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Abstract—Recent research trends in analog layout synthesis aim for a fully
automated netlist-to-GDSII design flow with minimum human efforts. Due to
the sensitiveness of analog circuit layouts, symmetry matching between critical
building blocks and devices can significantly impact the overall circuit per-
formance. Therefore, providing accurate symmetry constraints for automated
layout synthesis tools is crucial to achieving high-quality layouts. This paper
presents a novel graph-learning-based framework leveraging unsupervised
learning to recognize circuit matching structures by making the most of
numerous unlabeled circuits. The proposed framework supports both system-
level and device-level symmetry constraints extraction for various large-scale
analog/mixed-signal systems. Experimental results show that our framework
outperforms state-of-the-art symmetry constraint detection algorithms with
remarkable accuracy and runtime improvement.

I. INTRODUCTION

The performance of modern analog/mixed-signal (AMS) designs is
susceptible to parasitics, process variations, and layout-dependent effects
due to the sensitiveness and complexity of AMS circuit layouts [1]. To
guarantee the performance specification and circuit robustness, various
geometrical matching constraints (e.g., symmetry, regularity, common-
centroid) need to be carefully considered during the layout process [2].

Typically, these constraints are annotated by layout design experts with
profound domain knowledge [3]. However, real-world AMS circuits have
a wide range of specific circuit classes, device types, and even dozens of
different topologies for a single functionality, imposing more challenges
and thus making manual constraint-annotating a tedious and error-prone
task. Thus, automatic constraint extraction is a desirable auxiliary to
alleviate heavy human efforts and further improve the layout quality [4].

Recent research aims to achieve fully automated netlist-to-GDSII
analog layout design flow with minimum human efforts [5], [6]
adopt optimization-based methodologies that utilize analog place-and-
route (P&R) algorithms to realize optimized layout and minimize human
efforts [7]–[10]. With distinctly specified constraints, these algorithms
tend to generate diverse solutions that result in varying post-layout
performance. Therefore, automatically generating precise and accurate
symmetry constraints has become an essential procedure in the design flow.
Figure 1 shows an example of a 2nd-order continuous-time ∆Σ modulator
(CTDSM). In Figure 1(a), all the devices and building blocks with
symmetry matching requirements are specified with perfect constraints.
By removing a symmetry constraint for a matched resistor pair, we can
observe a dramatic change in the final layout that lead to performance
degradation in signal-to-noise and distortion ratio (SNDR) of 3.1 dB and
spurious-free dynamic range (SFDR) of 3.8 dB, as shown in Figure 1(b).

Recent advances in graph neural networks (GNNs) have demonstrated
superior efficacy in learning graph structures and mining graph informa-
tion [11], [12]. Applications of GNNs in the electronic design automation
(EDA) domain have also been shown [13]–[15]. By formulating circuit
netlists as graphs, we can rely on GNN models to extract symmetry
constraints regarding device parameters and matching structures.

In this paper, we propose a novel unsupervised inductive graph-learning-
based methodology for universal AMS symmetry constraint extraction.
Leveraging the unsupervised learning technique with GNNs, our frame-
work learns a strategy to extract the latent information of matching circuit
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Fig. 1: Automated P&R layouts of a 2nd-order CTDSM. (a) Layout with
symmetry constraints specified accurately. (b) Layout with a symmetry
constraint removed.

structures, thus applicable to general AMS designs. The main contribution
of this work is summarized as follows.
• A GNN-based framework is presented to identify universal symmetry

constraints (i.e., system-level and device-level constraints) for AMS
designs by extracting the information of matching structures. The
source code is released on Github†.

• The framework is generalizable to every design by learning feature
representations over unsupervised loss function.

• A heterogeneous multigraph representation to model both active and
passive elements for general AMS circuits is proposed.

• A circuit feature embedding algorithm is developed to support
system-level symmetry constraint generation.

