
UNIVERSIDAD DE CÓRDOBA

Departamento de Informática y Análisis Numérico

Programa de doctorado en computación avanzada, enerǵıa y plasmas

Modelos metaheuŕısticos para el soporte
a la decisión en el proceso de

construcción de software

Metaheuristic models for decision support in the software
construction process

Memoria de Tesis presentada por

Aurora Ramı́rez Quesada

como requisito para optar al grado

de Doctor en Informática

Directores

Dr. José Raúl Romero Salguero

Dr. Sebastián Ventura Soto

Córdoba, septiembre de 2018

UNIVERSITY OF CÓRDOBA

Department of Computer Science and Numerical Analysis

Metaheuristic models for
decision support in the

software construction process

A Thesis submitted by

Aurora Ramı́rez Quesada

in fulfilment of the requirements for

the degree of Doctor in Computer Science

Supervisors

Dr. José Raúl Romero Salguero

Dr. Sebastián Ventura Soto

Córdoba, September 2018

La memoria titulada “Modelos metaheuŕısticos para el soporte a la decisión en el

proceso de contrucción de software”, que presenta Aurora Ramı́rez Quesada para

optar al grado de Doctor en el marco del programa de doctorado “Computación

avanzada, enerǵıa y plasmas”, recopila un trabajo original de investigación realiza-

do en el Departamento de Informática y Análisis Numérico de la Escuela Politécnica

Superior de la Universidad de Córdoba. Dicho trabajo ha sido realizado bajo la direc-

ción de Dr. José Raúl Romero Salguero y Dr. Sebastián Ventura Soto cumpliendo, a

su juicio, los requisitos exigidos a este tipo de trabajos y respetando los derechos de

otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Córdoba, septiembre de 2018

La candidata:

Fdo.: Aurora Ramı́rez Quesada

Los directores:

Fdo.: Dr. José Raúl Romero Salguero Fdo.: Dr. Sebastián Ventura Soto

Tesis con mención internacional

Esta tesis cumple los criterios establecidos por la Universidad de Córdoba para la

obtención del T́ıtulo de Doctor con Mención Internacional:

1. Estancia predoctoral mı́nima de 3 meses fuera de España en una institución

de enseñanza superior o centro de investigación de prestigio, cursando estudios

o realizando trabajos de investigación relacionados con la tesis doctoral:

Department of Computer Science and Creative Technologies, Faculty of Envi-

ronment and Technology, University of the West of England, Bristol, United

Kingdom. Responsable de la estancia: Dr. Christopher L. Simons, Senior

Lecturer.

2. La tesis cuenta con el informe previo de dos doctores o doctoras expertos y

con experiencia investigadora acreditada pertenecientes a alguna institución

de educación superior o instituto de investigación distinto de España:

a. Dr. Virgilijus Sakalauskas, Professor. Dept. Informatics, Kaunas Fa-

culty, Vilnius University, Lithuania.

b. Dr. Francisco Servant, Assistant Professor. Dept. Computer Science,

Virginia Tech., Blacksburg, Virginia, United States of America.

3. Entre los miembros del tribunal evaluador de la tesis se encuentra un doc-

tor procedente de una institución de educación superior distinto de España y

diferente del responsable de la estancia predoctoral:

Dr. Robert Feldt, Professor. Dept. Computer Science and Engineering,

Chalmers University of Technology, Gothenburg, Sweden.

4. Parte de la tesis doctoral se ha redactado y presentado en dos idiomas, caste-

llano e inglés.

Córdoba, septiembre de 2018

La candidata:

Fdo.: Aurora Ramı́rez Quesada

Tesis Doctoral subvencionada por el programa de Formación del Profesorado

Universitario (FPU) del Ministerio de Educación, Cultura y Deportes (referencia

FPU13/01466), convocatoria publicada en el B.O.E. №279 de 21 de noviembre

de 2013 y resuelta en el B.O.E. №215 de 4 de septiembre de 2014.

La estancia para la obtención de la mención internacional ha sido financiada por el

mencionado programa (referencia EST16/00143), conforme a la convocatoria

publicada en el B.O.E. №14 de 17 de enero de 2017 y resuelta el 4 de abril de 2017.

Asimismo, esta Tesis Doctoral ha sido parcialmente subvencionada por el

Ministerio de Ciencia y Tecnoloǵıa mediante el proyecto TIN2011-22408, el

Ministerio de Economı́a y Competitivad (proyectos TIN2014-55252-P y

TIN2017-83445-P), la Red de Excelencia en Ingenieŕıa de Software basada en

búsqueda (TIN2015-71841-REDT), y fondos FEDER.

Agradecimientos

“No duty is more urgent than that of returning thanks.”

James Allen

Llegando al final de una larga etapa de formación, si es que eso termina en algún

momento, me doy cuenta de lo afortunada que he sido por poder compartirla con

tantas personas. Una página no es suficiente para expresar mi agradecimiento a

todas ellas, pero lo intentaré.

A la casualidad, que cruzó a Raúl en mi camino hace ya más de 10 años, por haberme

permitido descubrir a un atento tutor, un excelente profesor, un magńıfico director

y, sobre todo, una gran persona y mejor amigo. Raúl, te doy las gracias por tu

entrega, reflejada en cada minuto de cada reunión frente a la desafiante pizarra en

blanco, cada palabra en los incontables correos electrónicos, o cada coma en rojo en

cada manuscrito que con tanto esmero revisas, porque todo ello me ha convertido

en la investigadora que soy hoy. A Sebastián, por abrirle las puertas del laboratorio

a aquella t́ımida estudiante, y darle la oportunidad de desarrollar su trabajo en él.

Tu experiencia y apoyo constante también han sido claves en su consecución.

