United States Army Corps of Engineers Engineering Manual EM 1110-2-1601							
CECW-EH-D	Department of the Army U.S. Army Corps of Engineers	EM 1110-2-1601					
Engineer Manual 1110-2-1601	Washington, DC 20314-1000	1 July 1991/ 30 June 1994					
	Engineering and Design						
	HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS						
	Distribution Restriction Statement						

Approved for public release; distribution is unlimited.

CECW-EH-D	Department of the Army U.S. Army Corps of Engineers	EM 1110-2-1601
Engineer Manual 1110-2-1601	Washington, DC 20314-1000	1 July 1991/ 30 June 1994
	Engineering and Design	
	HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS	

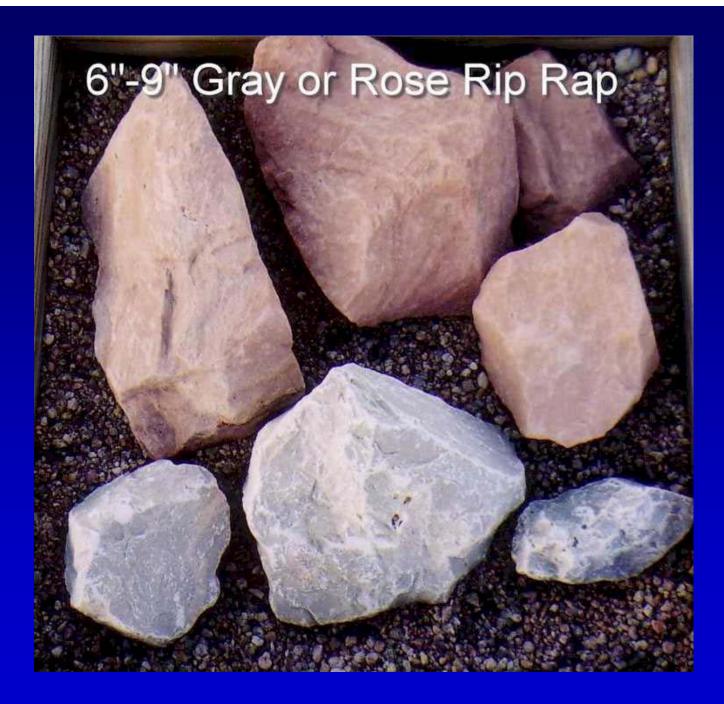
Chapter 3

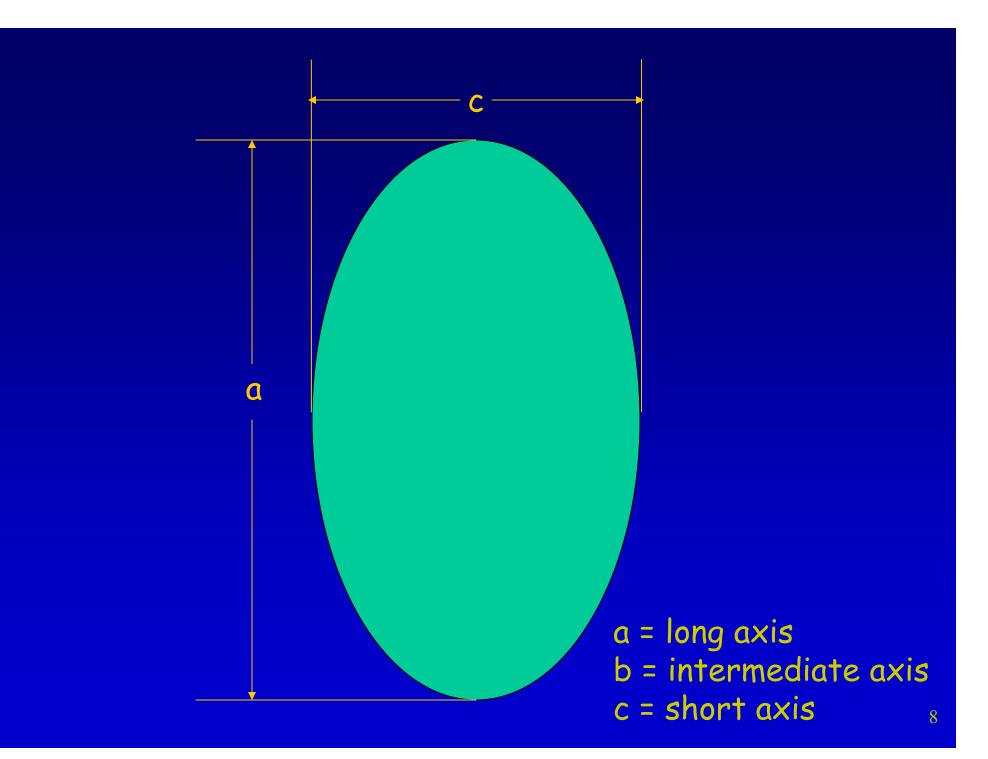
Riprap Protection

Riprap Protection

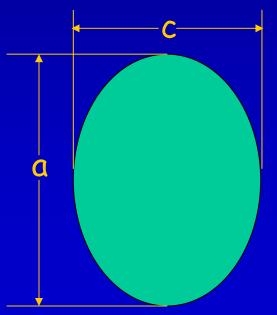
- Section 1 Introduction to Riprap
- Section 2 Channel Characteristics
- Section 3 Design Guidance for Stone Size
- Section 4 Revetment Toe Scour Estimation and Protection
- Section 5 Ice, Debris and Vegetation
- Section 6 Quality Control

Introduction

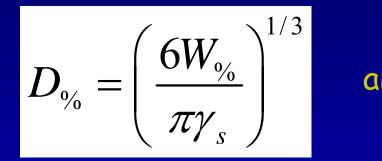

- Guidelines applicable for:
 - Open channels not immediately downstream of a stilling basin
 - Areas that are not highly turbulent
 - Channels with bed slopes of < 2%


Introduction

Successful design dependent on:


- Stone shape
- Stone size
- Stone weight
- Durability
- Gradation
- Layer thickness
- Channel alignment
- Channel slope
- Velocity distribution

- Stone shape
 - Predominately angular
 - a/c ratios



- Stone shape
 - Predominately angular
 - a/c ratios
 - Not more than 30% > 2.5
 - Not more that 15% > 3.0
 - No stone greater than 3.5

Relation between stone size and weight

- Design guidance typically is given as $D_{\%}$
 - % indicates the percentage of the total specified gradation weight that contains stones of less weight
- Weight and size can be interchanged by:

nd
$$W_{\gamma_0} = \left(\frac{\pi \gamma_s D_{\gamma_0}^3}{6}\right)$$

Where

 $D_{\%}$ = equivalent volume spherical stone diameter, ft $W_{\%}$ = weight of individual stone of diameter $D_{\%}$ \mathbf{T}_{s} = unit weight of stone

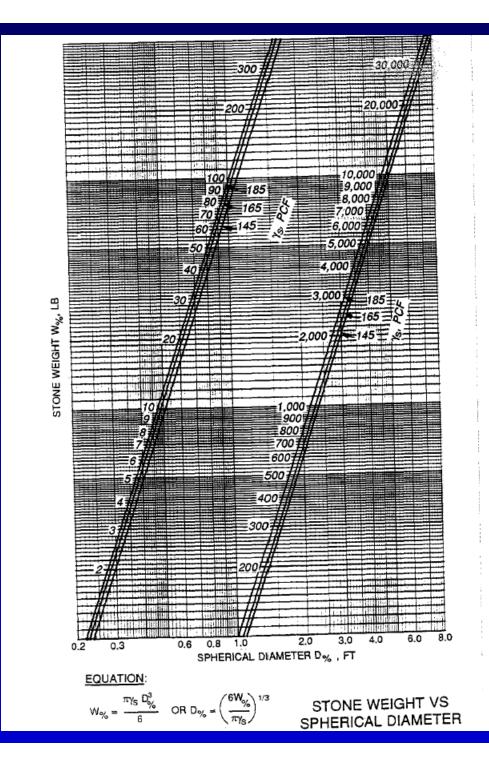


Plate 31

12

- Unit weight
 - Typically ranges from 150 to 175 pcf
 - Equations are sensitive to assumption of unit weight
 - Common assumption is 165 pcf
- What if unknown??