• Experimental results on real-world taped-out designs show that our
framework outperforms previous work with remarkable quality im-
provement and significant runtime speedup.

The remainder of this paper is organized as follows. Section II provides
a brief overview of related work. Section III gives the preliminaries and
formulates the symmetry constraint extraction problem. Section IV details
the proposed unsupervised inductive graph-learning framework. Section V
presents the experimental results, and Section VI concludes the paper.

II. RELATED WORK

Among prior art on automatic AMS symmetry constraint extraction,
[16]–[18] conduct sensitivity analysis to identify symmetry and matching
pairs. The simulation-based methodologies are generalizable to various
circuit structures and performance metrics in the analog domain. Never-
theless, these approaches suffer from expensive circuit simulation, thus
impractical in large systems such as analog-to-digital converter (ADC).

As circuits can be modeled as hypergraphs naturally, graph matching
based techniques have also been investigated. The work [19] presents a
pattern matching algorithm on structural signal flow graphs to generate
hierarchical matching constraint groups. The work [6] performs signal
flow analysis on circuit graphs in addition to pattern matching. Though
the graph matching algorithms show decent results on simpler designs

†https://github.com/baloneymath/AncstrGNN978-1-6654-3274-0/21/$31.00 ©2021 IEEE



TABLE I: Comparisons of symmetry constraint extraction methods among
recent work and the proposed framework.

ICCAD’19
[6]

ASP-DAC’20
[20]

ICCAD’20
[21] This work

Circuit representation Graph Graph Bipartite
graph

Heterogeneous
multigraph

Training method N/A N/A Supervised Unsupervised

Circuit embedding N/A Heuristic GNN GNN

Sizing consideration N/A N/A Devices Devices +
Circuits

Device-level matching Heuristic
patterns N/A Heuristic

patterns
Cosine

similarity

System-level matching N/A K-S test GED Cosine
similarity

Unified for device-
and system-level N/A N/A No Yes

and are computationally efficient, they fail to recognize symmetries for
complicated circuit topologies with hierarchical structures. In [20], a
spectral method computing graph similarity is proposed to detect system-
level symmetry constraints. Still, the scalability is restricted by heavy-
loaded statistical computation. In [21], a GNN-assisted hierarchical sym-
metry constraint annotation framework is shown. Symmetry constraints are
determined by estimating graph edit distance (GED) between matching
pairs using a GNN. However, the supervised learning method requires
a large amount of labeled data to train an accurate prediction model and
limits its applicability to specific circuit types. Great efforts are required to
extend the trained model for unseen and more complex circuit structures.

Graph representations are used for circuit prototyping in [6], [19]–[21].
The work [19] formulates circuit netlists with directed graphs to describe
detailed pin-to-pin connections and signal flows. However, the constructed
graph consists of a vast vertex set, thus unsuitable for real-world complex
AMS systems. The work [6], [20] adopts a simplified graph representation
with pins modeled as vertices. Nevertheless, the vertex set is still large and
might have information loss due to graph isomorphism. In [21], a bipartite
graph representation is applied with devices and nets being disjoint vertex
sets. Though it has decreased vertex number and can capture connection
types by setting labels on edges, the complexity of exploring neighboring
structures is significantly higher.

Capitalizing on the sizing information is crucial for symmetry constraint
extraction. Though previous approaches consider sizing for device-level
symmetry constraints, they cannot handle the sizing of subcircuits, which
is essential for system-level symmetry constraint generation. Figure 2
shows an example with three system-level symmetry constraints. Without
sizing consideration, an algorithm tends to cause false alarms by annotating
all the inverters as a symmetry group since they have identical topologies.
Our framework captures both the sizing of devices and subcircuits to
improve the solution quality.

Table I summarizes the aforementioned symmetry constraint extraction
approaches and compares them with our proposed unsupervised inductive
learning framework. Compared with previous approaches, the proposed
heterogeneous multigraph circuit representation enjoys a reduced vertex set
for better efficiency, without missing any detailed connecting information.
The proposed unsupervised GNN-learning-based symmetry constraint ex-
traction method shows excellent solution quality and great generalizability.
Besides, our framework does not require manual labels for training, thus
extensible to new circuits with minimum efforts.