A mis compañeros de laboratorio, con quienes he tenido la suerte de compartir el

d́ıa a d́ıa. A esa primera generación (Juan Ignacio, Juan Luis, José Maŕıa, Alberto

y Oscar) porque, cada uno a vuestra manera, me habéis servido de ejemplo. A la

segunda generación (José Maŕıa, Rubén y Rafa), por su agradable compañ́ıa en

los últimos años. Os deseo que disfrutéis lo que os queda de camino. Al resto de

miembros del grupo KDIS por su apoyo, especialmente a Carlos, por tener siempre un

momento para explicarme los entresijos del misterioso mundo de las metaheuŕısticas.

También quiero mostrar mi agradecimiento al departamento de Informática y Análi-

sis Numérico y a buena parte de la Escuela Politécnica Superior, cuyos profesores

han mostrado interés en mi trabajo cada vez que nos cruzábamos por un pasillo. No

me puedo olvidar de la magńıfica comunidad SBSE en España, cuyas ideas han sido

fuente de inspiración a lo largo de estos años. A Chris Simons, the perfect British

host, por su amabilidad y ayuda durante mi estancia en Bristol, y con quien espero

poder seguir debatiendo ideas brillantes.

Quiero también agradecer a todos los compañeros y amigos con los que he ido

compartiendo mis distintas etapas universitarias. Vosotros me recordáis que existe

informática más allá de la investigación, e investigación más allá de la informática.

A mis amigos de siempre, porque me recuerdan que existe vida fuera de ambas.

Finalmente, a mi pequeña pero gran familia, por su infinito cariño y apoyo. A mis

padres, Mateo y Pilar, por haberme bindrado la mejor educación posible y estar

siempre a mi lado de forma incondicional. A mi hermana, Estrella, con quien más

y mejores momentos he compartido desde que tengo uso de razón, porque siempre

estás ah́ı para evadirnos juntas del doctorado. Estoy segura de que muy pronto

terminarás el tuyo con todos los honores que mereces.

Gracias de todo corazón.

Aurora

Resumen

En la actualidad, los ingenieros software no solo tienen la responsabilidad de cons-

truir sistemas que desempeñen una determinada funcionalidad, sino que cada vez

es más importante que dichos sistemas también cumplan con requisitos no funcio-

nales como alta disponibilidad, eficiencia o seguridad, entre otros. Para lograrlo,

los ingenieros se enfrentan a un proceso continuo de decisión, pues deben estudiar

las necesidades del sistema a desarrollar y las alternativas tecnológicas existentes

para implementarlo. Todo este proceso debe estar encaminado a la obtención de

sistemas software de gran calidad, reutilizables y que faciliten su mantenimiento y

modificación en un escenario tan exigente y competitivo.

La ingenieŕıa del software, como método sistemático para la construcción de softwa-

re, ha aportado una serie de pautas y tareas que, realizadas de forma disciplinada

y adaptadas al contexto de desarrollo, posibilitan la obtención de software de cali-

dad. En concreto, el proceso de análisis y diseño del software ha adquirido una gran

importancia, pues en ella se concibe la estructura del sistema, en términos de sus blo-

ques funcionales y las interacciones entre ellos. Es en este momento cuando se toman

las decisiones acerca de la arquitectura, incluyendo los componentes que la confor-

man, que mejor se adapta a los requisitos, tanto funcionales como no funcionales,

que presenta el sistema y que claramente repercuten en su posterior desarrollo. Por

tanto, es necesario que el ingeniero analice rigurosamente las alternativas existentes,

sus implicaciones en los criterios de calidad impuestos y la necesidad de establecer

compromisos entre ellos. En este contexto, los ingenieros se gúıan principalmente

por sus habilidades y experiencia, por lo que dotarles de métodos de apoyo a la

decisión representaŕıa un avance significativo en el área.

La aplicación de técnicas de inteligencia artificial en este ámbito ha despertado un

gran interés en los últimos años. En particular, la inteligencia artificial ha encontra-

do en la ingenieŕıa del software un ámbito de aplicación complejo, donde diferentes

técnicas pueden ayudar a conseguir la semi-automatización de tareas tradicional-

mente realizadas de forma manual. De la unión de ambas áreas surge la denominada

ingenieŕıa del software basada en búsqueda, que propone la reformulación de las

actividades propias de la ingenieŕıa del software como problemas de optimización.

A continuación, estos problemas podrán ser resueltos mediante técnicas de búsque-

da como las metaheuŕısticas. Este tipo de técnicas se caracterizan por explorar el

espacio de posibles soluciones de una manera “inteligente”, a menudo simulando

procesos naturales como es el caso de los algoritmos evolutivos.

A pesar de ser un campo de investigación muy reciente, es posible encontrar pro-

puestas para automatizar una gran variedad de tareas dentro del ciclo de vida del

software, como son la priorización de requisitos, la planificación de recursos, la re-

factorización del código fuente o la generación de casos de prueba. En el ámbito del

análisis y diseño de software, cuyas tareas requieren de creatividad y experiencia,

conseguir una automatización completa resulta poco realista. Es por ello por lo que

la resolución de sus tareas mediante enfoques de búsqueda debe ser tratada desde la

perspectiva del ingeniero, promoviendo incluso la interacción con ellos. Además, el

alto grado de abstracción de algunas de sus tareas y la dificultad de evaluar cuanti-

tavimente la calidad de un diseño software, suponen grandes retos en la aplicación

de técnicas de búsqueda durante las fases tempranas del proceso de construcción de

software.

Esta tesis doctoral busca realizar aportaciones significativas al campo de la ingenieŕıa

del software basada en búsqueda y, más concretamente, al área de la optimización

de arquitecturas software. Aunque se están realizando importantes avances en este

área, la mayoŕıa de propuestas se centran en la obtención de arquitecturas de bajo

nivel o en la selección y despliegue de artefactos software ya desarrollados. Por tanto,

no existen propuestas que aborden el modelado arquitectónico a un nivel de abs-

tracción elevado, donde aún no existe un conocimiento profundo sobre cómo será el

sistema y, por tanto, es más dif́ıcil asistir al ingeniero. Como problema de estudio,

se ha abordado principalmente la tarea del descubrimiento de arquitecturas software

basadas en componentes. El objetivo de este problema consiste en abstraer los blo-

ques arquitectónicos que mejor definen la estructura actual del software, aśı como

sus interacciones, con el fin de facilitar al ingeniero su posterior análisis y mejora.

