

Goals for Chapter 1

- To learn three fundamental quantities of physics and the units to measure them
- To understand vectors and scalars and how to add vectors graphically
- To determine vector components and how to use them in calculations
- To understand unit vectors and how to use them with components to describe vectors
- To learn two ways of multiplying vectors

The nature of physics

- Physics is an experimental science in which physicists seek patterns that relate the phenomena of nature.
- The patterns are called physical theories.
- A very well established or widely used theory is called a physical law or principle.

Physics

Divided into five major areas

- Classical Mechanics
- Relativity
- Thermodynamics
- Electromagnetism
- Optics
- Quantum Mechanics

Standards and units

- Length, time, and mass are three fundamental quantities of physics.
- The International System (SI for Système International) is the most widely used system of units.
- In SI units, length is measured in meters, time in seconds, and mass in kilograms.

Fundamental Quantities and Their Units

Quantity	SI Unit
Length	meter
Mass	kilogram
Time	second
Temperature	Kelvin
Electric Current	Ampere
Luminous Intensity	Candela
Amount of Substance	mole

Unit prefixes

- Table 1.1 shows some larger and smaller units for the fundamental quantities.

Table 1.1 Some Units of Length, Mass, and Time

Length	Mass	Time
1 nanometer $=1 \mathrm{~nm}=10^{-9} \mathrm{~m}$ (a few times the size of the largest atom)	1 microgram $=1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}=10^{-9} \mathrm{~kg}$ (mass of a very small dust particle)	1 nanosecond $=1 \mathrm{~ns}=10^{-9} \mathrm{~s}$ (time for light to travel 0.3 m)
1 micrometer $=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$ (size of some bacteria and living cells)	1 milligram $=1 \mathrm{mg}=10^{-3} \mathrm{~g}=10^{-6} \mathrm{~kg}$ (mass of a grain of salt)	$1 \text { microsecond }=1 \mu \mathrm{~s}=10^{-6} \mathrm{~s}$ (time for space station to move 8 mm)
1 millimeter $=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$ (diameter of the point of a ballpoint pen)	1 gram $\quad=1 \mathrm{~g}=10^{-3} \mathrm{~kg}$ (mass of a paper clip)	1 millisecond $=1 \mathrm{~ms}=10^{-3} \mathrm{~s}$ (time for sound to travel 0.35 m)
1 centimeter $=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$ (diameter of your little finger)		
1 kilometer $=1 \mathrm{~km}=10^{3} \mathrm{~m}$ (a 10-minute walk)		

TABLE 1.4

Prefixes for Powers of Ten

Power	Prefix	Abbreviation	Power	Prefix	Abbreviation
10^{-24}	yocto	y	10^{3}	kilo	k
10^{-21}	zepto	z	10^{6}	mega	M
10^{-18}	atto	a	10^{9}	giga	G
10^{-15}	femto	f	10^{12}	tera	T
10^{-12}	pico	p	10^{15}	peta	P
10^{-9}	nano	n	10^{18}	exa	E
10^{-6}	micro	μ	10^{21}	zetta	Z
10^{-3}	milli	m	10^{24}	yotta	Y
10^{-2}	centi	c			
10^{-1}	deci	d			

Unit consistency and conversions

- An equation must be dimensionally consistent. Terms to be added or equated must always have the same units. (Be sure you're adding "apples to apples.")
- Always carry units through calculations.
- Convert to standard units as necessary.

Conversion - Ex. 1

- Express 200 cubic feet in cubic meters: $1 f t=0.305 \mathrm{~m}$
$200 \mathrm{ft}^{3}=200 \times \frac{(0.305 \mathrm{~m})^{3}}{(1 f t)^{3}}=5.67 \mathrm{~m}^{3}$
- Express $75 \mathrm{mi} / \mathrm{h}$ in m/s
$1 \mathrm{mi}=1609 \mathrm{~m} \quad 1 \mathrm{~h}=3600 \mathrm{~s}$
$75.0 \frac{m i}{h} \times \frac{1609 \mathrm{~m}}{1 m i} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=33.5 \mathrm{~m} / \mathrm{s}$

Uncertainty and significant figures-Figure 1.7

- The uncertainty of a measured quantity is indicated by its number of significant figures.
- For multiplication and division, the answer can have no more significant figures than the smallest number of significant figures in the factors.
- For addition and subtraction, the number of significant figures is determined by the term having the fewest digits to the right of the decimal point.
- As this train mishap illustrates, even a small percent error can have spectacular results!