III. PRELIMINARIES

In this section, we introduce the definitions of system symmetry
constraint and device symmetry constraint. Then, we formulate the AMS
symmetry constraint extraction problem.

A. Symmetry Constraints for AMS Circuits

To optimize performance for AMS circuit layouts, symmetry constraints
are specified for pairs of matched modules to enforce matching. A
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Fig. 2: Part of a clock circuit in a SAR ADC with symmetry constraints
considering sizing.
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Fig. 3: (a) System-level symmetry constraints. (b) Device-level symmetry
constraints.

symmetry constraint is a three-tuple s = (Tc, ti, tj) that specifies the
matching requirement between a pair of matched modules (ti, tj) under
the circuit hierarchy Tc, where ti, tj ∈ Tc. The matched pair (ti, tj)
should be placed and routed symmetrically regarding some joint axes.
For a symmetry constraint s, if exists any other subcircuit under Tc and
that ti, tj are building blocks (e.g., operational transconductance amplifier
(OTA), comparator) or passive devices (e.g., capacitors, resistors), then s
is a system-level symmetry constraint. Otherwise, s is defined as a device-
level symmetry constraint. Any module pair (ti, tj) with ti and tj under
different circuit hierarchies or having nonidentical types is considered
invalid.

Figure 3(a) shows an example of system-level symmetry constraints of
two digital-to-analog converter (DAC) pairs on a 3rd-order CTDSM. Fig-
ure 3(b) annotates some device-level symmetry constraints of a comparator
in the CTDSM.

B. Problem Formulation

The AMS symmetry constraint extraction problem is formulated as
follows.

Problem 1 (AMS Symmetry Constraint Extraction): Given a circuit
netlist N with hierarchy tree structure T = {ti|1 ≤ i ≤ |T |}, where
ti is a primitive element if ti is a leaf; otherwise, ti is a building block,
generate a set of symmetry constraints such that every matched pair (ti, tj)
in the corresponding circuit hierarchy Tc ⊆ T is specified with a valid
symmetry constraint.

IV. ALGORITHMS

The overall flow of our GNN-based symmetry constraint extraction
framework is shown in Figure 4. In the flow, the input circuit netlist is
first transformed into a proposed heterogeneous multigraph. Each vertex
in the constructed multigraph is then initialized with a feature vector
considering device types and parameters. After the pre-processing stage,
the core of our framework consists of three main phases: 1) unsupervised
inductive GNN learning, which samples and aggregates the neighboring
features of each vertex to extract accurate structural information, 2)
circuit feature embedding, which determines the feature of each subcircuit
by detecting representative sub-structures within the circuit graph, and
3) classification, which calculates the cosine similarity between valid
symmetry pair candidates to generate final symmetry constraints.
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Fig. 4: Computation flow of the proposed GNN-based symmetry constraint extraction framework.
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Fig. 5: Example of the proposed heterogeneous multigraph representation
for an analog circuit.

A. Heterogeneous Mulitgraph Construction

Circuit schematic can be formulated into graphs naturally. To construct
a circuit graph that models the nets connections with more details, we
propose a heterogeneous directed multigraph (i.e., graph with parallel
edges) representation for general AMS designs. With an input netlist, we
transform the circuit into a heterogeneous multigraph G = (V,E), where
V is a set of vertices and E is a set of directed edges. The set V consists
of primitive devices in the circuit, and each vertex v ∈ V is marked
with its corresponding device type. A directed edge e = (u, v, τv) ∈ E
signifies the interconnection from vertex u to v with edge type τv ,
where τv ∈ P denotes the type of the port of v connected by e, and
P = {pgate , pdrain , psource , ppassive} is a set of port types. Note that
parallel edges are permitted since G is a multigraph.