Durante el desarrollo de esta tesis doctoral se ha explorado el uso de una gran varie-

dad de técnicas de búsqueda, estudiando su idoneidad y realizando las adaptaciones

necesarias para hacer frente a los retos mencionados anteriormente. La primera pro-

puesta se ha centrado en la formulación del descubrimiento de arquitecturas como

problema de optimización, abordando la representación computacional de los arte-

factos software que deben ser modelados y definiendo medidas software para evaluar

su calidad durante el proceso de búsqueda. Además, se ha desarrollado un primer

modelo basado en algoritmos evolutivos mono-objetivo para su resolución, el cual ha

sido validado experimentalmente con sistemas software reales. Dicho modelo se ca-

racteriza por ser comprensible y flexible, pues sus componentes han sido diseñados

considerando estándares y herramientas del ámbito de la ingenieŕıa del software,

siendo además configurable en función de las necesidades del ingeniero.

A continuación, el descubrimiento de arquitecturas ha sido tratado desde una pers-

pectiva multiobjetivo, donde varias medidas software, a menudo en conflicto, deben

ser simultáneamente optimizadas. En este caso, la resolución del problema se ha

llevado a cabo mediante ocho algoritmos del estado del arte, incluyendo propuestas

recientes del ámbito de la optimización de muchos objetivos. Tras ser adaptados al

problema, estos algoritmos han sido comparados mediante un extenso estudio expe-

rimental con el objetivo de analizar la influencia que tiene el número y la elección

de las métricas a la hora de guiar el proceso de búsqueda. Además de realizar una

validación del rendimiento de estos algoritmos siguiendo las prácticas habituales

del área, este estudio aporta un análisis detallado de las implicaciones que supone

la optimización de múltiples objetivos en la obtención de modelos de soporte a la

decisión.

La última propuesta en el contexto del descubrimiento de arquitecturas software

se centra en la incorporación de la opinión del ingeniero al proceso de búsqueda.

Para ello se ha diseñado un mecanismo de interacción que permite al ingeniero indi-

car tanto las caracteŕısticas deseables en las soluciones arquitectónicas (preferencias

positivas) como aquellos aspectos que deben evitarse (preferencias negativas). Esta

información es combinada con las medidas software utilizadas hasta el momento,

permitiendo al algoritmo evolutivo adaptar la búsqueda conforme el ingeniero in-

teractúe. Dadas las caracteŕısticas del modelo, su validación se ha realizado con la

participación de ingenieros con distinta experiencia en desarrollo software, a fin de

demostrar la idoneidad y utilidad de la propuesta.

En el transcurso de la tesis doctoral, los conocimientos adquiridos y las técnicas

desarrolladas también han sido extrapolados a otros ámbitos de la ingenieŕıa del

software basada en búsqueda mediante colaboraciones con investigadores del área.

Cabe destacar especialmente la formalización de una nueva disciplina transversal,

denominada ingenieŕıa del software basada en búsqueda interactiva, cuyo fin es pro-

mover la participación activa del ingeniero durante el proceso de búsqueda. Además,

se ha explorado la aplicación de algoritmos de muchos objetivos a un problema clási-

co de la computación orientada a servicios, como es la composición de servicios web.

Abstract

Nowadays, software engineers have not only the responsibility of building systems

that provide a particular functionality, but they also have to guarantee that these

systems fulfil demanding non-functional requirements like high availability, efficiency

or security. To achieve this, software engineers face a continuous decision process,

as they have to evaluate system needs and existing technological alternatives to

implement it. All this process should be oriented towards obtaining high-quality

and reusable systems, also making future modifications and maintenance easier in

such a competitive scenario.

Software engineering, as a systematic method to build software, has provided a

number of guidelines and tasks that, when done in a disciplinarily manner and

properly adapted to the development context, allow the creation of high-quality

software. More specifically, software analysis and design has acquired great relevance,

being the phase in which the software structure is conceived in terms of its functional

blocks and their interactions. In this phase, engineers have to make decisions about

the most suitable architecture, including its constituent components. Such decisions

are made according to the system requirements, either functional or non-functional,

and will have a great impact on its future development. Therefore, the engineer

has to rigorously analyse existing alternatives, their implications on the imposed

quality criteria and the need of establishing trade-offs among them. In this context,

engineers are mostly guided by their own capabilities and experience, so providing

them with decision support methods would represent a significant contribution.

The application of artificial intelligent techniques in this area has experienced a

growing interest in the last years. Particularly, software engineering represents a

complex application domain to artificial intelligence, whose diverse techniques can

help in the semi-automation of tasks traditionally performed manually. The union

of both fields has led to the appearance of search-based software engineering, which

proposes reformulating software engineering activities as optimisation problems. For

their resolution, search techniques like metaheuristics can be then applied. This type

of technique performs an “intelligent” exploration of the space of candidate solutions,

often inspired by natural processes as happens with evolutionary algorithms.

Despite the novelty of this research field, there are proposals to automate a great

variety of tasks within the software lifecycle, such as requirement prioritisation, re-

source planning, code refactoring or test case generation. Focusing on analysis and

design, whose tasks require creativity and experience, trying to achieve full automa-

tion is not realistic. Therefore, solving design tasks by means of search approaches

should be oriented towards the engineer’s perspective, even promoting their interac-

tion. Furthermore, design tasks are also characterised by a high level of abstraction

and the difficulty of quantitatively evaluating design quality. All these aspects re-

present key challenges for the application of search techniques in early phases of the

software construction process.

The aim of this Ph.D. Thesis is to make significant contributions in search-based

software engineering and, specially, in the area of software architecture optimisation.

