedcom4j!

btrace !
Apache River !
Commons IO!

Jetty !
Apache Tomcat !

Apache Nutch !
Bristlecone!

Relative Speedup !

Average: 62%

Larger is better

@_jon_bell_ICSE 2014 June 5, 2014

RQ2: Broader Evaluation

0%! 20% ! 40%! 60%! 80%! 100%!
upm!
JTor !

Openfire !
Trove for Java!

FreeRapid Downloader !
JAXX!

Commons Validator !
Commons Codec!
Closure Compiler !

betterFORM!
Apache Ivy !

mkgmap!
gedcom4j!

btrace !
Apache River !
Commons IO!

Jetty !
Apache Tomcat !

Apache Nutch !
Bristlecone!

Relative Speedup !

Max: 97%

Average: 62%

Larger is better

@_jon_bell_ICSE 2014 June 5, 2014

Factors that impact
reduction

• Looked for relationships between number of tests,
lines of code, age of project, total testing time, time
per test, and VMVM’s speedup

@_jon_bell_ICSE 2014 June 5, 2014

Factors that impact
reduction

• Looked for relationships between number of tests,
lines of code, age of project, total testing time, time
per test, and VMVM’s speedup

• Result: Only average time per test is correlated with
VMVM’s speedup (in fact, quite strongly; p <
0.0001)

@_jon_bell_ICSE 2014 June 5, 2014

RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)

@_jon_bell_ICSE 2014 June 5, 2014

RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)

• Does VMVM correctly isolate tests though?

@_jon_bell_ICSE 2014 June 5, 2014

RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)

• Does VMVM correctly isolate tests though?

• Compared false positives and negatives between un-
isolated execution, traditionally isolated execution,
and VMVM-isolated execution for these 20 complex
applications

@_jon_bell_ICSE 2014 June 5, 2014

RQ3: Impact on Fault Finding
• No impact on fault finding from seeded faults (SIR)

• Does VMVM correctly isolate tests though?

• Compared false positives and negatives between un-
isolated execution, traditionally isolated execution,
and VMVM-isolated execution for these 20 complex
applications

• Result: False positives occur when not isolated.
VMVM shows no false positives or false negatives.

@_jon_bell_ICSE 2014 June 5, 2014

Conclusions

• Most large applications isolate their test cases

@_jon_bell_ICSE 2014 June 5, 2014

Conclusions

• Most large applications isolate their test cases

• VMVM provides up to a 97% reduction in testing
time through more efficient isolation (average 62%)

@_jon_bell_ICSE 2014 June 5, 2014

Conclusions

• Most large applications isolate their test cases

• VMVM provides up to a 97% reduction in testing
time through more efficient isolation (average 62%)

• VMVM does not risk a reduction in fault finding

@_jon_bell_ICSE 2014 June 5, 2014

Unit Test Virtualization
with VMVM

Jonathan Bell and Gail Kaiser
Columbia University

https://github.com/Programming-Systems-Lab/vmvm

See a demo of VMVM at 2:30 today! Room MR G1-3

Fork me on Github