Example 1: Figure 5 illustrates a vivid example of the proposed
heterogeneous multigraph representation. As shown in the figure, the four
devices m0, m1, m2, and CL are mapped to four vertices, respectively.
Since the drain of m1 is connected to the drain of m2, an edge
e1 = (m1,m2, pdrain) is added to the graph. Similarly, another edge
e2 = (m1, CL, ppassive) is created.

Algorithm 1 sketches the detailed graph construction procedure. We
first initialize a multigraph G = (V,E). In ines 2-4, we traverse the
input netlist hierarchy tree T and add the leaf nodes (devices) to V . After
building the vertex set V , we iterate through the circuit nets and adopt a
clique-based edges construction, as shown in Lines 5-13 in Algorithm 1.
Note that we avoid constructing self-loops in G. After enumerating all the
nets, the edge set E is constructed and we return the multigraph G for
circuit representation.

Algorithm 1 ConstructHeterogeneousGraph(N)

Input: A circuit netlist N with hierarchy tree T .
Output: The heterogeneous multigraph representation G.

1: Initialize a heterogeneous multigraph G = (V,E).
2: for each tree node ti ∈ T do
3: if ti is a leaf node then . ti is a primitive element
4: V := V ∪ {ti};
5: for each net ni ∈ N do
6: for each device port pi ∈ ni do
7: for each device port pj ∈ ni and pi 6= pj do
8: u := CorrespondingVertex(pi); . u ∈ V
9: v := CorrespondingVertex(pj); . v ∈ V

10: if u 6= v then . avoid self loops in E
11: E := E ∪ {(u, v, τv), (v, u, τu)};

return G;

TABLE II: Initial features of a vertex v in the heterogeneous multigraph
G representing the input circuit.

Feature Length Description
Device type 15 The one-hot device type encoding.
Geometry 2 The length and width of the device

Layer 1 The number of metal layers.

B. Node Feature Initialization

After the heterogeneous multigraph construction, we determine an initial
feature vector for each vertex. Table II summarizes the features and their
dimension. The features consist of the device type information of a vertex
and its shape parameters. The type of a device (e.g., nch lvt, pch lvt,
cfmom) is converted to a 15-dimensional one-hot vector. As modern
analog devices are much more sophisticated, there could be tens of design
parameters to precisely describe a device’s shape. However, using all the
parameters will restrict the learning model’s ability to identify matching
of nonidentical circuit structures and cause extra efforts extending the
model to new circuits. To extract the shape information of a device without
jeopardizing the generalizability of our learning model, we build a vector
comprising length, width, and number of metal layers to approximate the
exact shape details. These two vectors are then concatenated to form the
feature vector of a vertex for GNN learning.

C. Unsupervised Inductive GNN Learning

To make the GNN model generalizable, we leverage unsupervised
learning to train a universal inductive strategy which can be applied on



unseen circuits.
With the constructed heterogeneous multigraph G = (V,E) of a circuit,

we train our GNN model to sample and aggregate neighboring features
for each vertex v ∈ V . By iteratively aggregating the features of neighbor
vertices, the GNN model will recognize the localized interconnection and
the peripheral structures of each vertex v. Inspired by the core idea of [22],
we set the feature aggregating function to aggregate the features of K-
hop neighbors of a vertex as follows to comprehend the connections with
different edge types.

h(k)
v = GRU

(
h(k−1)
v ,

∑
u∈Nin (v)

Weuvh
(k−1)
u

)
, (1)

where h(k)
v symbolizes the feature vector of vertex v at the kth layer of

the GNNs, GRU (·, ·) is the computation function of a gated recurrent
unit, Nin(v) signifies the in-neighbors of v, and Weuv is the linear
transformation matrix corresponding to the edge euv . To be specific, there
is a matrix set W with |W| = 4 since we define four edge types in
Section IV-A. Note that the total number of layers K in the learning
model is corresponding to the features aggregation of K-hop neighbors.
In our implementation, we set K = 2, and the output dimension D of
each neural network is set to 18.