Estimates and orders of magnitude

- An order-of-magnitude estimate of a quantity gives a rough idea of its magnitude.

Vectors and scalars

- A scalar quantity can be described by a single number.
- A vector quantity has both a magnitude and a direction in space.
- In this book, a vector quantity is represented in boldface italic type with an arrow over it: $\overrightarrow{\boldsymbol{A}}$.
- The magnitude of $\overrightarrow{\boldsymbol{A}}$ is written as A or $\mid \overrightarrow{\boldsymbol{A} \mid}$.

Drawing vectors-Figure 1.10

- Draw a vector as a line with an arrowhead at its tip.
- The length of the line shows the vector's magnitude.
- The direction of the line shows the vector's direction.

Adding two vectors graphically

- Two vectors may be added graphically using either the parallelogram method or the head-to-tail method.
(a) We can add two vectors by placing them
head to tail.

(b) Adding them in reverse order gives the same result.

(a) The sum of two parallel vectors

(b) The sum of two antiparallel vectors

(c) We can also add them by constructing a parallelogram.

Adding more than two vectors graphically-

- To add several vectors, use the head-to-tail method.
- The vectors can be added in any order.

(a) To find the sum of these three vectors ...

(b) we could add \vec{A}, \vec{B}, and $\overrightarrow{\mathbf{c}}$ to get \boldsymbol{R}

(c) or we could add $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{C}}$ in any other order and still get $\overrightarrow{\boldsymbol{R}}$.

Negative of a Vector

The negative of a vector is defined as the vector that, when added to the original vector, gives a resultant of zero

- Represented as $-\overrightarrow{\mathbf{A}}$

$$
\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})=0
$$

The negative of the vector will have the same magnitude, but point in the opposite direction

Subtracting vectors

- Figure shows how to subtract vectors.

Multiplying a vector by a scalar

- If c is a scalar, the product $c \overrightarrow{\boldsymbol{A}}$ has magnitude $|c| A$.
(a) Multiplying a vector by a positive scalar changes the magnitude (length) of the vector, but not its direction.

$$
2 \vec{A}
$$

$2 \overrightarrow{\boldsymbol{A}}$ is twice as long as $\overrightarrow{\boldsymbol{A}}$.
(b) Multiplying a vector by a negative scalar changes its magnitude and reverses its direction.

$-3 \vec{A}$
$-3 \overrightarrow{\boldsymbol{A}}$ is three times as long as $\overrightarrow{\boldsymbol{A}}$ and points. in the opposite direction.

Addition of two vectors at right angles

- First add the vectors graphically.
- Then use trigonometry to find the magnitude and direction of the sum: $\mathrm{R}=\sqrt{1 \mathrm{~km}^{2}+2 \mathrm{~km}^{2}}=2.2 \mathrm{~km}$

Components of a vector-

- Adding vectors graphically provides limited accuracy. Vector components provide a general method for adding vectors.
- Any vector can be represented by an x-component A_{x} and a y component A_{y}.
- Use trigonometry to find the components of a vector: $A_{x}=A \cos \theta$ and $A_{y}=A \sin \theta$, where θ is measured from the $+x$-axis toward the $+y$-axis.
(a)

(b)

Components of a Vector

The x-component of a vector is the projection along the x-axis

$$
A_{x}=A \cos \theta
$$

The y-component of a vector is the projection along the y-axis

$$
A_{y}=A \sin \theta
$$

(a)

This assumes the angle θ is measured with respect to the positive direction of x-axis

- If not, do not use these equations, use the sides of the triangle directly

Components of a Vector, 4

The components are the legs of the right triangle whose hypotenuse is the length of A

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}} \quad \text { and } \quad \theta=\tan ^{-1} \frac{A_{y}}{A_{x}}
$$

- May still have to find θ with respect to the positive x-axis

(a)

