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Universal Gravitational Constant 
 
EQUIPMENT 
 

1 Gravitational Torsion Balance AP-8215 
1 X-Y Adjustable Diode Laser OS-8526A 
1 45 cm Steel Rod  ME-8736 
1 Large Table Clamp ME-9472 
1 Meter Stick SE-7333 

 
INTRODUCTION 
 
The Gravitational Torsion Balance reprises one of the great experiments in the history of 
physics—the measurement of the gravitational constant, as performed by Henry Cavendish in 
1798. 
 
The Gravitational Torsion Balance consists of two 38.3 gram masses suspended from a highly 
sensitive torsion ribbon and two1.5 kilogram masses that can be positioned as required. The 
Gravitational Torsion Balance is oriented so the force of gravity between the small balls and the 
earth is negated (the pendulum is nearly perfectly aligned vertically and horizontally). The large 
masses are brought near the smaller masses, and the gravitational force between the large and 
small masses is measured by observing the twist of the torsion ribbon. 
 
An optical lever, produced by a laser light source and a mirror affixed to the torsion pendulum, is 
used to accurately measure the small twist of the ribbon.  
 
THEORY 
 
The gravitational attraction of all objects toward the Earth is obvious. The gravitational attraction 
of every object to every other object, however, is anything but obvious. Despite the lack of direct 
evidence for any such attraction between everyday objects, Isaac Newton was able to deduce his 
law of universal gravitation. 
 

Newton’s law of universal gravitation: 

2
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where m1 and m2 are the masses of the objects, r is the distance between them, and  
G = 6.67 x 10-11 Nm2/kg2 

 
However, in Newton's time, every measurable example of this gravitational force included the 
Earth as one of the masses. It was therefore impossible to measure the constant, G, without first 
knowing the mass of the Earth (or vice versa). 
 
The answer to this problem came from Henry Cavendish in 1798, when he performed 
experiments with a torsion balance, measuring the gravitational attraction between relatively 
small objects in the laboratory. The value he determined for G allowed the mass and density of 
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the Earth to be determined. Cavendish's experiment was so well constructed that it was a 
hundred years before more accurate measurements were made. 
 
The gravitational attraction between a 15 gram mass and a 1.5 kg mass when their centers are 
separated by a distance of approximately 46.5 mm (a situation similar to that of the Gravitational 
Torsion Balance) is about 7 x 10-10 Newtons. If this doesn’t seem like a small quantity to 
measure, consider that the weight of the small mass is more than two hundred million times this 
amount. 
  
The enormous strength of the Earth's attraction for the small masses, in comparison with their 
attraction for the large masses, is what originally made the measurement of the gravitational 
constant such a difficult task. The torsion balance (invented by Charles Coulomb) provides a 
means of negating the otherwise overwhelming effects of the Earth's attraction in this 
experiment. It also provides a force delicate enough to counterbalance the tiny gravitational force 
that exists between the large and small masses. This force is provided by twisting a very thin 
beryllium copper ribbon. 

 
Figure 1: Top View 
 
The large masses are first arranged in Position I, as shown in Figure 1, and the balance is allowed 
to come to equilibrium. The swivel support that holds the large masses is then rotated, so the 
large masses are moved to Position II, forcing the system into disequilibrium. The resulting 
oscillatory rotation of the system is then observed by watching the movement of the light spot on 
the scale, as the light beam is deflected by the mirror. 
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SET UP 
Preliminary Set Up 
1. Place the support base on a flat, stable table that is 
located such that the Gravitational Torsion Balance will 
be at least 5 meters away from a wall or screen. For best 
results, use a very sturdy table, such as an optics table. 
2. Carefully secure the Gravitational Torsion Balance in 
the base. 
3. Remove the front plate by removing the 
thumbscrews. 
4. Fasten the clear plastic plate to the case with the 
thumbscrews. 
 