- Gradation
 - Should be determined from a quarry test AND an in-place field test
 - Upper and lower limits typically specified
 - W₁₀₀
 - Lower limit \ge 2 times lower limit of W_{50}
 - Upper limit \leq 5 times lower limit of W_{50}
 - W₅₀
 - Lower limit > specified stone diameter
 - Upper limit \leq 5 times lower limit of W_{15}
 - W₁₅
 - Lower limit \geq 1/16 upper limit of W₁₀₀
 - Upper limit < upper limit of properly designed filter

Table 3-1 Gradations for Riprap Placement in the Dry, Low-Turbulence Zones

D ₁₀₀ (max) in. Specific Weig 9 12 15 18 21 24 27	34 81 159 274 435 649	14 32 63 110	Max ² 10 24 47	Min 7 16	Max ²	Min	ft	ft
9 12 15 18 21 24	34 81 159 274 435 649	14 32 63 110	24		5	2		
12 15 18 21 24	81 159 274 435 649	32 63 110	24		5	0		
15 18 21 24	159 274 435 649	63 110		16		2	0.37	0.53
18 21 24	274 435 649	110	47		12	5	0.48	0.70
18 21 24	274 435 649	110		32	23	10	0.61	0.88
21 24	435 649		81	55	41	17	0.73	1.06
24	649	174	129	87	64	27	0.85	1.23
		260	192	130	96	41	0.97	1.40
	924	370	274	185	137	58	1.10	1.59
30	1,268	507	376	254	188	79	1.22	1.77
33	1,688	675	500	338	250	105	1.34	1.94
36	2,191	877	649	438	325	137	1.46	2.11
42	3,480	1,392	1,031	696	516	217	1.70	2.47
48	5,194	2,078	1,539	1,039	769	325	1.95	2.82
54	7,396	2,958	2,191	1,479	1,096	462	2.19	3.17
Specific Weig	ht = 165 pcf							
9	36	15	11	7	5	2	0.37	0.53
12	86	35	26	17	13	5	0.48	0.70
15	169	67	50	34	25	11	0.61	0.88
18	292	117	86	58	43	18	0.73	1.06
21	463	185	137	93	69	29	0.85	1.23
24	691	276	205	138	102	43	0.97	1.40
27	984	394	292	197	146	62	1.10	1.59
30	1,350	540	400	270	200	84	1.22	1.77
33	1,797	719	532	359	266	112	1.34	1.96
36	2,331	933	691	467	346	146	1.46	2.11
42	3,704	1,482	1,098	741	549	232	1.70	2.47
48	5,529	2,212	1,638	1,106	819	346	1.95	2.82
54	7,873	3,149	2,335	1,575	1,168	492	2.19	3.17
Specific Weig	ht = 175 pcf							
9	39	15	11	8	6	2	0.37	0.53
12	92	37	27	18	14	5	0.48	0.70
15	179	72	53	36	27	11	0.61	0.88
18	309	124	92	62	46	19	0.73	1.06
21	491	196	146	98	73	31	0.85	1.23
24	733	293	217	147	109	46	0.97	1.40
27	1,044	417	309	209	155	65	1.10	1.59
30	1,432	573	424	286	212	89	1.22	1.77
33	1,906	762	565	381	282	119	1.34	1.94
36	2,474	990	733	495	367	155	1.46	2.11
42	3,929	1,571	1,164	786	582	246	1.70	2.47
48	5,864	2,346	1,738	1,173	869	367	1.95	2.82
54	8,350	3,340	2,474	1,670	1,237	522	2.19	3.17

15

- Layer thickness
 - the upper limit of D_{100}
 - 1.5 times the upper limit of D_{50}
 - Thickness should be increased by 50% if riprap is placed underwater
 - Oversized stones not contained within the prescribed layer can cause voids within the layer that inhibit interlocking and induce particle movement

Riprap Protection

- Section 1 Introduction to Riprap
- Section 2 Channel Characteristics
- Section 3 Design Guidance for Stone Size
- Section 4 Revetment Toe Scour Estimation and Protection
- Section 5 Ice, Debris and Vegetation
- Section 6 Quality Control

Channel Characteristics

- Side slope
 - Slopes should not be greater than 1.5:1
 - For constant hydraulic conditions, rock size increases with increasing side slope
 - Erosion protection, NOT slope stability

Channel Characteristics

Roughness

- Form of Strickler's equation

$$n = K [D_{90}(\min)]^{1/6}$$

Where

D₉₀(min) = size where 90% is finer from lower limit of gradation K = 0.034 for velocity and stone sizing calculations K = 0.038 for capacity and freeboard calculations

* For wet placement, n is increased ~ 15%

Riprap Protection

- Section 1 Introduction to Riprap
- Section 2 Channel Characteristics
- Section 3 Design Guidance for Stone Size
- Section 4 Revetment Toe Scour Estimation and Protection
- Section 5 Ice, Debris and Vegetation
- Section 6 Quality Control

Design Guidance for Stone Size

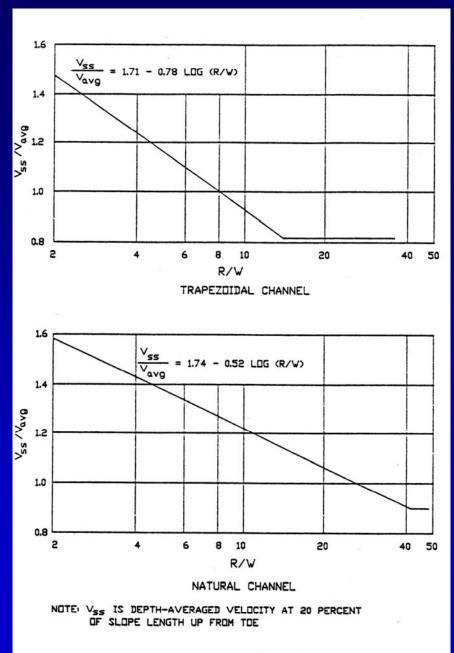
- Design Considerations
- Stone Size
- Revetment Top and End Protection

Design Considerations

- Lift and drag forces
- Undermining by scour
- Stone weight
- Stone interlocking
- Critical flow conditions

Rock Sizing

- Utilizes depth averaged velocity and flow depth
- Resisting forces
 - Rock size and weight
- Based on laboratory data and "verified" with prototype data
- Incorporates wide range of gradations
- Applicable for side slopes of 1.5:1 or flatter


Velocity estimation

- V_{ss} characteristic velocity for side slopes
 - Depth averaged velocity at point 20% of the slope length, measured from the toe

- Typically determined in relation to V_{avg}

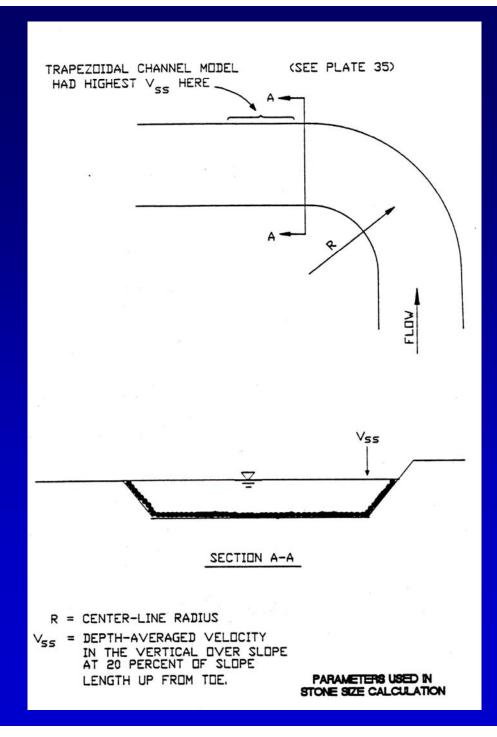
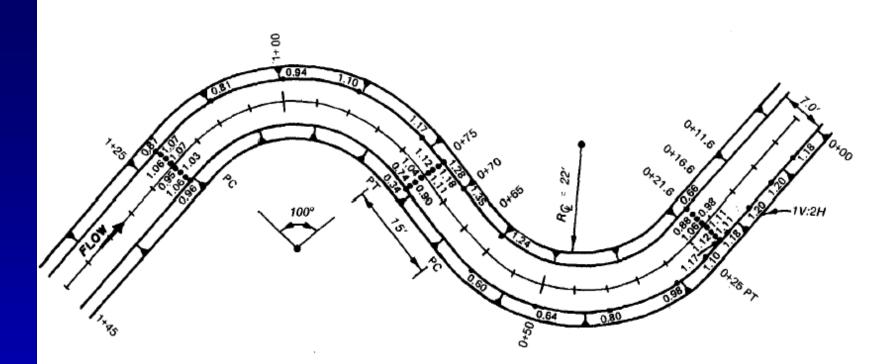
Velocity estimation

