

Background

- Chlorine based refrigerants contribute to the depletion of the earth's stratospheric ozone.
- In recent years, the HVACR industry has supported global efforts to transition to safer non-chlorine based refrigerants.
- HCFCs, (including R-22) that have been widely used in air conditioning and refrigeration applications since the 1940's, are being phased out.
- 1987 the U.S. and 22 other countries sign the original Montreal Protocol establishing timetables and phase-out schedules for CFCs and HCFCs.

Additional Background

- 1990 The Clean Air Act (CAA) signed in the U.S. calling for refrigerant, production reductions, recycling and emission reduction and the eventual phase-out of CFCs and HCFCs.
- 1992 unlawful to vent CFCs and HCFCs into the atmosphere.
- 1994 technician certification required for purchasing and handling of CFCs and HCFCs.

Additional Background

- 1995 unlawful to vent alternate (substitute) refrigerants such as HFCs, into the atmosphere.
- 1996 phase-out of CFC refrigerant production in the U.S.
- 1996 cap HCFC production levels.

	PHASE	-OUT CH/	ART
М	ontreal Protocol		United States
Year	Consumption % Reduction	Year	HCFC Phase-out
2004	35.0%	2003	No production and no importing of HCFC-141b
HCF	Cs are being phase	d-out.	
🏮 In re	Cs are being phased sponse, many manu litioning equipment	ıfacture	

Phas	e- Out		
		PHASE	E-OUT CHART
Mon	treal Protocol		United States
Year	Consumption % Reduction	Year	HCFC Phase-out
2010	65%	2010	No production or importing of HCFC-142b and HCFC-22, except for use in equipment manufactured before 1/1/2010 (no production or importing for NEW equipment that uses these refrigerants)
ő	2010 phase-o	ut HCF	C-22 (R-22) for new equipment.

Phas	se- Out		
		PHASE	-OUT CHART
Mont	real Protocol		United States
Year	Consumption % Reduction	Year	HCFC Phase-out
2015	90%	2015	No production and no importing of any HCFCs, except for use as refrigerants in equipment manufactured before 1/1/2010
			8

Pha	se- Out		
		PHAS	E-OUT CHART
Mor	treal Protocol		United States
Year	Consumption % Reduction	Year	HCFC Phase-out
2020	99.5%	2020	No production and no importing of HCFC-142b and HCFC-22
i	2020 Phas	se-ou	t HCFC-22 production.

Phas	e- Out		
		PHASE-	OUT CHART
Mon	treal Protocol		United States
Year	Consumption % Reduction	Year	HCFC Phase-out
2030	100%	2030	No production and no importing of any HCFCs

The Future

- HFCs such as R-410A, R-407C and R-134a are the refrigerants of choice for this generation.
- As we continue to transition to R-410A, R-407C and R-134a, we could see technological changes and pressures that may bring newer refrigerants and more transition.

The Future

- With increased attention to global warming and climate change, we may see a new family of refrigerants and changes in refrigeration and air conditioning systems.
- Energy shortages, along with higher utility bills may bring increased demand for maintenance and service procedures that guarantee HVACR systems operate at their peak performance.

1

R-410A

R-410A is a binary (two part) near-azeotropic mixture .

Presently marketed under the brand names of:

- 🛢 AZ-20
- 📋 "Puron"
- 🍵 "Suva"

Some R-410A Basics

- R-410A operates at 40 70% higher pressures than R-22.
- Special cylinders, gauges and recovery equipment rated for higher pressures are necessary.
- R-410A utilizes Polyol Ester (POE) based oils.
- R-410A is more efficient than R-22, & has a lower TEWI. (Total Equivalent Warming Impact)
- R-410A is a near azeotropic, has a very small temperature glide (0.3) and fractionation potential.

1

Compression Issues

The compression ratio can determine how efficiently a system is operating. Compression ratio is calculated as follows:

Compression ratio = <u>Absolute discharge pressure</u> Absolute suction pressure

R-410A Considerations:

Compressors have been redesigned with increased wall thickness due to the higher pressures associated with R-410A.

Compressor IPR, high / low pressure switch settings are different for R-22 and R-410A.