Positive and negative components-Figure 1.18

- The components of a vector can be positive or negative numbers, as shown in the figure.
(a)

(b)

Finding components-Figure 1.19

(a)

Components of a Vector, final

The components can be positive or negative

The signs of the components will depend on the angle

Adding Two Vectors Using Their

Components

$$
R_{x}=A_{x}+B_{x}
$$

$$
R_{y}=A_{y}+B_{y}
$$

The magnitude and direction of resultant vectors are:

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

Adding vectors using their components

- For more than two vectors we can use the components of a set of vectors to find the components of their sum:

$$
R_{x}=A_{x}+B_{x}+C_{x}+\cdots, R_{y}=A_{y}+B_{y}+C_{y}+\cdots
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

The components of $\overrightarrow{\boldsymbol{R}}$ are the sums of the components of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$:

$$
R_{y}=A_{y}+B_{y} \quad R_{x}=A_{x}+B_{x}
$$

Adding vectors using their components-Ex. 2

Example 2

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{x}}=72.4 \cos 58^{0}=38.37 \\
& \mathrm{~A}_{\mathrm{y}}=72.4 \sin 58^{0}=61.40 \\
& \mathrm{~B}_{\mathrm{x}}=57.3 \cos 216^{\circ}=-46.36 \\
& \mathrm{~B}_{\mathrm{y}}=57.3 \sin 216^{\circ}=-33.68 \\
& \mathrm{C}_{\mathrm{x}}=17.8 \cos 270^{\circ}=0 \\
& \mathrm{~A}_{\mathrm{x}}=17.8 \sin 270^{\circ}=-17.8 \\
& \mathrm{R}_{\mathrm{x}}=38.37-46.36+0=-8.00 \quad \text { second quadrant } \\
& \mathrm{R}_{\mathrm{y}}=61.4-33.68-17.8=9.92 \\
& \mathrm{R}=\sqrt{(-8)^{2}+9.92^{2}}=12.7 \\
& \theta=180^{\circ}-\tan ^{-1} \frac{9.92}{8.00}=129^{0}
\end{aligned}
$$

Unit vectors

- A unit vector has a magnitude of 1 with no units.
- The unit vector $\hat{\imath}$ points in the $+x$-direction, $\hat{\jmath}$ points in the $+y$ direction, and \hat{k} points in the $+z$-direction.
- Any vector can be expressed $\stackrel{i n}{\vec{A}}$ terms of its components as $\overrightarrow{\boldsymbol{A}}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{\boldsymbol{k}}$

(a) The unit vectors $\hat{\imath}$ and \hat{j} point in the directions of the x - and y-axes and have a magnitude of 1 .
(b)

Adding vectors using unit-vector notation

In three dimensions if $\quad \overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$
then

$$
\overrightarrow{\mathbf{R}}=\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right)
$$

$$
\overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}+\left(A_{z}+B_{z}\right) \hat{\mathbf{k}}
$$

$$
\overrightarrow{\mathbf{R}}=R_{x} \hat{\mathbf{i}}+R_{y} \hat{\mathbf{j}}+R_{z} \hat{\mathbf{k}}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}} \quad \theta=\cos ^{-1} \frac{R_{x}}{R}, \text { etc. }
$$

and so $R_{x}=A_{x}+B_{x}, R_{y}=A_{y}+B_{y}$, and $R_{z}=A_{z}+B_{z}$

Unit vector notation, adding vectors

In two dimensions, if $\quad \overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$
then

$$
\begin{aligned}
& \text { Ren }=\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}\right) \\
& \hat{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}} \quad \mathbf{R}=R_{x} \mathbf{i}+R_{y} \hat{\mathbf{j}}
\end{aligned}
$$

and so $R_{x}=A_{x}+B_{x}, R_{y}=A_{y}+B_{y}$,
The magnitude and direction are

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

Example 3

If $\mathbf{A}=24 \mathbf{i}-32 \mathbf{j}$ and $B=24 \mathbf{i}+10 \mathbf{j}$, what is the magnitude and direction of the vector $\mathbf{C}=$ A-B?