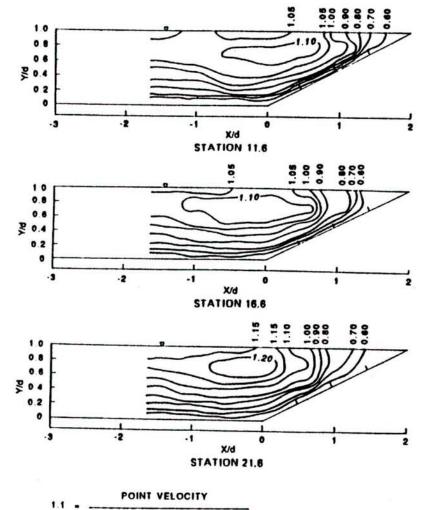
- V_{avg} Average channel velocity
 - Expressed as function of R/W
 - Computed at upstream end of bend
 - For locations away from bends (>5W), assume large value of R/W
 - Channel width/depth ratios important in defining V_{avg}
- Plates 33 36

RIPRAP DESIGN VELOCITIES

Plate 33

26


Plate 34

AVERAGE VELOCITY IN VERTICAL

NOTE: . 1.04 REPRESENTS AVERAGE CHANNEL VELOCITY BOTTOM SLOPE ≈WATER-SURFACE SLOPE = 0.0025 FT/FT RIPRAP: 50% #4 - 3/8, 50% 3/8 - 1/2 AVERAGE CHANNEL VELOCITY = 1.87 FPS FROUDE NO. = 0.52 STATIONARY IN FEET SEE PLATE 36 FOR VELOCITY X-SECTIONS

VELOCITY DISTRIBUTION IN TRAPEZOIDAL CHANNEL DISCHARGE 6.75 CFS DEPTH 0.455 FT IV: 2H SIDE SLOPES

AVERAGE VELOCITY AT XId - 0

SIDE SLOPE VELOCITY DISTRIBUTION IN CHANNEL BENDS

0.80

1

0.80

1

0.90

1

2

2

2

0.70

0.60

0.90 1.10 1.15

1.15

X/d STATION 65

X/d STATION 70

X/d STATION 75

1.05

1.10

0

10

0

-1

.1

-1

.2

.2

.2

10

0.8

...

0.2

1.0 ...

... 0.4 3

0.2

.

1.0

...

... 0.4 3

0.2

0

. 3

.3

0

.3

0.4 3

USACE Method

 $=S_{f}C_{s}C_{v}C_{t}d\left[\left(\frac{\gamma_{w}}{\gamma_{s}-\gamma_{w}}\right)^{0.5}\frac{V}{\sqrt{K_{1}gd}}\right]^{2.5}$ $^{1}30^{\pm}$

$$USACE Method$$
$$D_{30} = S_{f}C_{s}C_{v}C_{t}d \left[\left(\frac{\gamma_{w}}{\gamma_{s} - \gamma_{w}} \right)^{0.5} \frac{V}{\sqrt{K_{1}gd}} \right]^{2.5}$$

Where:

 D_{30} = stone size (ft)

 S_f = safety factor (minimum of 1.1 recommended)

 C_s = stability coefficient for incipient failure where layer thickness is 1 D₁₀₀(max) or 1.5 D₅₀(max), and D85/D15 between 1.7 and 5.2

> C_s = 0.30 for angular rock C_s = 0.36 for rounded rock

$$D_{30} = S_{f}C_{s}C_{v}C_{t}d\left[\left(\frac{\gamma_{w}}{\gamma_{s} - \gamma_{w}}\right)^{0.5} \frac{V}{\sqrt{K_{1}gd}}\right]^{2.5}$$

Where:

C_v = vertical velocity distribution coefficient = 1.0 for straight channels, inside bends = 1.283 - 0.2 log (R/W), outside bends = 1.25 downstream of concrete channels = 1.25 for the end of dikes/groins C_t = thickness coefficient = 1.0 for 1*D₁₀₀ or 1.5*D₅₀ otherwise use Plate 40

$$D_{30} = S_{f}C_{s}C_{v}C_{t}d\left[\left(\frac{\gamma_{w}}{\gamma_{s} - \gamma_{w}}\right)^{0.5} \frac{V}{\sqrt{K_{1}gd}}\right]^{2.5}$$

Where:

d = local depth of flow (ft)
γ_s = unit weight of stone (lbs/ft³)
γ_W = unit weight of water (lbs/ft³)
V = local depth averaged velocity (ft/s)
g = gravitational constant (ft/s²)

25

$$D_{30} = S_f C_s C_v C_t d \left[\left(\frac{\gamma_w}{\gamma_s - \gamma_w} \right)^{0.5} \frac{V}{\sqrt{K_1 g d}} \right]^{2.5}$$

Where:

 $K_{1} = \text{side slope correction factor}$ = 1.0 for bottom riprap $\text{or} = \left(1 - \frac{\sin^{2}\theta}{\sin^{2}\phi}\right)^{0.5}$

where $\theta = \text{side slope angle}$ $\Phi = \text{angle of repose}$

Safety Factor

- Basic value is 1.1
- Should be increased for:
 - Potential of impact forces
 - Uncertainty of velocity, depth and rock weight estimations
 - Potential for vandalism
 - Uncertainty of gradation and/or placement quality control (stockpiling)
 - If freeze/thaw is expected

Applications

- Plate 37 developed assuming:
 - Straight channel
 - Thickness = 1D100(max)
 - Rock weight of 165 pcf
 - Sf = 1.1

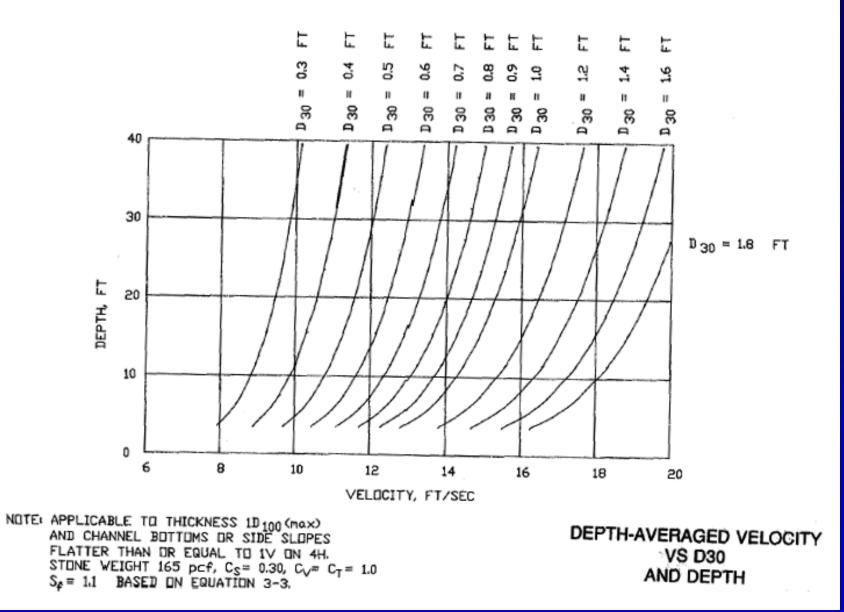


Plate 37

Applications

Variable thickness
Utilize Plate 38

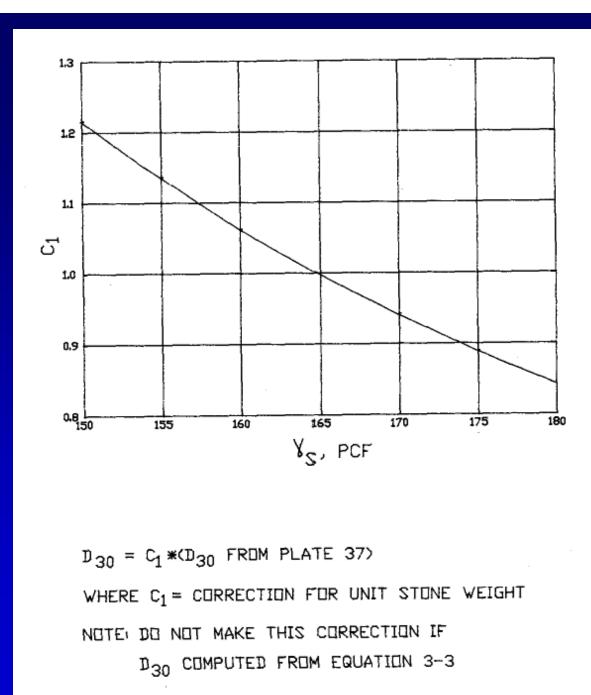
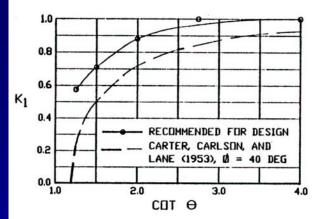
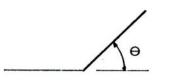
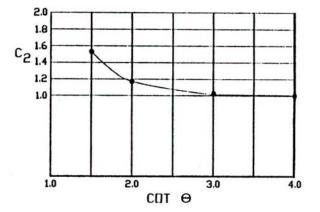



