UNITS

The course content is organized into commonly taught units. The units have been arranged in a logical sequence frequently found in many college courses and textbooks.

The nine units in AP Chemistry, and their weighting on the multiple-choice section of the AP Exam, are listed below.

Pacing recommendations at the unit level and on the Course at a Glance provide suggestions for how to teach the required course content and administer the Personal Progress Checks. The suggested class periods are based on a schedule in which the class meets five days a week for 45 minutes each day.

While these recommendations have been made to aid planning, teachers should of course adjust the pacing based on the needs of their students, alternate schedules (e.g., block scheduling), or their school's academic calendar.

TOPICS

Each unit is broken down into teachable segments called topics. The topic pages (starting on p. 36) contain the required content for each topic. Although most topics can be taught in one or two class periods, teachers should pace the course to suit the needs of their students and school.

Units	Exam Weighting
Unit 1: Atomic Structure and Properties	7-9%
Unit 2: Molecular and Ionic Compound Structure and Properties	7–9%
Unit 3: Intermolecular Forces and Properties	18-22%
Unit 4: Chemical Reactions	7–9%
Unit 5: Kinetics	7–9%
Unit 6: Thermodynamics	7-9%
Unit 7: Equilibrium	7-9%
Unit 8: Acids and Bases	11-15%
Unit 9: Applications of Thermodynamics	7-9%

Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Chemistry curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and science practices across units.

Teach

SCIENCE PRACTICES

Science practices spiral throughout the course.

- Models and Representations
- 4 Model Analysis 5 Mathematical
- 2 Question and Method
- Routines 6 Argumentation
- 3 Representing Data and Phenomena

BIG IDEAS

Big ideas spiral across topics and units.

- SPQ Scale, Proportion, TRA Transformations and Quantity
 - **ENE** Energy
- SAP Structure and Properties

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiplechoice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

Atomic Structure and **Properties**

~9-10 Class

7-9% AP Exam Weighting

- SPQ
- 1.1 Moles and Molar Mass
- 1.2 Mass Spectroscopy of Elements
- **1.3** Elemental Composition of Pure Substances
- 1.4 Composition of **Mixtures**
- SAP
- 1.5 Atomic Structure and **Electron Configuration**
- SAP
 - 1.6 Photoelectron **Spectroscopy**
- SAP 4

SAP

1.8 Valence Electrons and **Ionic Compounds**

1.7 Periodic Trends

2

Molecular and **Ionic Compound** Structure and **Properties**

~12-13 Class Periods

7-9% AP Exam Weighting

- SAP 2.1 Types of Chemical Bonds
- SAP 2.2 Intramolecular Force and Potential Energy 3
- SAP 2.3 Structure of Ionic Solids
- SAP 2.4 Structure of Metals and **Alloys**
- SAP 2.5 Lewis Diagrams
- SAP 2.6 Resonance and **Formal Charge**
- SAP 2.7 VSEPR and Bond Hybridization

Personal Progress Check 1

Multiple-choice: ~20 questions Free-response: 2 questions

- Short-answer
- Short-answer

Personal Progress Check 2

Multiple-choice: ~15 questions Free-response: 1 question

Long-answer

continued on next page

Intermolecular Forces and **Properties**

~14-15 Class Periods 18-22% AP Exam Weighting

17	10	Periods	10	~~	Weighting
SAP	3.1	Inter	molecu	ılar Fo	orces
4					
SAP	3.2	Prop	erties (of Soli	ds
4					
SAP	3.3	Solid Gase	s, Liqu	ıids, a	ind
3		Gase	S		
SAP	3.4	Ideal	Gas L	aw	
5					
SAP	3.5	Kinet Theo	ic Mol	ecula	r
4					
SAP	3.6		ation fr Gas La		
6					
SPQ	3.7	Solut	ions a	nd Mi	xtures
5					
SPQ	3.8	Repre	esenta	tions	of
3		Dorac			
SPQ	3.9		ration ions a		xtures
2			matog		irur ob
SPQ	3.10	Solul	nility		
4	5.10	20141	y		
SAP	3.11	Spec	trosco	py and	 i
			lectro		
4		Spec	ci uill		
SAP	3.12	Photo	oelectr	ic Effe	ect
5					
SAP	3.13	Beer-	Lambo	ert Lav	W

Chemical UNIT Reactions

~14-15 Class Periods

TI	RA	4.1	Intro	ductio	n for		
	2		Reac	tions			
Í							
TI	RA	4.2	Net I	onic E	quati	ons	
	5						
TI	RA	4.3	Repr	esenta	tions	of	
	3		Reac	tions			
T	RA	4.4	Phys	ical ar	ıd		
	6		Chen	nical C	hang	jes	
SI	PQ	4.5	Stoic	hiome	try		
	5						
SI	PQ	4.6		ductio	n to		
	3		Titra	tion			
TI	RA	4.7		s of C	hemi	cal	
	1		Reac	tions			
TI	RÁ	4.8		ductio			
	1		Acid-	Base	React	tions	
T	RÁ	4.9		ation-l			
	5		(Red	ox) Re	actio	ns	