To perform unsupervised learning on the GNN model, we define a loss
function L : RD → R, where D is the dimension of the vertex feature
vector. The function L takes the final feature representation zv = h

(K)
v of

a vertex v as input and compute the cross-entropy loss as follows.

L(zv) =−
∑

u∈Nin (v)

log(σ(zᵀuzv))

−
B∑

i=1

Eũ∼Neg(v) log(1− σ(zᵀũzv)),

(2)

where σ(x) = 1/(1 + e−x) is the logistic sigmoid function, Neg(v)
denotes the negative sampling distribution with respect to v, and B is
the total number of negative samples. Practically, Nin(v) selects the 1-
hop in-neighbors of v, and B is set to 5. By minimizing the overall loss
Ltot =

∑
v∈V L(zv), the GNN model learns the strategy to improve

feature similarity between each vertex v and its 1-hop neighbors, while
enlarging the discrepancy between v and the negative samples Neg(v).

Intuitively, as the training procedure aggregates neighboring features
and optimizes the loss Ltot , the final feature representation of each vertex
v contains the information of the localized circuit structure centered at
v, including the device types, geometric shapes, and interconnections.
Therefore, those devices with symmetry matching requirements tend to
possess alike final feature representations since they would have similar
neighboring structures.

D. Circuit Feature Embedding

With the trained feature vectors of the vertices, we obtain the device-
level information. To detect the symmetry matching between building
blocks, we perform circuit feature embedding to determine the feature
representation for each subcircuit.

For each subcircuit t, we analyze its multigraph representation Gt to
produce its feature embedding using the vertex feature vectors trained
in the previous stage. Since some nonidentical subcircuits still require
symmetry matching (e.g., capacitor/resistor arrays with different intercon-
nections), we characterize the subcircuit by selecting some of the most
representative vertices in the multigraph, instead of using the entire multi-
graph. To select the top-M representative vertices within Gt, we introduce
the PageRank algorithm [23] to find the targets. In our implementation,
M is set to 10. If the devices in the subcircuit t is less than M , we set
M = |Vt|.

Algorithm 2 provides the circuit feature embedding procedure. Firstly,
we construct a simplified directed graph G′t = (Vt, E

′
t) with an updated

Algorithm 2 EmbedCircuitFeature(t, Gt, Z)

Input: A subcircuit t in the circuit hierarchy tree T (i.e., t is not a leaf
node), its heterogeneous multigraph representation Gt = (Vt, Et),
and the trained vertex feature vectors Z.

Output: The subcircuit feature embedding zt.
1: Initialize a directed graph G′t = (Vt, E

′
t), E′t = ∅.

2: for each e = (u, v, τv) ∈ Et do
3: if (u, v) /∈ E′t then . avoid parallel edges
4: E′t := E′t ∪ {(u, v)};
5: Compute PR(vi) for all vi ∈ V ;
6: Sort Vt in the descending order of PR(vi) for all vi ∈ Vt;
7: zt := 0;
8: for i = 1 to M do . pick the top-M PageRank vertices
9: zvi := FeatureVector(vi) ∈ Z;

10: zt := Concatenate(zt, zvi);
return zt;

Algorithm 3 DetectSymmetryConstraints(N)

Input: A circuit netlist N with hierarchy tree T .
Output: A set of valid symmetry constraints S.

1: S = ∅; λth := SimilarityThreshold(N);
2: for each circuit hierarchy Tc ∈ T do
3: for each valid pair (ti, tj) ∈ Tc do
4: zti := FeatureVector(ti);
5: ztj := FeatureVector(tj);
6: λsim := CosineSimilarity(zti , ztj );
7: if λsim > λth then
8: S := S ∪ {(Tc, ti, tj)};

return S;

edge set E′t (Lines 1-4). The edges in E′t are directed edges without types,
and no parallel edge is allowed in G′t (i.e., at most two edges can exist
between every two vertices). With the simplified directed graph G′t, we
calculate the PageRank value of the vertices in Vt and sort Vt in the
descending order with repsect to the calculated values (Lines 5-6). The
PageRank computation for each vertex is defined as follows.