Plate 38

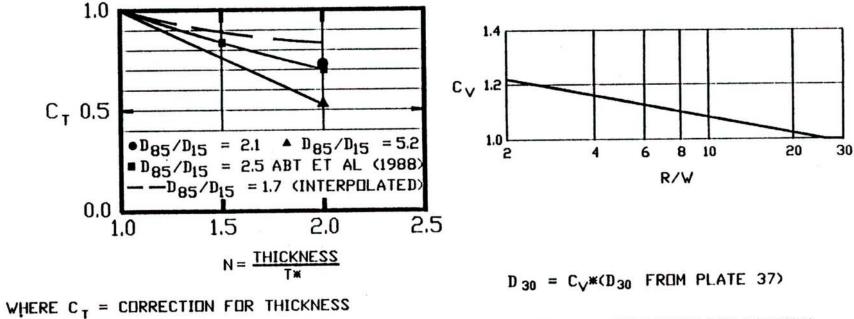
Applications


Varying side slope
Equation 3-4 and Plate 39



.

 $K_1 = SIDE SLOPE CORRECTION CDEFFICIENT FOR USE IN EQUATION 3-3 ONLY.$


CORRECTION FOR SIDE SLOPE ANGLE

$$K_1 = \sqrt{1 - \frac{\sin^2 \theta}{\sin^2 \phi}}$$

EQ. 3-4

Applications

- Variations in vertical velocity distribution in bends
 - Use Plate 40

 $= \frac{D_{30} \text{ FOR THICKNESS OF NT*}}{D_{30} \text{ FOR THICKNESS OF T*}}$ T* = 1D₁₀₀ OR 1.5D₅₀, WHICHEVER IS GREATER

WHERE $C_V = CORRECTION FOR VERTICAL VELOCITY DISTRIBUTION$

CORRECTION FOR VERTICAL VELOCITY DISTRIBUTION IN BEND AND RIPRAP THICKNESS

Design Procedure

- Determine average channel velocity V_{avg}
- Calculate V_{ss} using Plate 33
- Find D30 from Equation 3-3 or Plate 37
- If needed, correct for:
 - Unit weight
 - Side slope
 - Vertical velocity distribution
 - Layer thickness
- Compute gradation having D₃₀(min) > computed
 D₃₀

USACE Method-Limitations

$$D_{30} = S_f C_s C_v C_t d \left(\left(\frac{\gamma_w}{\gamma_s - \gamma_w} \right)^{0.5} \frac{V}{\sqrt{(K_1 g d)}} \right)^{2.5}$$

- Method based on lab data from late 80's
 - D_{50} : 0.5 2.0 inches
 - Thickness: 0.75 2 inches
 - Average velocity: 0.6 6.6 ft/s
 - Discharge: 15 100 cfs
 - Bed slope: 0.00087 0.015
 - Max side slope: 1.5:1
- Verified with some field data

USACE Method-Steep Slopes

$$D_{30} = \frac{1.95 * S^{0.555} q^{2/3}}{g^{1/3}}$$

Where S = bed slope q = unit discharge

USACE Method-Steep Slopes

$$D_{30} = \frac{1.95 * S^{0.555} q^{2/3}}{g^{1/3}}$$

Limitations thickness = $1.5 D_{100}$ angular rock unit weight = 167 pcf $1.7 < D_{85}/D_{15} > 2.7$ Bed slope from 2 - 20 % uniform flow with NO tailwater

Design Procedure

- Estimate unit discharge
- Apply flow concentration factor of 1.25 to unit discharge
- Compute D30
- Specify uniform gradation where D85/D15 <
 2, as in Table 3.1
- Restrict use to straight channels with side slopes of 2.5:1 or flatter
- Specify filter fabric beneath rock

Revetment Top and End Protection

- Revetment Top
 - How far upslope should be protected?
 - Waves
 - Debris
 - Calculation uncertainties
 - Return flows
 - Site specific conditions

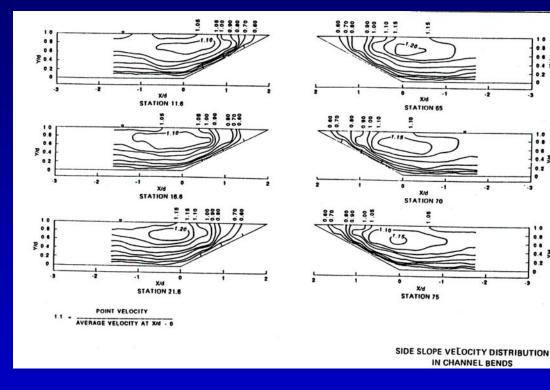
Begin 13 OCT

Balance between

0.0 0.0 P

0.2

1.0


0.4 B

0.2 ۰

1.0 0.0 0.0 0.4 B

0.2

-2

and

- Upstream and downstream ends protected by
 - Increasing thickness
 - Extending protection to area of low velocity
- Three proposed methods

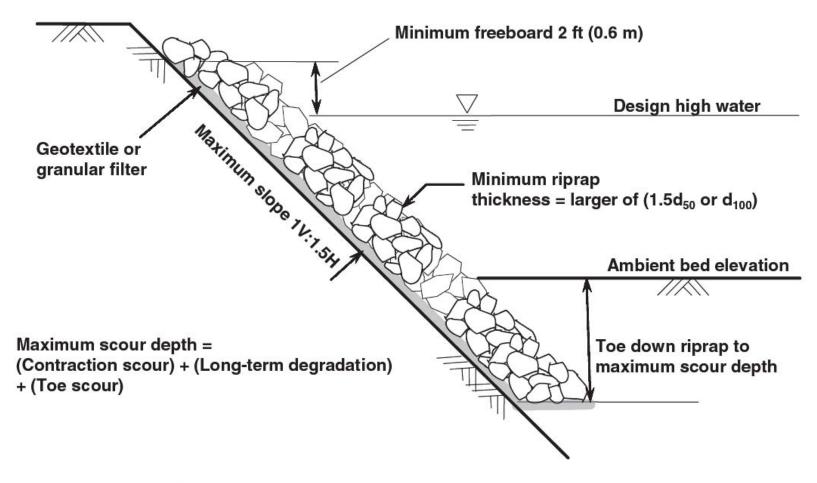
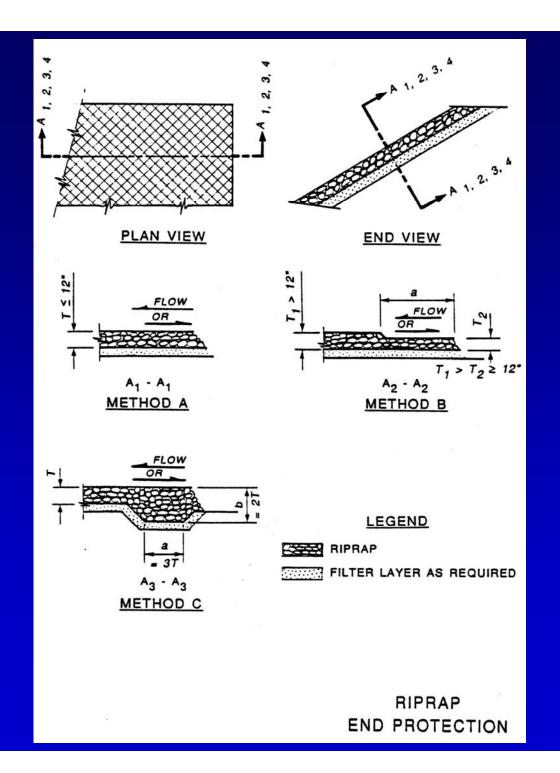
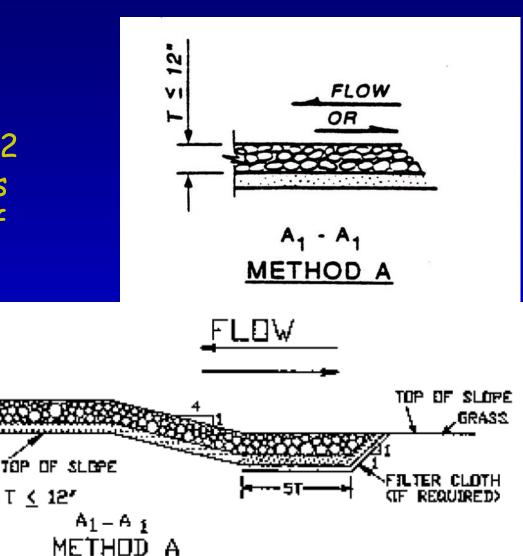
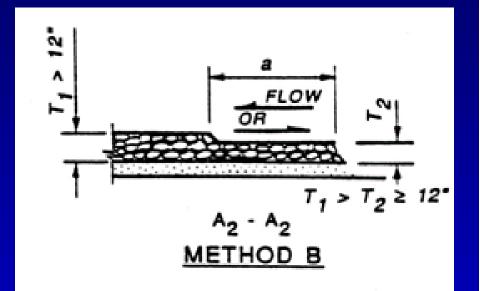
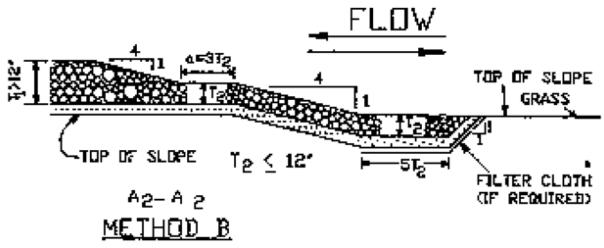
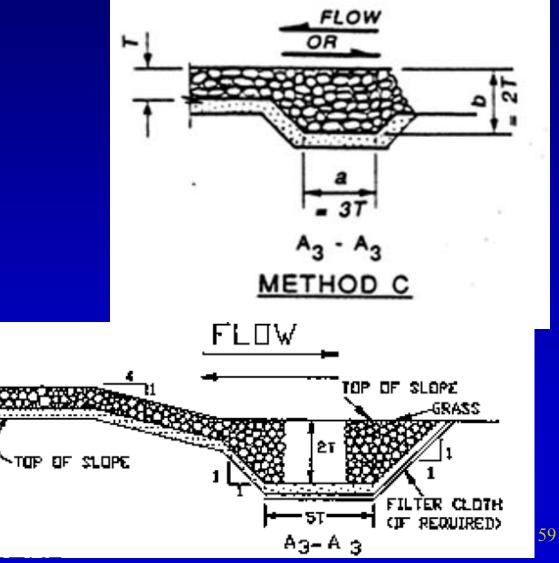