1

Compression Issues R-410A Considerations:

The IPR will open at a pressure 550 - 625 psig for R-410A systems.

The high pressure switch opens at 610 psig ± 10 psig and closes at 500 psig ± 15 psig.

The low pressure control will open at 50 psig.

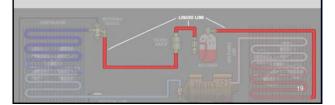
The discharge temperature of R-410A is lower than R-22 due to its higher vapor heat capacity.

Condenser Issues

R-410A Considerations:

Equipment designed for R-22 cannot withstand the higher pressure of R-410A.

The condensing unit must be replaced with a specific model designed for R-410A.


1

Liquid Line Issues

R-410A Considerations:

Liquid lines used with R-22 may be used with R-410A if sized correctly and cleaned properly.

Liquid may either lose or gain subcooling depending on the surrounding temperature.

Filter / Drier Issues

R-410A Considerations:

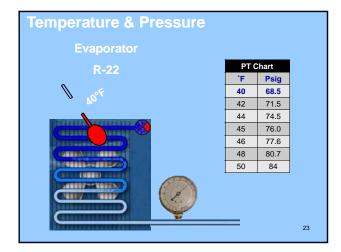
- Liquid line filter driers must have rated working pressures of no less than 600 psig and must be approved for use with R-410A.
- The technician must always check with the system manufacturer for specific drier recommendations if unsure of what filter drier to use.

Metering Device Issues

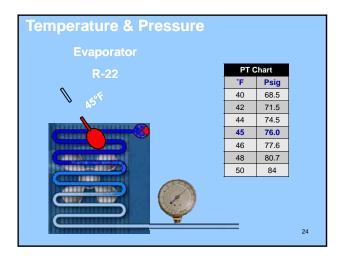
R-410A Considerations:

R-410A metering devices are designed to be about 15% smaller than in R-22 systems to achieve the same capacity.

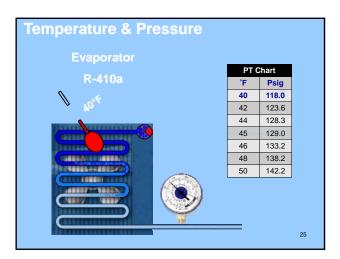
Metering device for R-410A and R-22 systems are not interchangeable.

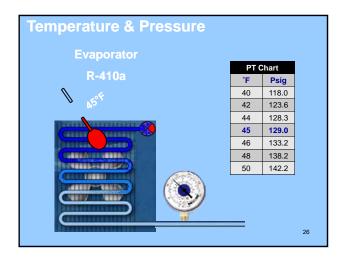

21

Evaporator Issues


R-410A Considerations:

The evaporator or indoor coil should be removed when changing out existing equipment and be replaced with a R-410A specific model.


Some R-22 indoor coils meet the UL design & service pressure rating of 235 psig, (confirm with the manufacturer before using R-22 indoor coils with R-410A).



Suction Line Issues

R-410A Considerations:

Suction lines used with R-22 can also be used with R-410A providing they are correctly sized and properly cleaned.

Always make sure all components such as reversing valves, expansion valves and filter driers are specifically designed for R-410A.

Section III Refrigeration Chemistry & Applications

Refrigerant Blends

Near azeotropic mixtures (NARMs) can be:

- HCFC based
- 🛢 HFC based
- A combination of the two

Most blends are either: Binary – 2 refrigerants mixed together Ternary – 3 refrigerants mixed together

Blend Fractionation

Fractionation can occur in zeotropic and near azeotropic blends (NARMs).

- One or more refrigerants in the blend leaks at a faster rate than the other refrigerant.
- Causes a change in composition of the blend. Liquid and vapor must exist simultaneously.
- Different partial pressures of refrigerants causes different rates of leakage.

Blend Fractionation

When recharging a refrigeration system using near azeotropic blends:

- Use liquid refrigerant to avoid fractionation.
- Only remove liquid from recharging cylinder to ensure proper blend is recharged into system.
- When adding liquid refrigerant, liquid must be throttled to the low side of the system to avoid compressor damage.