Although it is an area in which significant progress is being done, most of the

current proposals are focused on generating low-level architectures or selecting and

deploying already developed artefacts. Therefore, there is a lack of proposals dealing

with architectural modelling at a high level of abstraction. At this level, engineers

do not have a deep understanding of the system yet, meaning that assisting them

is even more difficult. As case study, the discovery of component-based software

architectures has been primary addressed. The objective for this problem consists in

the abstraction of the architectural blocks, and their interactions, that best define

the current structure of a software system. This can be viewed as the first step

an engineer would perform in order to further analyse and improve the system

architecture.

In this Ph.D. Thesis, the use of a great variety of search techniques has been explored.

The suitability of these techniques has been studied, also making the necessary

adaptations to cope with the aforementioned challenges. A first proposal has been

focused on the formulation of software architecture discovery as an optimisation

problem, which consists in the computational representation of its software artefacts

and the definition of software metrics to evaluate their quality during the search

process. Moreover, a single-objective evolutionary algorithm has been designed for

its resolution, which has been validated using real software systems. The resulting

model is comprehensible and flexible, since its components have been designed under

software engineering standards and tools and are also configurable according to

engineer’s needs.

Next, the discovery of software architectures has been tackled from a multi-objective

perspective, in which several software metrics, often in conflict, have to be simulta-

neously optimised. In this case, the problem is solved by applying eight state-of-the-

art algorithms, including some recent many-objective approaches. These algorithms

have been adapted to the problem and compared in an extensive experimental study,

whose purpose is to analyse the influence of the number and combination of metrics

when guiding the search process. Apart from the performance validation following

usual practices within the field, this study provides a detailed analysis of the prac-

tical implications behind the optimisation of multiple objectives in the context of

decision support.

The last proposal is focused on interactively including the engineer’s opinion in the

search-based architecture discovery process. To do this, an interaction mechanism

has been designed, which allows the engineer to express desired characteristics for

the solutions (positive preferences), as well as those aspects that should be avoi-

ded (negative preferences). The gathered information is combined with the software

metrics used until the moment, thus making possible to adapt the search as the

engineer interacts. Due to the characteristics of the proposed model, engineers of

different expertise in software development have participated in its validation with

the aim of showing the suitability and utility of the approach.

The knowledge acquired along the development of the Thesis, as well as the proposed

approaches, have also been transferred to other search-based software engineering

areas as a result of research collaborations. In this sense, it is worth noting the

formalisation of interactive search-based software engineering as a cross-cutting dis-

cipline, which aims at promoting the active participation of the engineer during the

search process. Furthermore, the use of many-objective algorithms has been explo-

red in the context of service-oriented computing to address the so-called web service

composition problem.

Preface

The Spanish legislation for Ph.D. studies, RD 99/2011, published the 28th of Ja-

nuary of 2011 (BOE-A-2011-2541), grants each Spanish University competencies to

establish the necessary supervision and evaluation procedures to guarantee the qua-

lity of Ph.D. Theses. As unique requirement for the defence, this national regulation

indicates that the manuscript should be accompanied by a document detailing the

complementary learning activities carried out by the student.

Accordingly, the University of Córdoba has a specific regulation for Ph.D. studies,

approved by its governing board the 21th of December of 2011. This regulation

establishes two different modalities to elaborate the manuscript that the student,

under the supervision of one or more Ph.D. advisors, has to present at the end

of his/her doctorate studies. This Ph.D. Thesis follows the modality described in

the article no. 24 of the aforementioned regulation, referred as Ph.D. Thesis as

a compendium of publications. According to that article, the Ph.D. Thesis can be

presented as a compendium of, at least, three research articles published (or accepted

for publication) in research journals of high quality, i.e. appearing in the first three

quartiles of the Journal Citation Reports (JCR). If such a requirement is fulfilled,

the manuscript has to include: an introduction to justify the thematic cohesion of

the Ph.D. Thesis; the hypotheses and objectives to be achieved, and how they are

associated to the publications; full copy of the publications, and conclusions.

Following these guidelines, this Ph.D. Thesis is organised as described next. Firstly,

an introductory part is divided into five chapters. More specifically, Chapter 1 pre-

sents the background and state of the art of the research areas in which this Ph.D.

Thesis is framed. Next, the motivation, objectives and hypotheses are detailed in

Chapter 2. Chapter 3 explains the research methodology, while an overview of the

obtained results is presented in Chapter 4. Lastly, Chapter 5 discusses conclusions

and future work. The second part of the document is comprised of three chapters.

Chapter 6 includes the three main publications derived from this Ph.D. Thesis.

Chapter 7 compiles other journal publications associated to this Ph.D. Thesis. Fi-

nally, Chapter 8 provides the list of conference publications.