Figure C2.1. Revetment riprap with buried toe.


- Method A
 - For revetments 12 inch thick, or less extend to area of non-erodible velocity


TX 18

Method B


- > 12" thick, one or more reductions in stone size and thickness may be incorporated
- Extend to a location of non-eroding velocity

Method C

- For revetments not terminating in noneroding velocities
- a = min of 3 times
 layer thickness
- b = 2 times layer
 thickness

Length of Revetment

- Typically placed too far upstream and not far enough downstream of bends
- Should determine where flow crosses back across channel from site visit
- Rule of thumb
 - 1.5 channel widths downstream of bend

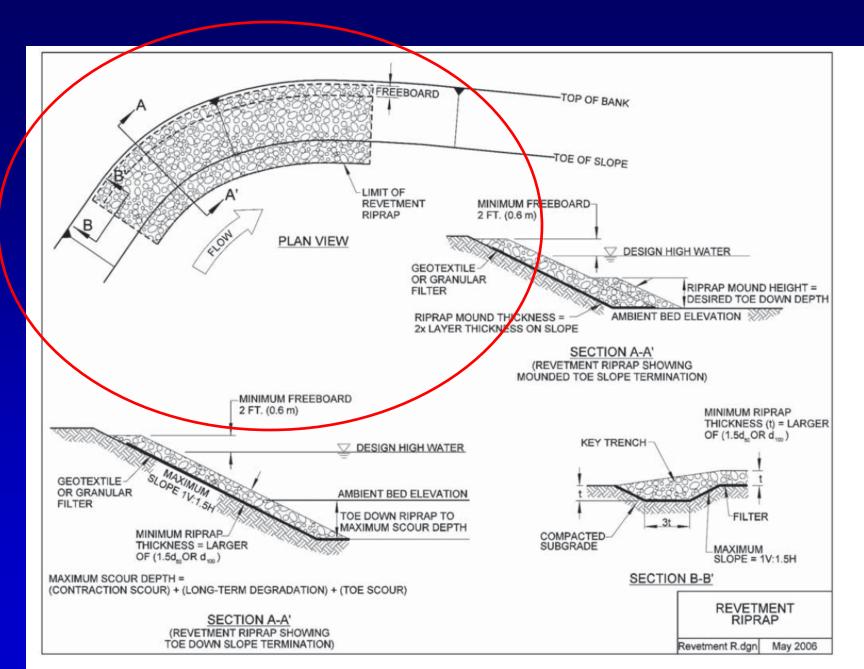


Figure C2.3. Revetment riprap details.

Riprap Protection

- Section 1 Introduction to Riprap
- Section 2 Channel Characteristics
- Section 3 Design Guidance for Stone Size
- Section 4 Revetment Toe Scour Estimation and Protection
- Section 5 Ice, Debris and Vegetation
- Section 6 Quality Control

Revetment Toe Scour Estimation and Protection

- Revetment Methods
- Revetment Design
- Delivery and Placement

Toe Scour Estimation and Protection

- Most frequent cause of revetment failure
- Result of several factors
 - Meandering channels
 - Change in section after bank is protected
 - Scour at high flows
 - Braided channels
 - Scour at intermediate flows due to angle of attack

Toe Scour Estimation and Protection

- Need to account for both components of scour
 - Local scour
 - Degradation
- Plate 42

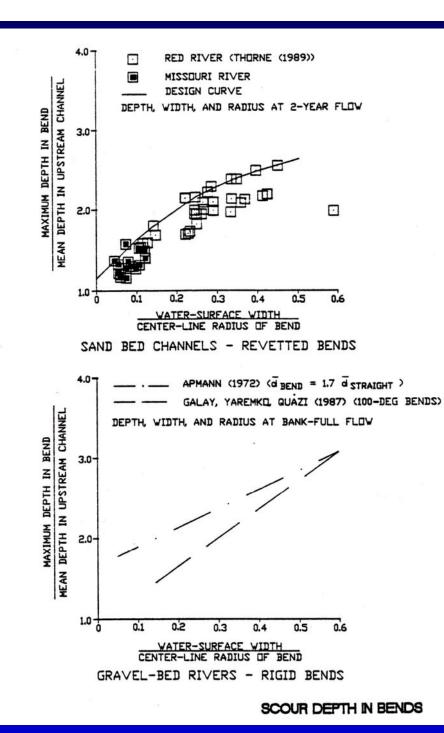
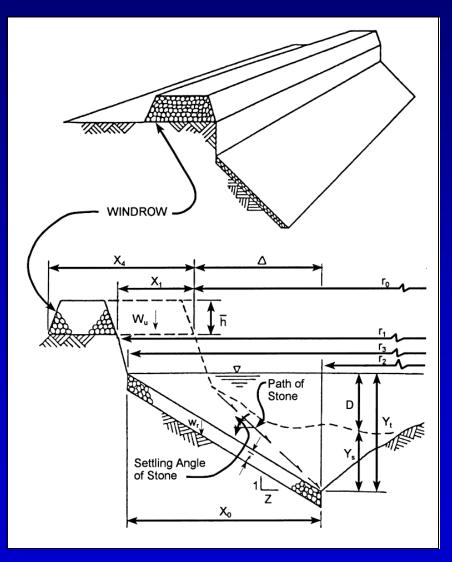
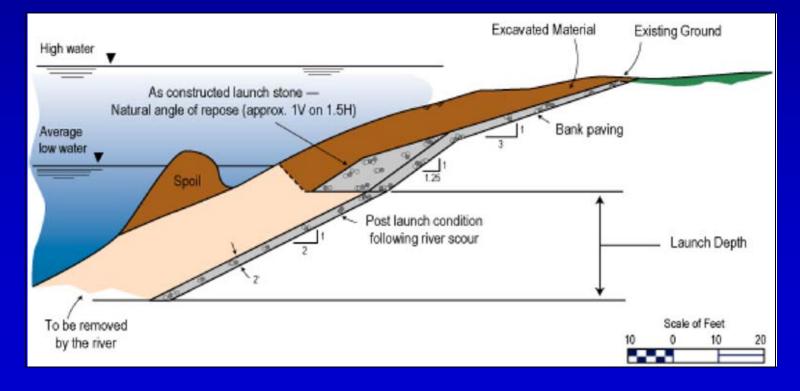