31

Temperature Glide

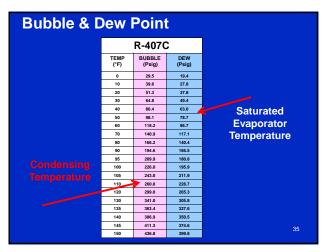
Temperature glide is a range of temperatures in which NARMs evaporate and condense.

- Temperature glide depends on the system design and blend makeup.
- Temperature glide can range from 0.2° to 16° F.
- Temperature glide for R-410A is less than 0.3° F over air conditioning and refrigerating operating ranges.

A Word About R-407C

The rundown on R-407C:

- R-407C has a high temperature glide.
- R-407C may fractionate into its component refrigerants.
- When calculating the subcooling with R-407C, use the bubble point value only.


33

A Word About R-407C

The rundown on R-407C:

- When calculating the superheating with R-407C, use the dew point value only.
- R-407C pressures and temperatures are similar to those of R-22.

R-407C has a slightly lower efficiency than R-22.

Calculate Superheat for R-407C

Pressure v	s. Temperati	ure R-407C
TEMP (°F)	BUBBLE (Psig)	DEW (Psig)
0	29.5	19.4
10	39.6	27.8
20	51.3	37.8
30	64.8	49.4
40	80.4	63.0
50	98.1	78.7
60	118.2	96.7
70	140.9	117.1
80	166.2	140.4
90	194.6	166.5
95	209.9	180.8
100	226.0	195.9
105	243.0	211.9
110	260.8	228.7
120	299.0	265.3
130	341.0	305.8
135	363.4	327.6
140	386.9	350.5
145	411.3	374.6
150	436.8	399.8

- 1. Operate the system and note the low side gauge pressure reading.
- 2. Using an accurate thermometer, determine the evaporator outlet temperature.
- 3. Using the Dew Point temperature column of the chart, convert the obtained pressure reading to temperature.
- 4. Deduct the Dew Point temperature from the evaporator outlet.

Calculate Subcooling for R407C

	Pressure vs. Temperature R-407C				
1	DEW (Psig)	BUBBLE (Psig)	TEMP (°F)		
	19.4	29.5	0		
	27.8	39.6	10		
2	37.8	51.3	20		
-	49.4	64.8	30		
	63.0	80.4	40		
	78.7	98.1	50		
	96.7	118.2	60		
	117.1	140.9	70		
3	140.4	166.2	80		
3	166.5	194.6	90		
	180.8	209.9	95		
	195.9	226.0	100		
	211.9	243.0	105		
	228.7	260.8	110		
	265.3	299.0	120		
	305.8	341.0	130		
4	327.6	363.4	135		
	350.5	386.9	140		
	374.6	411.3	145		
	399.8	436.8	150		

- . Operate the system and note the high side gauge reading.
- 2. Using an accurate thermometer determine the condenser outlet temperature.
- 3. Using the Bubble Point temperature column of the chart, convert the obtained pressure reading to temperature.
- 4. Deduct the condenser outlet temperature from the Bubble Point temperature.

R-410A Basic Service Tools

Gauge Manifold Considerations: High side gauge must range to 800 psig. Cow side gauge must range to 250 psig with 550 psig retard. All service hoses must have a service rating of 800 psig.

R-410A Gauge Manifold

Recovery Equipment

Micron Gauge and Vacuum Pumps

The system must be evacuated to 500 microns and the filter/drier must be changed each time the system is opened.

Recovery Cylinders

R-410A recovery cylinders must have a DOT rating of 4BA 400 or 4BW 400

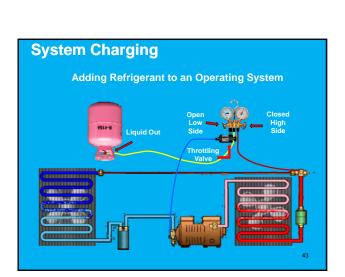
R-410A System Charging

R-410A System Charging Basics:

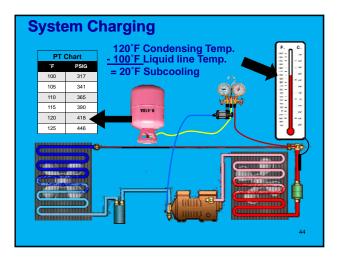
- Use liquid R-410A
- Cylinders with dip tubes can be used in the upright position.
- Cylinders without dip tubes must be turned upside down.
- Can be charged as vapor as long as all contents are charged into system.
- Throttle liquid into low side of the system.