Kinetics

~13-14 Class Periods

7-9% AP Exam Weighting

TRA	5.1 Reaction Rates
TRA	5.2 Introduction to Rate Law
TRA 5	5.3 Concentration Changes Over Time
TRA 5	5.4 Elementary Reactions
TRA 6	5.5 Collision Model
TRA 3	5.6 Reaction Energy Profile
TRA 1	5.7 Introduction to Reaction Mechanisms
TRA 5	5.8 Reaction Mechanism and Rate Law
TRA 5	5.9 Steady-State Approximation
TRA 3	5.10 Multistep Reaction Energy Profile
ENE 6	5.11 Catalysis

Personal Progress Check 3

Multiple-choice: ~30 questions Free-response: 2 questions

- Short-answer
- Short-answer

Personal Progress Check 4

Multiple-choice: ~20 questions Free-response: 1 question

Long-answer

Personal Progress Check 5

Multiple-choice: ~25 questions Free-response: 2 questions

- Short-answer
- Long-answer

continued on next page

Thermodynamics

~10-11 Class Periods

7-9% AP Exam Weighting

ENE	6.1 Endothermic and
6	Exothermic Processes
ENE 3	6.2 Energy Diagrams
ENE	6.3 Heat Transfer and Thermal Equilibrium
6	Tilotiliai Equilibrium
ENE	6.4 Heat Capacity and
2	Calorimetry
ENE	6.5 Energy of Phase
1	Changes
ENE	6.6 Introduction to Enthalpy
4	of Reaction
ENE	6.7 Bond Enthalpies
5	
ENE	6.8 Enthalpy of Formation
5	

6.9 Hess's Law

Equilibrium

~14-16 Class 7-9% AP Exam

~14	-16	Periods	7-9%	Weighting
TRA 6	7.1		duction to librium)
TRA	7.2	Direc	tion of Retions	eversible
TRA 3	7.3		tion Quot librium Co	
TRA 5	7.4		ılating the	
TRA 6	7.5		nitude of t librium Co	
TRA 5	7.6		erties of t librium Co	
TRA 3	7.7		ılating Eq entrations	
TRA 3	7.8	Repro Equil	esentation librium	ns of
TRA	7.9		duction to elier's Pri	
TRA 5	7.10		tion Quot nâtelier's	
SPQ 5	7.11		duction to bility Equ	
SPQ 2	7.12	Com	mon-Ion I	Effect
SPQ 2	7.13	pH a	nd Solubi	lity
SPQ 4	7.14		Energy of olution	

8

Acids and Bases

~14-15 Class Periods

11-15% AP Exam Weighting

SAP 5	8.1 Introduction to Acids and Bases
SAP 5	8.2 pH and pOH of Strong Acids and Bases
SAP 5	8.3 Weak Acid and Base Equilibria
SAP 5	8.4 Acid-Base Reactions and Buffers
SAP 5	8.5 Acid-Base Titrations
SAP	8.6 Molecular Structure of Acids and Bases
SAP 2	8.7 pH and pK _a
SAP	8.8 Properties of Buffers
SAP 5	8.9 Henderson-Hasselbalch Equation
SAP	8.10 Buffer Capacity

Personal Progress Check 6

Multiple-choice: ~20 questions Free-response: 2 questions

- Short-answer
- Short-answer

Personal Progress Check 7

Multiple-choice: ~30 questions Free-response: 2 questions

- Short-answer
- Long-answer

Personal Progress Check 8

Multiple-choice: ~30 questions Free-response: 1 question

Long-answer

Applications of Thermodynamics UNIT 9

~10-13 Class Periods

7-9% AP Exam Weighting

ENE

9.1 Introduction to Entropy

ENE

9.2 Absolute Entropy and **Entropy Change**

9.3 Gibbs Free Energy and Thermodynamic **Favorability**

ENE

9.4 Thermodynamic and **Kinetic Control**

ENE

9.5 Free Energy and **Equilibrium**

ENE

9.6 Coupled Reactions

ENE

9.7 Galvanic (Voltaic) and **Electrolytic Cells**

ENE

9.8 Cell Potential and Free Energy

ENE

9.9 Cell Potential **Under Nonstandard Conditions**

9.10 Electrolysis and Faraday's Law

Personal Progress Check 9

Multiple-choice: ~30 questions Free-response: 2 questions

- Short-answer
- Long-answer