Plate 42


67

- Two methods to provide protection
 - Extend protection to maximum scour depth
 - Preferred method
 - Can utilize bedrock
 - Can be difficult and/or expensive for underwater placement
 - Must be able to accurately determine scour depth

- Two methods to provide protection
 - Launchable stone
 - Used extensively on sand bed streams
 - Stone placed longitudinally above the expected scour area
 - As scour progresses, stone slides into scour hole and halts progression
 - Three main types


Launchable stone Windrow revetments

Launchable stone

- Trench-fill revetments

Launchable stone

- Weighted riprap toes

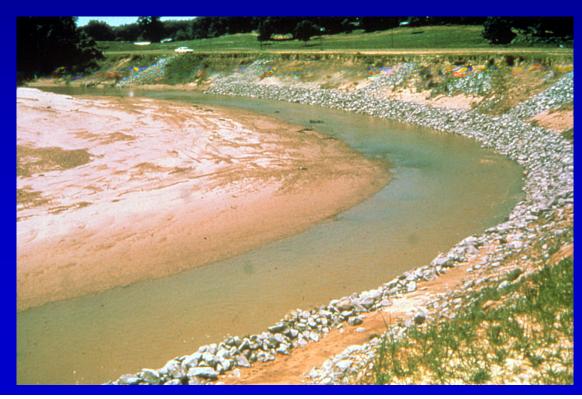
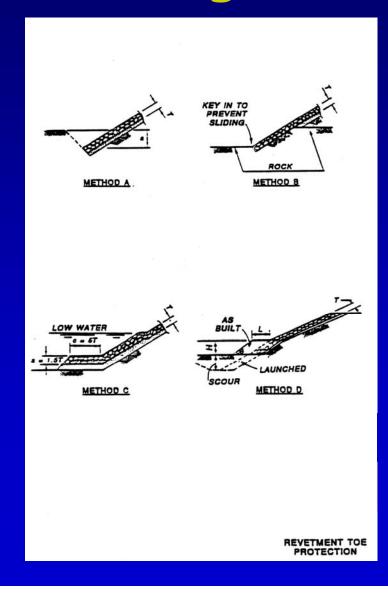
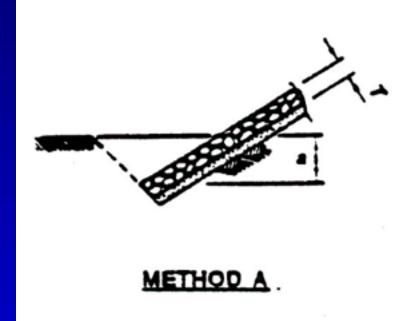
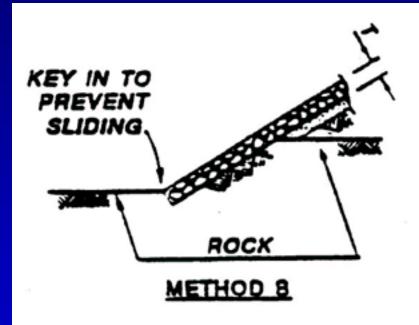
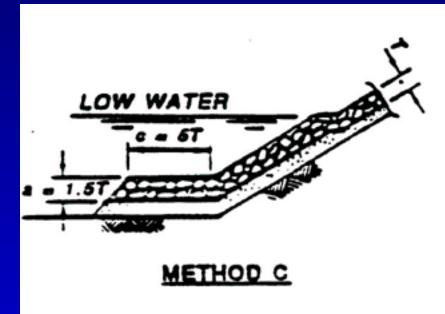




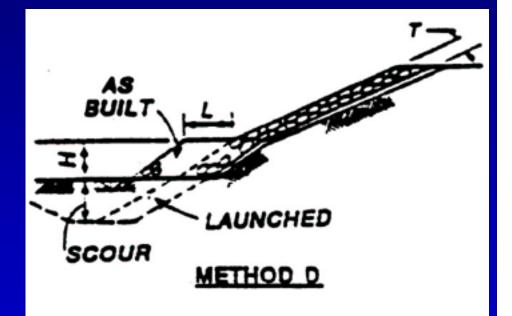
 Plate 43 gives guidance for 4 of the most common approaches


Method A

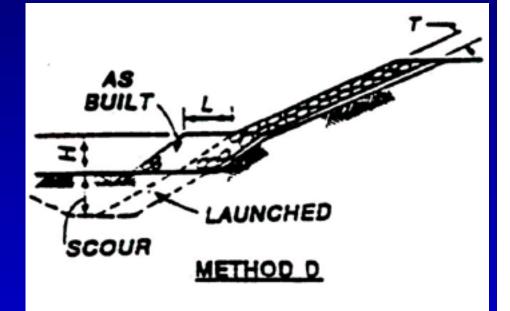
- Excavation in the dry
- Extend riprap layer below existing invert a distance greater than the anticipated depth of scour


Method B

 If channel bottom is nonerodible, riprap is keyed in at streambed level

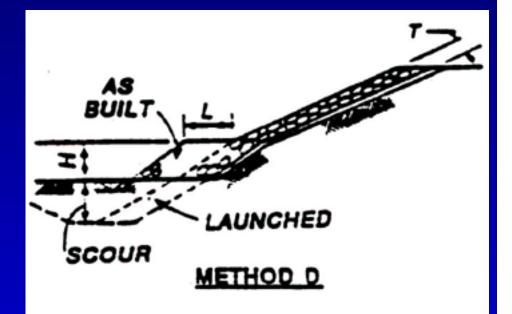

Method C

- Underwater placement
- Little or no toe scour
- Extend rock across bottom of channel a height "a" and length "c"
- a = 1.5 times layer
 thickness
- c = 5 times layer thickness

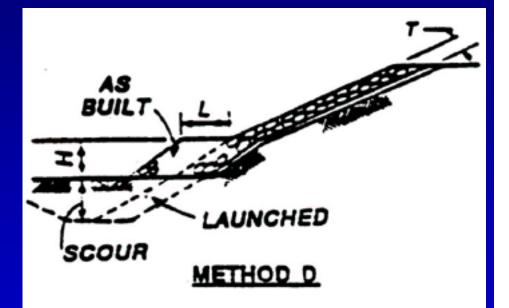

Method D

- Used when water levels prohibit toe excavation or stone is less expensive than excavation
- Useful technique for emergency protection
- Launched thickness should be 1.5 times the thickness (1.75 for underwater and long launch distance)

Method D


- For gradual scour the height should be 2.5-4.0 times the thickness T
- For rapid scour the stone height should be 2.5-3.0 T

- D85/D15 ≥ 2


Method D

- Proper volume of stone is crucial to success
- Assume
 - Launch slope = 2:1
 - Maximum scour depth
 - Thickness after launching is 1.5 times bank layer thickness

Method D

 Incorporating these assumptions and solving for the volume of rock gives:

Volume = 1.5*T*launch slope length (<15 ft)