Contents

List of Figures V

List of Tables VII

List of Acronyms X

I Introduction 1

1. Background 3

1.1. Software architectures . 4

1.1.1. Foundations and definitions 4

1.1.2. The architecting process . 7

1.1.3. Decision support for architecture design 10

1.2. Search techniques . 11

1.2.1. Search and optimisation . 11

1.2.2. Metaheuristics . 13

1.2.3. Optimisation with multiple objectives 18

1.2.4. Interactive optimisation . 23

1.3. Search-based software engineering . 25

1.3.1. Origin and characteristics . 25

1.3.2. Search-based software design 27

1.3.3. Software architecture optimisation 29

2. Motivation and objectives 33

2.1. Objectives . 34

2.2. Research questions . 35

2.3. Relation between objectives and publications 37

I

3. Methodology 41

3.1. Literature analysis . 41

3.2. Experimental framework . 42

3.2.1. Implementation and execution environments 43

3.2.2. Problem instances . 43

3.2.3. Performance evaluation . 43

3.3. Threats to validity . 45

4. Results 47

4.1. Evolutionary discovery of architectures 47

4.1.1. Proposed approach . 48

4.1.2. Discussion of results . 50

4.1.3. Associated publications . 51

4.2. The multi- and many-objective perspectives 52

4.2.1. Proposed approach . 52

4.2.2. Discussion of results . 55

4.2.3. Associated publications . 56

4.3. The human-in-the-loop approach . 57

4.3.1. Proposed approach . 58

4.3.2. Discussion of results . 58

4.3.3. Associated publications . 60

5. Conclusions and future work 63

5.1. Concluding remarks . 63

5.2. Future lines of research . 66

Bibliography 71

II Scientific Publications 97

6. Compendium of publications 99

6.1. An approach for the evolutionary discovery of software architectures . 101

II

6.2. A comparative study of many-objective evolutionary algorithms for
the discovery of software architectures 125

6.3. Interactive multi-objective optimisation of software
architectures . 183

7. Other publications associated to this Ph.D. Thesis 203

7.1. Evolutionary composition of QoS-aware web services: a many-objective
perspective . 205

7.2. A systematic literature review of interaction in search-based software
engineering . 221

8. Conference publications 245

8.1. International conferences and workshops 245

8.2. National conferences . 246

III

List of Figures

1.1. The role of artificial intelligence in the decision-making process 12

1.2. Classification of metaheuristic techniques 14

1.3. Examples of trajectory-based search methods 16

1.4. The generational cycle of an evolutionary algorithm 17

1.5. The concept of Pareto dominance in multi-objective optimisation . . 19

1.6. Overview of an interactive algorithm 24

V

List of Tables

1.1. Quality indicators and their properties 20

1.2. Families of many-objective evolutionary algorithms 22

2.1. Objectives, research tasks and publications 38

3.1. Software systems used for experimentation 44

4.1. Design metrics to evaluate component-based architectures (I) 49

4.2. Design metrics to evaluate component-based architectures (II) 53

4.3. Design metrics to evaluate component-based architectures (III) 54

4.4. Design preferences for the interactive discovery of architectures 59

VII

List of Acronyms

ADL architecture description language

AI artificial intelligence

ACO ant colony optimisation

CBSE component-based software engineering

COTS commercial-off-the-shelf

DSS decision support system

EA evolutionary algorithm

EC evolutionary computation

HC hill climbing

IEC interactive evolutionary computation

LS local search

MA memetic algorithm

MaOEA many-objective evolutionary algorithm

MaOO many-objective optimisation

MaOP many-objective problem

MCDM multiple criteria decision making

MDE model-driven engineering

MOEA multi-objective evolutionary algorithm

MOO multi-objective optimisation

MOP multi-objective problem

MVC model-view-controller

PF Pareto front

IX

PS Pareto set

PSO particle swarm optimisation

QoS quality-of-service

QoSWSC QoS-aware web service composition

RQ research question

SA simulated annealing

SE software engineering

SI swarm intelligence

SBSE search-based software engineering

SBSD search-based software design

SLR systematic literature review

SPL software product line

SOA service-oriented architecture

TS tabu search

UML unified modelling language

X

Part I

Introduction

1
Background

“Learning never exhausts the mind”.

Leonardo da Vinci

T
his chapter presents the fundamentals and state of the art of the research areas

in which this Ph.D. Thesis is founded. More precisely, the conceptual frame-

work underlying the design of software architectures is firstly described. Decision

support methods for the architecting process are also covered. Then, an introduc-

tion to search techniques is presented, including an overview of metaheuristics with

special focus on evolutionary computation (EC). Two advanced approaches, i.e.

multi-objective optimisation (MOO) and interactive optimisation, are detailed next.

Lastly, search-based software engineering (SBSE) is explored in depth in order to

analyse the current state of the field regarding the application of search techniques

to address software design problems. A historical perspective of SBSE methods for

software architecture optimisation is also provided.

3

Chapter 1. Background

1.1. Software architectures

1.1.1. Foundations and definitions

The specification of abstract descriptions of software systems has always been a

central part of the software development process [73]. However, the lack of specific

methodologies has clearly hampered design traceability and knowledge transfer at

the beginnings of software engineering (SE). The increasing complexity of software

systems has led to the appearance of a more disciplined approach, allowing to es-

tablish a common terminology to reason about their high-level structure. Software

architecting is now a well-established practice within the software industry, with

specialised engineers, description languages and modelling tools. According to the

ISO/IEC/IEEE Std. 42010:2011 System and software engineering – Architecture

description [94], a software architecture is defined as follows:

A software architecture represents “the fundamental concepts or proper-

ties of a system in its environment embodied in its elements, relationships,

and in the principles of its design and evolution”.

Therefore, the architectural analysis of a software system not only represents an

essential activity during early software conception, but also guides its subsequent

development. The aforementioned definition also refers to the external environ-

ment in which the system will operate, which is equally important than its inter-

nal structure [57]. Hence, software architectures can be viewed at two different

levels: macro-architecture, which concerns the system environment, and a micro-

architecture, which dictates how the system is internally organised [57].

Focusing on this latter perspective, software architectures act as a bridge between re-

quirements and implementation [73]. In this sense, a software architecture provides

a high-level description of the system that allows engineers to specify how require-

ments are to be satisfied and what properties the system has to exhibit. According

to Garlan [73], software architectures are fundamental to the following aspects of

software development:

1. Understanding, since they describe the system at a level of abstraction that

makes software comprehension and reasoning easier;

4

1.1. Software architectures

2. Reuse, due to the fact that architectural solutions result in independent com-

ponents, which are often based on recurrent patterns;

3. Construction, as the architecture specifies the principal functional blocks and

existing dependencies between them;

4. Evolution, for which the architecture separates the functionalities from the

mechanisms to manage their interactions, which are subject to change in the

future;

5. Analysis, architectures being an important input for the assessment of non-

functional properties, conformance to styles and constraint satisfaction; and,

6. Management, since designing a good architecture can lead to cost and effort

savings, which are crucial for the success of complex industrial systems.

Languages and architectural styles

Formal notations to model and manage software architectures are frequently adopted

in academia and industry. In this sense, the ISO Std. 42010 [94] provides the

following definition:

An architecture description language (ADL) “is any form of expres-

sion for use in architecture descriptions”.