The scalar product

- The scalar product (also called the "dot product") of two vectors is
$\vec{A} \cdot \overrightarrow{\boldsymbol{B}}=A B \cos \phi$.
- Figures illustrate the scalar product.
(a)

(b) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$ equals $A(B \cos \phi)$. (Magnitude of \vec{A}) times (Component of \vec{B} in direction of $\overrightarrow{\boldsymbol{A}}$)

(c) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$ also equals $B(A \cos \phi)$
(Magnitude of $\overrightarrow{\boldsymbol{B}}$) times (Component of $\overrightarrow{\boldsymbol{A}}$
in direction of $\overrightarrow{\boldsymbol{B}})$

(a)

. because $B \cos \phi>0$.
(b)

(c)

Dot Products of Unit Vectors

$$
\begin{aligned}
& \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \\
& \hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0
\end{aligned}
$$

Using component form with vectors:

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Calculating a scalar product

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi . \quad \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- Find the scalar product $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$ of two vectors shown in the figure. The magnitudes of the vectors are: $\mathrm{A}=4.00$, and $\mathrm{B}=5.00$

Calculating a scalar product - Example 4

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi . \quad \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} .
$$

- Find the scalar product $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$ of two vectors shown in the figure. The magnitudes of the vectors are: $\mathrm{A}=4.00$, and $\mathrm{B}=5.00$

Finding an angle using the scalar product - Ex. 5

- Find the angle between the vectors.

$$
\begin{aligned}
& \vec{A}=2.00 \hat{\imath}+3.00 \hat{\jmath}+1.00 \hat{k} \\
& \vec{B}=-4.00 \hat{\imath}+2.00 \hat{\jmath}-1.00 \hat{k}
\end{aligned}
$$

- Use equation: $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi$.

Finding an angle using the scalar product - Ex. 5

- Find the angle between the vectors.

$$
\begin{aligned}
& \vec{A}=2.00 \hat{\imath}+3.00 \hat{\jmath}+1.00 \hat{k} \\
& \vec{B}=-4.00 \hat{\imath}+2.00 \hat{\jmath}-1.00 \hat{k}
\end{aligned}
$$

- Use equation:

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \phi
$$

The Vector Product Defined

Given two vectors, $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$

The vector (cross) product of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is defined as a third vector, $\quad \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$

The magnitude of vector C is $A B \sin \theta$

- θ is the angle between $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$

More About the Vector Product

The direction of $\overrightarrow{\mathbf{C}}$ is perpendicular to the plane formed by Äand $\overrightarrow{\mathbf{B}}$

The best way to determine this direction is to use the right-hand rule

Right-hand rule

Using Determinants

The components of cross product can be calculated as

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left|\begin{array}{ll}
A_{y} & A_{z} \\
B_{y} & B_{z}
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
A_{x} & A_{z} \\
B_{x} & B_{z}
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right| \hat{\mathbf{k}}
$$

Expanding the determinants gives

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
$$

If $A_{z}=0$ and $B_{z}=0$ then

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
$$

Vector Product Example 6

Given $\quad \overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} ; \overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$

Find $\quad \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}$
Resull $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \times(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}): \quad\left[2 * 2-3^{*}(-1)\right] \hat{\mathbf{k}}=7 \hat{\mathbf{k}}$

The vector product-Summary

- The vector product ("cross product") of two vectors has magnitude
$|\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}|=A B \sin \phi$
and the righthand rule gives its direction.
(a) Using the right-hand rule to find the direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(1) Place $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ tail to tail.
(2) Point fingers of right hand along $\overrightarrow{\boldsymbol{A}}$, with palm facing $\overrightarrow{\boldsymbol{B}}$.
(3) Curl fingers toward $\overrightarrow{\boldsymbol{B}}$.
(4) Thumb points in direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$.

(b) $\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}=-\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$ (the vector product is anticommutative)

(a)

(b)

Calculating the vector product- ex. 6

- Vector $\overrightarrow{\mathbf{A}}$ has magnitude 6 units and is in the direction of the $+x$ axis. Vector $\overrightarrow{\mathbf{B}}$ has magnitude 4 units and lies in the $x y$-plane making an angle of 30° with the x axis. Find the cross product $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$

Use $A B \sin \phi$ to find the magnitude and the right-hand rule to find the direction.