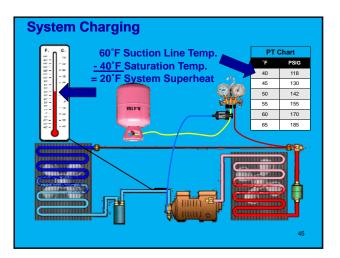
Cylinder w/Dip Tube

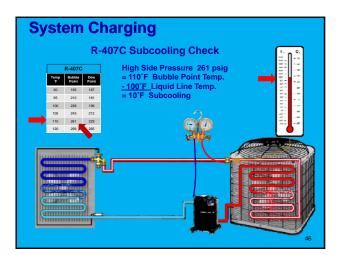
System Charging


Do NOT clear sight glass when charging:

Liquid may flash to vapor in sight glass
Flash gas will reform to 100% liquid
Attempts to clear sight glass may overcharge system




In systems using a thermostatic expansion valve, follow the manufacturers recommended practice to check for proper charge conditions.



Leak Detectors

- A leak detector capable of detecting HFC refrigerant must be used with R-410A
- If a R-410A system develops a leak, the remaining refrigerant may be used because R-410A has a low fractionation rate

Refrigerant Oils

Oil functions

- Minimizes mechanical wear
- Acts as the seal between the discharge and suction sides of the compressor.
- Prevents excessive blow by around a piston in a reciprocating compressor.
- **Acts as a noise dampener.**
- Performs heat transfer tasks.

49

Refrigerant Oils

Alkylbenzene

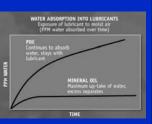
- HCFC- based refrigerant blends perform best with alkylbenzenes lubricants.
- Alkylbenzenes and scenes can be mixed with up to 20% mineral oil.
- Mineral oil systems won't require extensive Flushing.

Refrigerant Oils

Polyalkylene glycols, or PAGs Drawbacks

- They are very hydroscopic.
- Some are not fully soluble and will separate.
- They have poor aluminum on steel lubricating abilities.
- They have very high molecular weight.
- They can be harmful if inhaled insert concentrations.
- They have been known to have reversed solubility in some refrigeration systems.

Refrigerant Oils


Polyol Ester

Advantage

- Used in many HFCbased systems.
- Wax free oil
- Lower pour point

Disadvantage

Very hydroscopic

Safety

Safety Basics:

When handling refrigerants: wear eye protection wear gloves.

Electrical Safety:

Before working on any circuit power should be shut off, locked and tagged at the distribution panel.

Safety

Compressed Gas Safety:

Full Nitrogen cylinders have a pressure of approximately
2500 psig.

8-410A

Only move nitrogen cylinders with the protective cap on.

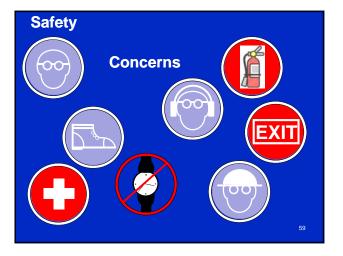
R-410A cylinders should not be allowed to exceed 125° F.

Safety Refrigerant Leak Precautions:

If a large refrigerant leak should occur in an enclosed area, you should immediately ventilate and vacate the area.

Safety

POE Lubricant Safety:


 POE's can be irritating to the skin
POE's are extremely "Hygroscopic"
POE's have improved heat transfer characteristics over mineral oil.

Safety

Policies

- **OSHA** Occupational Safety & Health Administration
- General & State regulations
- **Q** Company or job site regulations
- G ASHRAE Standard 34

This concludes the 410a training module.

Please download the handouts and read over the material.

Good luck and see you on the next module.

60