More specifically, an ADL specifies a conceptual framework and a concrete syntax to

specify the architecture [73]. ADLs must be simple, interpretable, understandable

and not necessarily graphic, though they are often supported by tools to create,

visualise and analyse architectural models [94]. An example of a generic ADL is

Acme, whist other ADLs are specific, such as AADL (Architecture Analysis and

Design Language) and EADL (Embedded Architecture Description Language) for

embedded systems or Darwin for distributed systems. More general, the unified

modelling language (UML) [138] supports now modelling architectural concepts be-

yond deployment aspects, the only view considered in its first version.

Due to the variety of purposes for which software systems are now conceived and the

broad range of possible technologies to bring them into life, architectural solutions

5

Chapter 1. Background

often conform to a particular style and adopt patterns to successfully achieve system

goals. Both concepts are highly relevant in today’s industrial practice. On the one

hand, architectural styles, such as data flow architectures or data-centred architec-

tures, provide a common vocabulary to interpret an architecture [2]. On the other

hand, architectural patterns like model-view-controller (MVC) are reusable solutions

for recurrent problems that appear within a particular context [32]. As opposed to

them, architectural bad smells are anti-patterns that appear as consequence of de-

sign decisions that negatively impact quality properties, such as understandability

and maintainability [72].

Component-based software architectures

Component-based software architectures represent a particular type of software

architecture whose distinctive characteristic is the reuse of functionality. A well-

established definition of software component is provided by C. Szyperski [185]:

“A software component is a unit of composition with contractually spec-

ified interfaces and explicit context dependencies only. A software compo-

nent can be deployed independently and is subject to third-party composi-

tion”. Each interface is “a set of named operations that can be invoked

by clients”.

Components are linked by means of connectors, which serve to specify that one

part of the system is providing the services that other parts need to operate [138].

In component-based software engineering (CBSE), the architect is responsible for

identifying components, assigning responsibilities to them and establishing how they

will collaborate through well-defined interfaces [76, 185]. This way, the system is

constructed by assembling independent and reusable components that all together

will provide the required functionality. As components are abstract units, they can

represent a variety of artefacts, including modules or packages in object-oriented sys-

tems, services in cloud environments or distributed objects in distributed systems.

This characteristic also implies that they remain independent of the specific lan-

guages and technologies that will be later selected for development and deployment.

In fact, a complementary decision for the architect to make is whether a component

should be built in-house or it can be acquired from specialised repositories. In this

6

1.1. Software architectures

sense, commercial-off-the-shelf (COTS) components offer already implemented and

tested functionality that can greatly reduce development effort but at the expense of

integration costs. Also, architects should be aware of legacy software, i.e. old parts of

the system that are critical to the business and should remain operative [153]. These

legacy systems are non-replaceable due to high rebuilding cost, inextensible design,

lack of proper documentation or obsolete hardware, so the proposed architectural

solution should provide effective ways for integration and communication.

1.1.2. The architecting process

The relevance and cross-cutting nature of software architectures imply that software

architects play a pivotal role within the software project. They have to interact with

stakeholders, lead the design team and be in permanent communication with project

managers to guarantee project success [76]. Furthermore, their expertise, experience

and know-how become indispensable when it comes to deal with complex systems

for which innovative solutions are required. A software architect is involved in an

iterative process comprised of three main steps [76]:

1. Architecture requirements definition, which is aimed at producing a specifica-

tion of those requirements that are relevant to the software architecture.

2. Architecture design, which includes the identification of components, and the

allocation of responsibilities.

3. Architecture validation, which assesses that the proposed architecture fits its

purpose according to project requirements and constraints.

Architecture identification and recovery

Within the architecture design phase, component modelling can be carried out with

a variety of methodologies. Two relevant activities for which supporting methods

have been proposed are component identification and architecture recovery. On the

one hand, component identification methods are applied to derive a partition of the

system functionalities from the requirements specification at the beginning of the

development process [23]. Existing methods are often top-down approaches but they

can differ in how components are defined and which are the particular goals to be

7

Chapter 1. Background

pursued. Furthermore, a distinction has to be made regarding how these methods

are described, i.e. from general recommendations to more formal methodologies [23].

Other approaches rely on metrics like coupling and cohesion to guide the creation

of component-based designs [109].

On the other hand, architecture recovery concerns the reconstruction of the sys-

tem architecture from low-level artefacts, specially code [59]. This re-engineering

process can be required during maintenance tasks, since architects need to com-

prehend the actual structure of the system in order to extend or adapt it to new

requirements or contexts. Due to uncontrolled changes, design documentation often

become incoherent, meaning that code represents the main source of information for

architects. Systematic manual inspection [188], semi-automated methods based on

clustering [121] and combined approaches [142] can help engineers to retrieve some

high-level design entities. This is still an active focus of research and current pro-

posals are studying what code elements can be mapped onto architectural elements

and how they influence recovery techniques [43, 115, 183].

Architecture evaluation

During validation, architects verify the fulfilment of quality properties and identify

potential risks [57]. Even though precise quality estimations are not possible at

such an early stage of the project, software architecture analysis methods can pro-

vide evidence of the effects of the architecture on quality. Evaluation methods at

the architectural level are classified in two main categories, namely questioning tech-

niques and measuring techniques, which actually can complement each other [18].

The former are mostly based on qualitative assessment by means of scenarios and

check lists, whereas the latter require software metrics and simulations to quantify

the quality of the architecture. Nevertheless, current analysis methods are mostly

manual processes that strongly rely on the experience of the architect.

Focusing on measuring techniques, the definition of software metrics able to accu-

rately reflect quality properties is still a paramount concern within the SE commu-

nity. Progress has been made with the definition of the SQuaRE quality model for

system and software products in the ISO/IEC Std. 25010– Systems and software

quality models [93], but it does not provide specific metrics to measure quality prop-

erties. Similarly, the upcoming standard for architecture evaluation (ISO/IEC Std.

8

1.1. Software architectures

42030 – Architecture evaluation), whose publication is expected during 2018, seems

to be focused on desired characteristics of evaluation methods and how they can

determine the extent to which stakeholders’ concerns are addressed [126].