Volume = $1.5^{T}scour depth^{\sqrt{5}}$

Volume = 3.35*T*scour depth

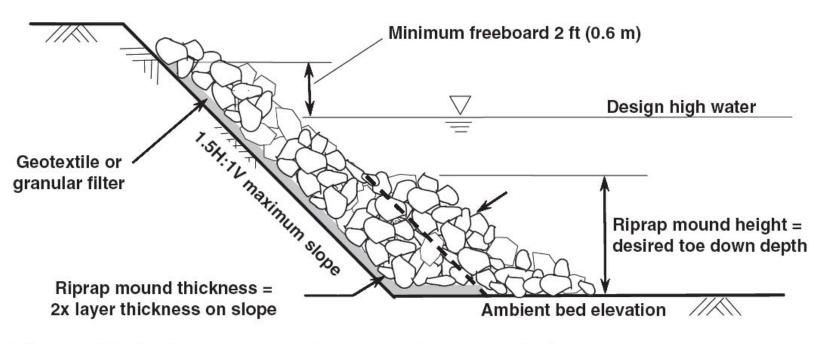
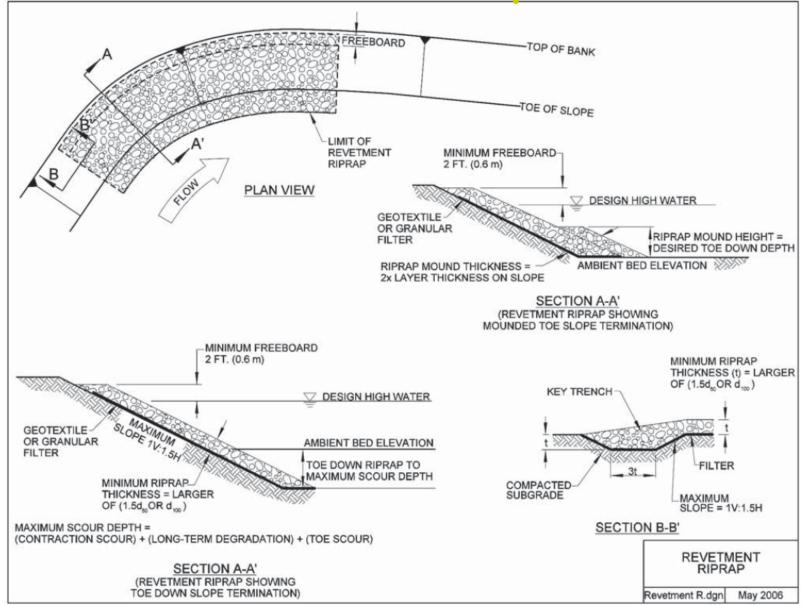
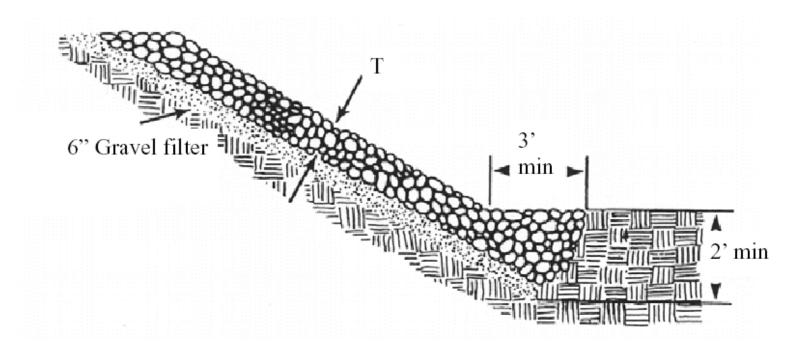
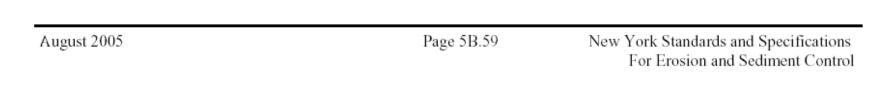


Figure C2.2. Revetment riprap with mounded toe.

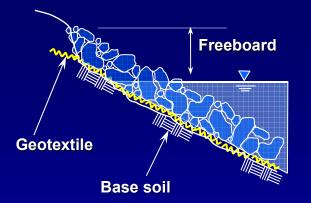
Summary

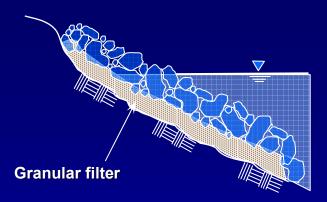




Figure C2.3. Revetment riprap details.

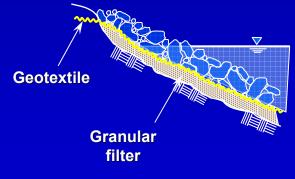
Filter Design

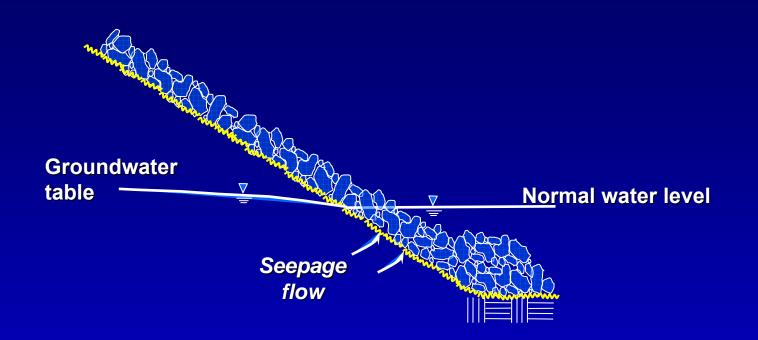
Granular filter beneath riprap


Typical Riprap Slope Protection Detail

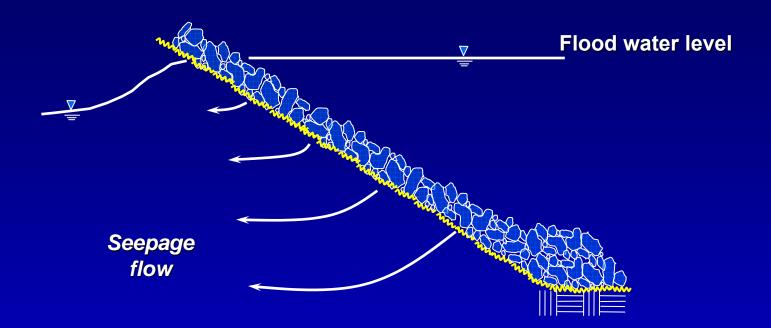


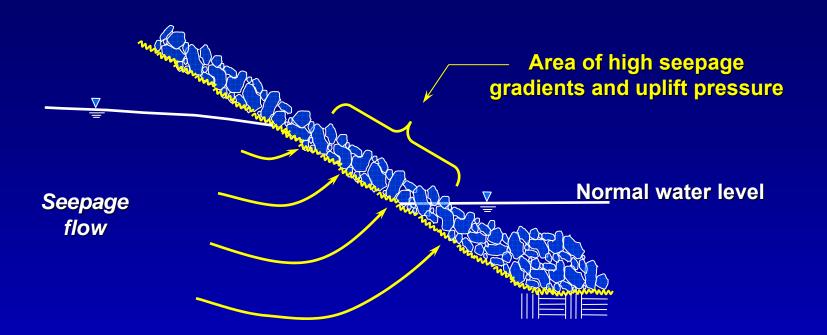
Geotextile beneath armor layer





a) Geotextile filter


b) Granular filter


c) Granular transition layer with geotextile (composite filter)