 
 
 
 
 
 
 
 

Figure 2: Removing a plate from the Chamber Box 
 
Leveling the Gravitational Torsion Balance 
 
1. Release the pendulum from the locking mechanism by unscrewing the locking screws on the 
case, lowering the locking mechanisms to their lowest positions (Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Lowering the Locking Mechanism to Release the Pendulum Bob Arms 
 
 
 
2. Adjust the feet of the base until the pendulum is centered in the leveling sight (Figure 4). (The 
base of the pendulum will appear as a dark circle surrounded by a ring of light). 
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3. Orient the Gravitational Torsion Balance so the mirror 
on the pendulum bob faces a screen or wall that is at 
least 5 meters away. 
  
 
 
 
 
 
 
 
 

 
 

Figure 4: Using the Leveling Sight  Figure 5: Adjusting the Height of the Pendulum 
 
Vertical Adjustment of the Pendulum 
 
The base of the pendulum should be flush with the floor of the pendulum chamber. If it is not, 
adjust the height of the pendulum: 
 
1. Grasp the torsion ribbon head and loosen the Phillips retaining screw (Figure 5a). 
2. Adjust the height of the pendulum by moving the torsion ribbon head up or down so the base 
of the pendulum is flush with the floor of the pendulum chamber (Figure 5b). 
3. Tighten the retaining (Phillips head) screw. 
 
 
 
 
 
 
 

Ribbon Head 

Philips Screw 
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Rotational Alignment of the Pendulum Bob Arms 
(Zeroing) 

The pendulum bob arms must be centered rotationally 
in the case — that is, equidistant from each side of the 
case (Figure 6). To adjust them: 
1. Mount a metric scale on the wall or other projection 
surface that is at least 5 meters away from the mirror of 
the pendulum. 
2. Replace the plastic cover with the aluminum cover. 
3. Set up the laser so it will reflect from the mirror to 
the projection surface where you will take your 
measurements (approximately 5 meters from the 
mirror). You will need to point the laser so that it is 
tilted upward toward the mirror and so the reflected 
beam projects onto the projection surface (Figure 7). 
There will also be a fainter beam projected off the 
surface of the glass window. 

 
Figure 6: Aligning the Pendulum Bob Rotationally 

 
 

 
Figure 7a:  Setting up the Optical Level 
  (Illustrated View) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7b: Setting up the Optical Level 
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3. Rotationally align the case by rotating it until the laser 
beam projected from the glass window is centered on the 
metric scale (Figure 8). 
 
 
 
 
 

 
Figure 8: Ideal Rotational Alignment 
 
4. Rotationally align the pendulum arm: 
a. Raise the locking mechanisms by turning the locking screws until both of the locking 
mechanisms barely touch the pendulum arm. Maintain this position for a few moments until the 
oscillating energy of the pendulum is dampened. 
b. Carefully lower the locking mechanisms slightly so the pendulum can swing freely. If 
necessary, repeat the dampening exercise to calm any wild oscillations of the pendulum bob. 
c. Observe the laser beam reflected from the mirror. In the optimally aligned system, the 
equilibrium point of the oscillations of the beam reflected from the mirror will be vertically 
aligned below the beam reflected from the glass surface of the case (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Refining the Rotational Alignment of the Pendulum Bob 
 
d. If the spots on the projection surface (the laser beam reflections) are not aligned vertically, 
loosen the zero adjust thumbscrew, turn the zero adjust knob slightly to refine the rotational 
alignment of the pendulum bob arms (Figure 9), and wait until the movement of the pendulum 
stops or nearly stops. 
e. Repeat steps 4a – 4c as necessary until the spots are aligned vertically on the projection 
surface. 
5. When the rotational alignment is complete, carefully tighten the zero adjust thumbscrew, 
being careful to avoid jarring the system. 
 
 
 
 

Zero Adjust 
Thumbscrew 

Zero Adjust Knob 
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Setting up for the Experiment 
1. Take an accurate measurement of the distance from the mirror to the zero point on the scale on 
the projection surface (L) (Figure 7). (The distance from the mirror surface to the outside of the 
glass window is 11.4 mm.) 
Note: Avoid jarring the apparatus during this setup procedure. 