Given that component-based software architectures rely on composition principles in

order to allow the reuse of functionalities, ease of maintenance becomes the primary

quality attribute. In this sense, the ISO/IEC Std. 25010 provides a formal definition

of maintainability :

Software maintainability refers to “the degree to which the software prod-

uct can be modified. Modifications may include corrections, improvements

or adaptation of the software to changes in environment, and in require-

ments and functional specifications”.

Among the characteristics in which software maintainability is decomposed, the

following three characteristics are essential in CBSE:

Modularity, which is defined as “the degree to which a system is composed of

discrete components such that a change to one component has minimal impact

on other components”.

Reusability, which establishes “the degree to which an asset can be used in

more than one software system or in building other assets”.

Analysability, which determines “the degree to which the parts of the software

to be modified can be identified”.

In order to measure these and other qualitative aspects of software architectures,

different metrics have been extensively investigated in the literature. First at-

tempts consist in the specialisation of general quality models for software archi-

tectures [113], the adaptation of object-oriented metrics [194] or the proposal of

novel metric suites [132]. Other authors focus their studies on the assessment of

certain properties, such as modularity [167] or adaptability [148]. Within CBSE, it

is also possible to find compilations of metrics for components [1, 117, 132], as well

as specific metrics and evaluation methods for relevant properties, such as reusabil-

ity [201], analysability [29] or usability of COTS components [22].

9

Chapter 1. Background

1.1.3. Decision support for architecture design

Decision making is an intrinsic characteristic of the architecting process, since soft-

ware architects have to conceive different solutions and choose the best alterna-

tive according to functional requirements, non-functional requirements and business

goals [6, 64]. Therefore, architecture design can be studied from the perspective of

multiple criteria decision making (MCDM). In this sense, the International MCDM

Society [92] provides the following definition [89]:

MCDM encompasses “the study of methods and procedures by which the

concerns about multiple, usually conflicting, criteria can be formally incor-

porated into the management planning process”.

In this context, a decision-making scenario is characterised by the set of alterna-

tives, each one representing a different choice to the decision maker, and a number

of decision criteria, that establish the different views from which alternatives can be

evaluated [190]. Taking both elements as input, a decision-making technique pro-

vides a systematic process to choose the best alternative among the existing ones

with respect to decision criteria [64, 190]. A decision support system (DSS) can be

then constructed to provide the MCDM methods as a computer-based information

system [131]. When these decision criteria can be numerically quantified, MCDM

techniques perform the following steps [190]:

1. Formal definition of relevant criteria and alternatives.

2. Determination of the relative importance of the decision criteria.

3. Numerical evaluation of alternatives with respect to the decision criteria.

4. Prioritisation of the alternatives on the basis of the numerical assessment.

Several authors have pointed out the benefits that a systematic decision-making

process could bring to the architecting process [64, 134]. Such a process would help

architects to manage trade-offs among conflicting goals, deal with the inherent un-

certainty of early analysis, and evaluate potential consequences of their decisions.

10

1.2. Search techniques

Also, this process could serve to capture the rationale behind architectural deci-

sions, making them explicit and well-documented. In fact, the lack of support to

architectural knowledge management has been identified as a possible aspect lim-

iting broader adoption of decision-making methods by the software industry [49].

Furthermore, MCDM methods could involve multiple stakeholders or design team

members within the process to get closer to real design scenarios [162], for which

group decision-making techniques could be considered.

Examples of MCDM methods to support different activities related to architecture

design can be found in the literature. Svahnberg et al. have proposed a method

to identify the best architecture among a set of preliminary solutions [184]. The

analytic hierarchy process (AHP) is applied to prioritise these solutions according

to quality attributes and the opinions of multiple stakeholders. AHP analyses all

possible pairwise comparisons to rate the alternatives, and is a popular technique

within other areas of SE, such as requirement prioritisation [21]. Another DSS can

recommend the selection of a particular architecture style based on fuzzy logic and

historical information of previous projects [131]. A hierarchy of software architec-

ture metrics and a set of preference relations between them are the basis of another

MCDM method for the selection of architectural patterns [139]. In the context of

CBSE, BAREMO is a MCDM method that applies AHP to select software compo-

nents from repositories based on four criteria, namely production time, cost, quality

and risk [114].

1.2. Search techniques

1.2.1. Search and optimisation

The field of artificial intelligence (AI) is closely related to the decision-making pro-

cess, since intelligent techniques can support some of its steps [60]. In this sense, an

intelligent DSS is a special type of knowledge-based DSS that applies AI techniques

to automate some tasks of the process, such as the analysis of information or the

search of solutions [150]. In particular, Figure 1.1 depicts the correspondence be-

tween problem-solving and the common steps of the decision-making process [86].

In this context, a search problem is formulated in terms of goals, states and ac-

tions [166]. These elements represent the information that an intelligent technique

11

Chapter 1. Background

Figure 1.1: The role of artificial intelligence in the decision-making process

needs to make its decisions, i.e. an objective to be pursued, the possible solutions

that can lead to the achievement of the goal, and a set of transitions to move from

one solution to another. Once the problem has been defined, a search algorithm will

perform as follows [166]:

A search algorithm “takes a problem as input and returns a solution in

the form of an action sequence (...), i.e. a path from the initial state to a

state that satisfies the goal.”

Traditional search algorithms translate this idea into building a tree of possible

states and traversing through the tree in order to find the solution. In each step of

the process, the algorithm applies an operator to expand the set of states to which it

can move and chooses one to proceed with the search. If no additional information

is used to choose the next state, the algorithm is performing a blind or uninformed

search. Examples of this type of search are breadth-first and depth-first search. As

opposed to blind search, heuristics perform a more informed search in the sense

that they use problem knowledge to determine which state is the most promising to

go next. Therefore, heuristics are specifically defined for the problem under study

and can be highly effective to accelerate the search. However, heuristic algorithms

partially explore the search space, meaning that finding the optimal solution cannot

be guaranteed. Examples of heuristic algorithms are A∗, branch and bound methods,

and greedy search.