a) Normal (baseflow) conditions

b) During flood peak

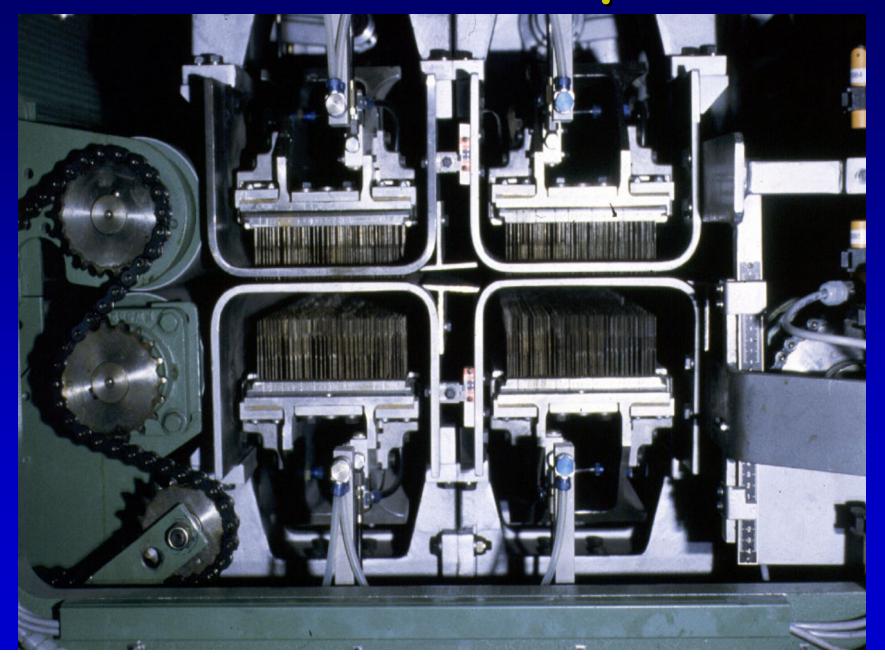
c) After flood recession

Types of Geosynthetics

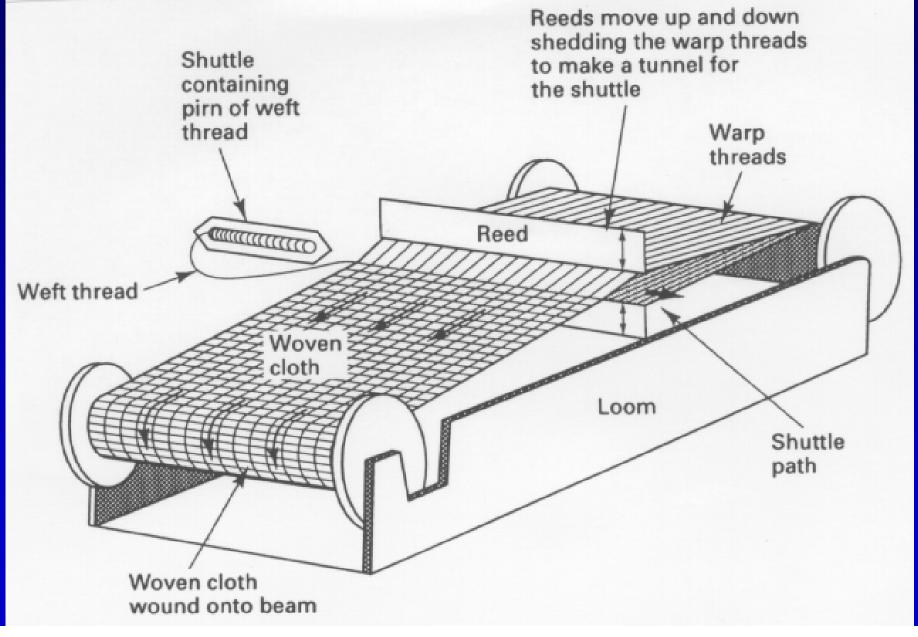
- Geotextiles
- Geogrids
- Geomembranes
- Geosynthetic Clay Liners
- Rolled Erosion Control Products
- Geonets/Drainage Composites
- Geofoam, Geotextile Tubes and Soil Fibers


OK for filters under armor layer:

- Woven monofilament fabric
- Non-woven needle punched fabric


Not OK:

Slit film fabrics (e.g., silt fence)
Spun-bonded fabrics

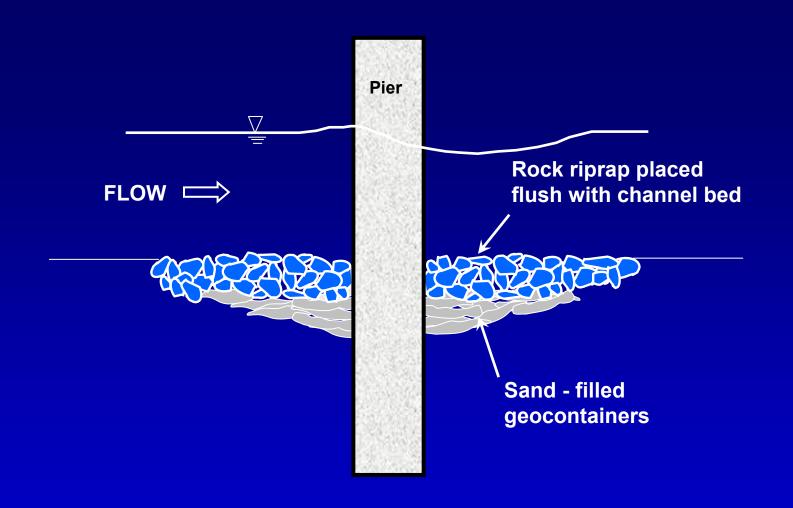

Non-woven needle punched

Non-woven needle punched

Woven monofilament

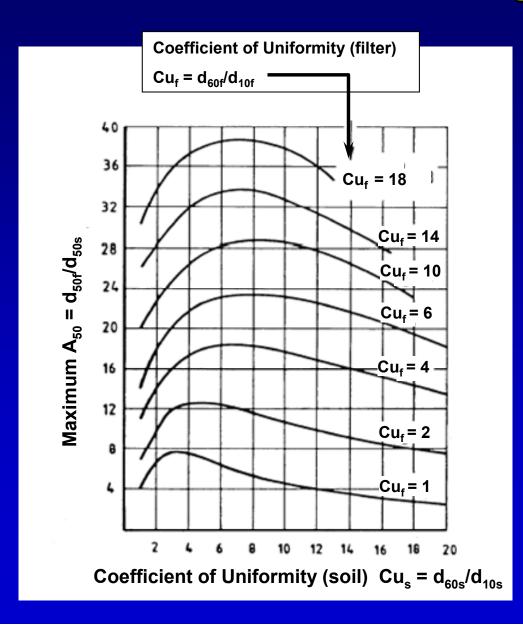
Woven monofilament

Placement under water



Minimum riprap thickness $t = 3d_{50}$, depth of contraction scour, or depth of bedform trough, whichever is greatest

Filter placement = 4/3(a) from pier (all around)

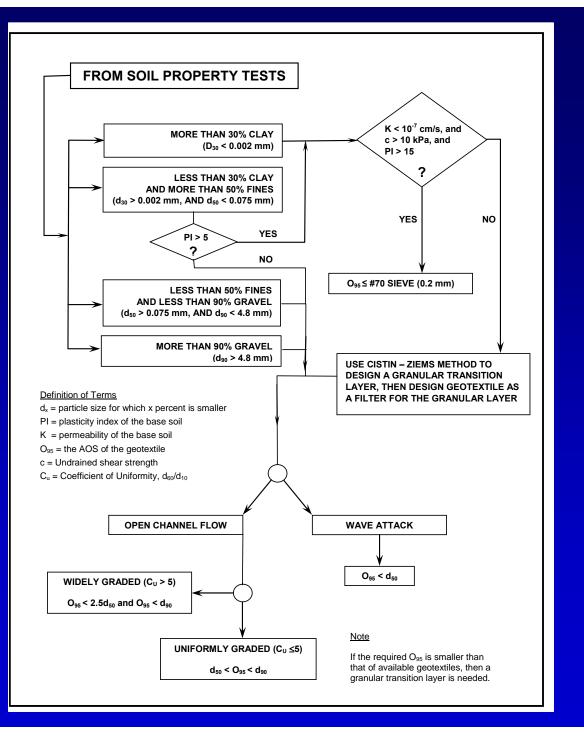

Granular Filter Design

 $\frac{D_{50}(\text{filter})}{D_{50}(\text{base})} < 40 \text{ and } \frac{D_{50}(\text{riprap})}{D_{50}(\text{filter})} < 40$

$$5 < \frac{D_{15}(\text{filter})}{D_{15}(\text{base})} < 40$$
 and $5 < \frac{D_{15}(\text{riprap})}{D_{15}(\text{filter})} < 40$

 $\frac{D_{15}(\text{filter})}{D_{85}(\text{base})} < 5 \text{ and } \frac{D_{15}(\text{riprap})}{D_{85}(\text{filter})} < 5$

Granular filter design



IMPORTANT GEOTEXTILE PROPERTIES:

Permeability, Apparent Opening Size (AOS), Clogging potential

Geotextile filter design

Delivery and Placement

- Placement method can affect required layer thickness and total volume of rock required
 - Hand placed
 - Can incorporate steeper slopes and therefore less rock
 - Machine placed
 - Stone can be broken and therefore layer thickness may need to be increased

Ice and Debris

- Create greater stresses due to impact and flow concentration
- Ice effects..
 - Cold Regions Research Engineering Laboratory, Hanover, NH
- Debris..
 - Increase thickness, and therefore stone size, by 6-12 inches
 - Side slopes no steeper than 2:1

Quality Control

- Sampling and testing of in-place riprap should be conducted
- Deterioration can be caused by:
 - Loading
 - Transportation
 - Stockpiling
 - Placing
- EM 1110-2-2302, Construction with Large Stone, provides sampling guidance for inplace riprap

Quality Control

Test	Criteria for Evaluating Suitability	
Petrography	Interlocking crystalline, no clay or soluble minerals	
Unit Weight	Dry unit weight > 160 pcf	
Absorption	Less than 1 %	
Sulfate Soundness	Less than 5% loss	
Glycol Soundness	No deterioration except for minor crumbs from surface	
Abrasion	< 20% loss after 500 revolutions	
Freeze-Thaw	< 10% loss after 12 cycles	
Wetting-Drying	No major progressive cracking	
Field Visual	Distinctions based on color and/or size	
Field Index	Distinction based on scratch, ring and other characteristics	
Drop Test	No breakage or cracking	
Set Aside	No breakage or cracking after on season cycle	

CECW-EH-D	Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000	EM 1110-2-1601
Engineer Manual 1110-2-1601		1 July 1991/ 30 June 1994
	Engineering and Design	
	HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS	

Chapter 4

Special Features and Considerations