PR(v) =
1− γ
|Vt|

+ γ ·
∑

u∈Nin (v)

PR(u)

|Nout(v)| , (3)

where γ is the damping factor, Nin(v) denotes the in-neighbors of v,
and Nout(v) indicates the out-neighbors of v. Then, we select the top-M
vertices with the highest PageRank values and set the concatenation of
their feature vectors as the subcircuit feature embedding, as sketched in
Lines 7-10.

E. Symmetry Constraint Detection

In this step, we determine the final symmetry constraints for the matched
devices and subcircuits. Algorithm 3 shows the detection procedure. For
each circuit hierarchy Tc ⊆ T , we compare the feature vectors’ similarity
of every candidate pair (ti, tj) ∈ Tc. A candidate pair is a valid module
pair as defined in Section III-A. Before calculating the similarity, we set a
similarity threshold λth . Since larger subcircuits are more probable to have
nonidentical matching structures, for system-level constraints, we define
λth according to the maximum subcircuit size |N̂sub | in the circuit N as
follows.

λth = min(0.999, α+
β

1 + |N̂sub |
), (4)

where α and β are constants. In our implementation, we set α = β = 0.95.
For device-level constraint detection, we set λth = 0.99. A candidate pair
will be annotated as a valid constraint if the cosine similarity λsim of



their features zti and ztj is greater than λth , where λsim is calculated as
follows.

λsim =
zti · ztj
‖zti‖‖ztj‖

. (5)

If λsim > λth , we construct a new symmetry constraint s = (Tc, ti, tj).
After enumerating all the valid pairs, we obtain the final symmetry
constraint set (Lines 2-8).

V. EXPERIMENTAL RESULTS

The proposed framework for AMS symmetry constraint extraction is
implemented in Python with the PyTorch library. All experiments are
conducted on a Linux workstation with an Intel i9 3.3GHz CPU with
128GB memory, and an Nvidia Titan Xp GPU. To demonstrate the
effectiveness and scalability of our proposed framework, we conduct
experiments on a wide range of AMS circuit classes. We obtain five
large-scale ADC architectures from experienced analog circuit designers.
Table III lists the statistics of the ADCs. We also collect 15 block-
level circuits from the open-source datasets [5], [6], including variants of
operational transconductance amplifiers (OTAs), comparators (COMPs),
DACs, etc. Table IV summarizes the statistics of the block-level designs.
These circuits form the training dataset for unsupervised GNN learning.

To evaluate the solution quality, we adopt comprehensive measurements
covering true positive rate (TPR), false positive rate (FPR), positive
predictive value (PPV), accuracy (ACC), and F1-score over the valid pairs.
The formulas of these metrics are shown as follows.

TPR =
TP

TP+FN
, FPR =

FP
FP+TN

, PPV =
TP

TP+FP
,

ACC =
TP+TN

TP+FP+TN+FN
, F1-score =

2TP
2TP+FP+FN

,

(6)

where TP, FP, TN, and FN abbreviate the amount of the true positives, false
positives, true negatives, and false negatives of the symmetry constraints
generated by our framework compared with the ground truth (i.e., the
constraints given by circuit designers), respectively.

TABLE III: Statistics of the five ADC benchmarks.