Figure 10: Attaching the Grounding Strap to the Grounding Screw 
 
2. Attach copper wire to the grounding screw (Figure 10), and ground it to the earth. 
 

3. Place the large lead masses on the support arm, and 
rotate the arm to Position I (Figure 11), taking care to 
avoid bumping the case with the masses. 
4. Allow the pendulum to come to resting equilibrium. 
5. You are now ready to make a measurement using 
one of three methods: the final deflection method, the 
equilibrium method, or the acceleration method. 
Note: The pendulum may require several hours to 
reach resting equilibrium. To shorten the time 
required, dampen the oscillation of the pendulum by 
smoothly raising the locking mechanisms up (by 
turning the locking screws) until they just touch the 
crossbar, holding for several seconds until the 
oscillations are dampened, and then carefully lowering 
the locking mechanisms slightly. 
 

Figure 11: Moving the Large Masses into Position 1 
 
 
PROCEDURE  
 
1. Once the steps for leveling, aligning, and setup have been completed (with the large masses in 
Position I), allow the pendulum to stop oscillating. 
2. Turn on the laser and observe the Position I end point of the balance for several minutes to be 
sure the system is at equilibrium. Record the Position I end point (S1) as accurately as possible, 
and indicate any variation over time as part of your margin of error in the measurement. 
3. Carefully rotate the swivel support so that the large masses are moved to Position II. The 
spheres should be just touching the case, but take care to avoid knocking the case and disturbing 
the system. 
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Note: You can reduce the amount of time the 
pendulum requires to move to equilibrium by 
moving the large masses in a two-step 
process: first move the large masses and 
support to an intermediate position that is in 
the midpoint of the total arc (Figure 12), and 
wait until the light beam has moved as far as 
it will go in the period; then move the sphere 
across the second half of the arc until the 
large mass support just touches the case. Use 
a slow, smooth motion, and avoid hitting the 
case when moving the mass support. 
4.  Immediately after rotating the swivel 
support to Position II, observe the light spot. 
Record the position of the light spot (S) and 
the time (t) every 15 seconds. Continue 
recording the position and time for about 45 
minutes. 
5. Rotate the swivel support to Position I. 
Repeat the procedure described in step 4. 
Note: Although it is not imperative that step 
5 be performed immediately after step 4, it is 
a good idea to proceed with it as soon as 
possible in order to minimize the risk that the 
system will be disturbed between the two 
measurements. Waiting more than a day to 
perform step 5 is not advised. 
 
 
 
 
 
 
Figure 12: Two-step process of moving the 
large masses to reduce the time required 
to stop oscillating 
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ANALYSIS 
1. Construct a graph of light spot position versus time for both Position I and Position II. You 
will now have a graph similar to Figure 13. 

 
Figure 13: Typical Pendulum Oscillation Pattern Showing Equilibrium Positions 
 
2. Find the equilibrium point for each configuration by analyzing the corresponding graphs using 
graphical analysis to extrapolate the resting equilibrium points S1 and S2 (the equilibrium point 
will be the center line about which the oscillation occurs). Find the difference between the two 
equilibrium positions and record the result as ΔS. 
3. Determine the period of the oscillations of the small mass system by analyzing the two graphs. 
Each graph will produce a slightly different result. Average these results and record the answer 
as T. 
4. Use your results and equation 1.9 below to determine the value of G. 
 
Calculating the Value of G 
 

With the large masses in Position I (Figure 
14), the gravitational attraction, F, between 
each small mass (m2) and its neighboring large 
mass (m1) is given by the law of universal 
gravitation: 
 

2
21

b
mGmF =    (1.1) 

 
where b = the distance between the centers of 
the two masses. 
 
 
 
 
 

 
 
Figure 14: Origin of Variables b and d 
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The gravitational attraction between the two small masses and their neighboring large masses 

produces a net torque (τgrav) on the system: 

τgrav = 2Fd   (1.2) 
where d is the length of the lever arm of the pendulum bob crosspiece. 