Benchmark Architechture #Devices #Nets #Valid Pairs
ADC1 2nd-order CT ∆Σ 285 122 148
ADC2 3rd-order CT ∆Σ 345 162 104
ADC3 3rd-order CT ∆Σ 347 163 82
ADC4 SAR 731 372 776
ADC5 Hybrid CT ∆Σ SAR 1233 586 1177

TABLE IV: Statistics of the block-level circuit benchmarks.
Benchmark #Circuits #Devices #Nets #Valid Pairs

OTA 6 133 109 770
COMP 6 145 109 1060
DAC 2 22 30 43

LATCH 1 24 14 132
Total 15 324 262 2005

A. System-level Constraint Extraction

We compare the system-level constraint extraction results with the state-
of-the-art framework [20] that generates system-level symmetry constraints
based on graph similarity. The executable of [20] is obtained from its
authors and executed on our machine.

Table V shows the comparison between the system-level symmetry
constraint extraction result. Comparing the solutions, our framework
consistently outperforms [20] in all the five ADC designs. On average,
our framework achieves a far superior F1-score improved by 15.8% and
4.6%, 20.6%, and 6.2% higher TPR, PPV, ACC, respectively. Obtaining
a higher F1-score indicates that the symmetry constraints generated by
our framework are precise, and more truly matched building blocks
are covered. Besides, our framework achieves an extremely low FPR
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Fig. 6: ROC curves of [20] and our framework on the merged dataset with
five ADCs.
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Fig. 7: ROC curve of our results on the merged dataset with the block-level
circuits, and the point of [6] in the ROC space.

of 0.7% with a 4.1% reduction compared with [20], implying that the
proposed algorithm rarely produces unnecessary constraints. Furthermore,
one can notice that the proposed graph-learning-based framework achieves
significant runtime improvement with about 218× reduction on average. In
large cases such as ADC4 and ADC5, our framework can further achieve
up to 483× and 350× speedup, respectively.

To cover a more thorough analysis of the two approaches, we combine
the five ADCs into a merged dataset and plot the receiver operating
characteristic (ROC) curves, as shown in Figure 6. One can observe that
our framework obtains a much larger area under the curve (AUC). In fact,
the ROC curve of [20] is fully enclosed by ours.

B. Device-level Constraint Extraction

We further investigate the device-level constraint extraction results.
Table VI details the comparisons of evaluation metrics between the signal
flow analysis (SFA) method in [6] and our framework. Our results show
that, on average, we achieve 4.5% reduction in FPR, 19.7%, 3.9%, 9.8%
improvement in PPV, ACC, and F1-score, respectively. Observe that the
SFA algorithm obtains higher TPR than ours, the main reason is because
it tends to mark more unnecessary constraints and produce more false
alarms. However, a lower FPR is desired in practice since specifying
incorrect constraints can conflict with proper constraints. In that case,
the analog P&R engines might fail to get a feasible solution. Also, our
framework outperforms [6] significantly in F1-score, which is a more
generalized metric that accounts for both TPR and PPV. A higher F1-
score implies better model quality. Note that the 15 block-level circuits
are all relatively small, and thus the runtime of our approach is dominated
by loading the GNN model. When combining all the circuits to a merged
dataset, our framework still completes the constraint extraction for all the
circuits within 3 seconds. Furthermore, the scalability of our framework
has already been verified by generating constraints for large-scale designs
in Table III.

Figure 7 plots the ROC curve of our framework on the merged dataset
consisting of the 15 block-level circuits. Note that [6] can only produce
a single point in the ROC space since it is a heuristic algorithm instead
of a probability-based method. As shown in Figure 7, the ROC curve of
our framework results in a high AUC of 0.956, and encloses the point
produced by the SFA algorithm.



TABLE V: Comparison of TPR, FPR, ACC, F1-score, and runtime(s) for system-level symmetry constraint extraction.

Benchmark S3DET [20] This work
Design #Devices #Nets TPR FPR PPV ACC F1-score Runtime TPR FPR PPV ACC F1-score Runtime†

ADC1 285 122 1.000 0.036 0.667 0.966 0.800 36.70 1.000 0.000 1.000 1.000 1.000 2.71
ADC2 345 162 1.000 0.044 0.765 0.962 0.867 30.98 1.000 0.000 1.000 1.000 1.000 2.45
ADC3 347 163 1.000 0.125 0.526 0.890 0.690 49.58 1.000 0.014 0.909 0.988 0.952 2.74
ADC4 731 372 0.619 0.000 1.000 0.812 0.765 1717.81 0.880 0.005 0.994 0.938 0.934 3.55
ADC5 1233 586 0.864 0.036 0.836 0.946 0.850 1795.52 0.835 0.015 0.920 0.958 0.875 5.14

Average - - 0.897 0.048 0.759 0.915 0.794 726.12 0.943 0.007 0.965 0.977 0.952 3.32
† Runtime with GNN model training time excluded.

TABLE VI: Comparison of TPR, FPR, ACC, F1-score, and runtime(s) for device-level symmetry constraint extraction.

Benchmark SFA [6] This work
Design #Devices #Nets TPR FPR PPV ACC F1-score Runtime TPR FPR PPV ACC F1-score Runtime†

OTA1 12 14 0.667 0.000 1.000 0.941 0.800 <0.1 0.333 0.000 1.000 0.882 0.500 2.17
OTA2 20 20 0.875 0.171 0.333 0.833 0.483 <0.1 0.625 0.049 0.556 0.922 0.588 2.17
OTA3 12 12 0.667 0.083 0.667 0.867 0.667 <0.1 0.333 0.000 1.000 0.867 0.500 2.17
OTA4 36 36 0.667 0.131 0.170 0.861 0.271 <0.1 0.667 0.007 0.800 0.981 0.727 2.18
OTA5 38 18 0.833 0.004 0.909 0.989 0.870 <0.1 0.667 0.011 0.727 0.975 0.696 2.18
OTA6 15 9 0.571 0.000 1.000 0.870 0.727 <0.1 1.000 0.000 1.000 1.000 1.000 2.11

COMP1 47 31 1.000 0.108 0.197 0.895 0.329 <0.1 1.000 0.011 0.700 0.989 0.824 2.17
COMP2 8 16 1.000 0.000 1.000 1.000 1.000 <0.1 1.000 0.000 1.000 1.000 1.000 2.18
COMP3 34 22 0.875 0.016 0.778 0.978 0.824 <0.1 1.000 0.004 0.941 0.996 0.970 2.19
COMP4 22 16 0.625 0.057 0.455 0.921 0.526 <0.1 0.625 0.019 0.714 0.956 0.667 2.18
COMP5 17 12 1.000 0.143 0.500 0.875 0.667 <0.1 1.000 0.000 1.000 1.000 1.000 2.17
COMP6 17 12 1.000 0.000 1.000 1.000 1.000 <0.1 1.000 0.000 1.000 1.000 1.000 2.17
DAC1 10 11 1.000 0.000 1.000 1.000 1.000 <0.1 1.000 0.000 1.000 1.000 1.000 2.17
DAC2 12 19 1.000 0.000 1.000 1.000 1.000 <0.1 1.000 0.000 1.000 1.000 1.000 2.17

LATCH1 24 14 0.800 0.074 0.471 0.917 0.593 <0.1 0.600 0.000 1.000 0.970 0.750 2.18
Average - - 0.839 0.052 0.699 0.930 0.717 <0.1 0.790 0.007 0.896 0.969 0.815 2.17
† Runtime with GNN model training time excluded.

VI. CONCLUSION

This paper has presented a novel graph-learning-based symmetry con-
straint extraction framework for analog/mixed-signal circuits. An efficient
heterogeneous multigraph representation has been proposed for intercon-
nection modeling. A circuit feature embedding algorithm has been shown
to represent a circuit with the most representative substructures. With
the unsupervised inductive learning technique, the proposed framework
is generalizable to every design. Experimental results have demonstrated
the efficiency and effectiveness of the proposed framework in detecting
both system-level and device-level symmetry constraints.
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