 
Since the system is in equilibrium, the twisted torsion band must be supplying an equal and 

opposite torque. This torque (τband) is equal to the torsion constant for the band (κ) times the 
angle through which it is twisted (θ), or: 
 

 τband = – κθ.   (1.3) 
 

Combining equations 1.1, 1.2, and 1.3, and taking into account that τgrav = – τband, gives: 
 

2
212

b
mdGm

=Θκ  

Rearranging this equation gives an expression for G: 
 

 
21

2

2 mdm
bG Θ

=
κ   (1.4) 

 
To determine the values of θ and κ — the only unknowns in equation 1.4 — it is necessary to 
observe the oscillations of the small mass system when the equilibrium is disturbed. To disturb 
the equilibrium (from S1), the swivel support is rotated so the large masses are moved to 
Position II. The system will then oscillate until it finally slows down and comes to rest at a new 
equilibrium position (S2) (Figure 15). 

 
Figure 15: Graph of Small Mass Oscillations 
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At the new equilibrium position S2, the torsion 
wire will still be twisted through an angle θ, but 
in the opposite direction of its twist in Position I, 
so the total change in angle is equal to 2θ. 
Taking into account that the angle is also doubled 
upon reflection from the mirror (Figure 16): 
 
 12 SSS −=Δ  

 
L
SΔ

=Θ4  or 

 
L
S
4
Δ

=Θ  (1.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Diagram of the Experiment Showing the Optical Level 
 
The torsion constant can be determined by observing the period (T) of the oscillations, and then 
using the equation: 
 

κ
π IT
2

2 4
=    (1.6) 

where I is the moment of inertia of the small mass system.  The moment of inertia for the mirror 
and support system for the small masses is negligibly small compared to that of the masses 
themselves, so the total inertia can be expressed as: 
 
 ( )22

2 5
22 rdmI +=   (1.7) 

Therefore: 
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Substituting equations 1.5 and 1.8 into equation 1.4 gives: 
 

 G=
( )

LdmT

rd
Sb

1
2

22
22 5

2+
Δπ  (1.9) 

All the variables on the right side of equation 1.9 are known or 
measurable: 
 

r = 9.55 mm 
d = 50 mm 
b = 46.5 mm 
m1 = 1.5 kg 
L = (Measure as in step 1 of the setup.) 
 

By measuring the total deflection of the light spot (ΔS) and the period of oscillation (T), the value 
of G can therefore be determined. 
 

5.  The value calculated in step 4 is subject to the 
following systematic error. The small sphere is 
attracted not only to its neighboring large sphere, 
but also to the more distant large sphere, though 
with a much smaller force. The geometry for this 
second force is shown in Figure 17 (the vector 
arrows shown are not proportional to the actual 
forces). 
 
 
 
 

Figure 17: Correcting the Measured Value of G 
 
From Figure 17, 
 
 f=F0sinΦ  

 
( ) 2/122 4
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The force, F0 is given by the gravitational law, which translates, in this case, to: 
 

  ( )22
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0 4db
mGmF

+
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and has a component ƒ that is opposite to the direction of the force F : 
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This equation defines a dimensionless parameter, b, that is equal to the ratio of the magnitude of 
ƒ to that of F. Using the equation 
 

 2
12

b
mGmF =  

 
it can be determined that: 
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From Figure 17, 
 
 )1( bFbFFfFFnet −=−=−=  
 
where Fnet is the value of the force acting on each small sphere from both large masses, and F is 
the force of attraction to the nearest large mass only. 
Similarly, 
 
 )1(0 bGG −=  
 
where G is your experimentally determined value for the gravitational constant, and G0 is 
corrected to account for the systematic error. 
Finally, 
 

 
( )b
GG
−

=
10  

 
Use this equation with equation 1.9 to adjust your measured value. 
 
 
 
 
 
 