Some search problems cannot be defined in terms of states and actions, but as a

set of decision variables whose optimal values need to be determined. This type of

search problem is known as optimisation problem, whose mathematical formulation

requires three elements: 1) n decision variables, either discrete or continuous, whose

values represent a solution; 2) problem constraints, expressed as inequality and/or

12

1.2. Search techniques

equality functions; and 3) an evaluation function, a.k.a. objective function, to map

the solutions to a numeric value representing its quality. Under these assumptions,

solving an optimisation problem can be stated as follows [42, 130]:

Given a search space Ω, solving an optimisation problem consists in

finding the solution x = (x1, ..., xn), that maximises (or minimises) the

evaluation function f : Ω ⊆ <n → <, subject to existing inequality (g) and

equality (h) constraints:

f(x) ≥ f(y) ∀y ∈ Ω

gi(x) ≤ 0 , i = {1, ...,m}

hj(x) = 0 , j = {1, ..., o} (1.1)

Regardless of how the search problem is formulated, search algorithms can be clas-

sified on the basis of four criteria [166]:

Completeness, which guarantees that the algorithm can find a solution, if such

a solution exists.

Time complexity, which refers to the time needed to find a solution.

Space complexity, which focuses on memory requirements during search.

Optimality, which means that the algorithm is able to find the best solution.

1.2.2. Metaheuristics

The term “meta-heuristic” was introduced in 1986 to refer to a high level mechanism

to escape from local optima [75]. A formal definition is given below [140]:

A metaheuristic is “an iterative generation process which guides a subor-

dinate heuristic by combining intelligently different concepts for exploring

and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near-optimal solutions”.

13

Chapter 1. Background

Figure 1.2: Classification of metaheuristic techniques

Metaheuristics have become highly popular due to their efficiency and adaptability.

The success of metaheuristics strongly relies on achieving a good balance between

intensification and diversification [26]. The former concept refers to the need of

exploiting the knowledge acquired during the search, e.g. some properties of good

solutions or their location in the search space. The latter term concerns the exploring

capabilities of the method, which are essential to avoid local optima. Although there

is a great variety of metaheuristic methods, most of them are characterised by the

following properties [187]:

Iterative, meaning that they start from complete solution(s), as opposed to

greedy approaches that construct them from scratch.

Stochastic, since they apply random rules in some steps of the search to escape

from local optima.

Memory-based, which refers to the use of information extracted from the solu-

tions or the search process to enhance their search capabilities.

Bio-inspired, as they simulate natural processes that exhibit intelligent be-

haviour.

A commonly accepted classification of metaheuristics is based on the number of

solutions that are simultaneously handled [26, 27]. On the one hand, metaheuristics

based on trajectory only maintain one solution that is iteratively improved. On

the other hand, population-based metaheuristics manage a group of solutions in

each step of the search. Population-based metaheuristics can be further divided

14

1.2. Search techniques

according to the biological processes in which they are inspired. In this sense, EC

is based on the evolution of species, whereas swarm intelligence (SI) simulates the

collective behaviour of different living beings like ants and birds. Figure 1.2 shows a

classification of the most popular methods. Those applied in this Ph.D. Thesis are

briefly explained in next sections.

Metaheuristics based on trajectory

Trajectory-based metaheuristics start from a single solution and iteratively explore

its neighbourhood looking for better solutions. Thus, the two basic elements of

this type of technique are: 1) a method to generate neighbouring solutions, which

depends on how the problem is encoded; and 2) a decision rule to accept one of these

neighbours as the new solution. A formal definition of neighbourhood is provided

next [187]:

“In a discrete optimisation problem, the neighbourhoodN(s) of a solution

s is represented by the set {s′ | d(s′, s) ≤ ε}, where d represents a given

distance that is related to the move operator”.

The simplest approach is to follow a steepest-ascent1 strategy, known as hill climbing

(HC) [166] (see Figure 1.3a). HC generates a set of neighbours, and the best one

according to the evaluation function is chosen for the next iteration. HC is a local

search (LS) method that can rapidly progress towards an optimum, but it could

also be easily trapped into a local optimum. To avoid this, multiple runs can be

performed, each one starting from a different solution. Due to the lack of randomness

and the absence of memory structures, HC is not usually considered a metaheuristic

as such, but represents the baseline approach for defining more advanced techniques.

A first method to overcome the limitations of HC is simulated annealing (SA) [102],

which takes its name from the physical annealing process used in metallurgy. In

this process, metals undergo fast heating and are then slowly cooled to reach an

appropriate energy state [187]. Analogously, this final state corresponds with the

global optimum in SA, and the energy is determined by the evaluation function.

The key characteristic of SA is that it can accept movements to worse neighbours

1Steepest-descent for minimisation problems.

15

Chapter 1. Background

(a) Hill climbing (b) Simulated annealing

Figure 1.3: Examples of trajectory-based search methods

based on a probability that decreases with the elapse of the search. Figure 1.3b

illustrates this process. The probabilistic acceptance rule depends on the amount of

objective degradation and the temperature parameter, which is modified according

to a cooling scheme.

Finally, tabu search (TS) [75] differs from SA in that it adopts a memory mechanism

to avoid local optima. More specifically, TS allows movements to worse solutions if

no neighbour improves the current one, but maintains a tabu list to prevent accep-

tance of previously visited solutions [74]. This short-term memory is updated every

iteration, usually storing a fixed number of accepted moves or their characteristics.

TS can be enhanced with the combination of medium-term and long-term lists to

promote intensification and diversification, respectively [187].

Metaheuristics based on populations

EC is based on the Darwinian principles of natural evolution, such as the survival of

the fittest, and is probably the most popular population-based metaheuristic [62].

In EC, candidate solutions are called individuals, which are characterised by a phe-

notype, i.e. the real-world solution, and a genotype, i.e. its computational encoding.

The genotype is usually a linear structure, e.g. an array, containing genes that

store the values of the decision variables. Following with the simile, the evaluation

function is here called fitness function, since it provides a value of the adaptation of

the individual that can be used to compare it against others.

16

1.2. Search techniques

Figure 1.4: The generational cycle of an evolutionary algorithm (adapted from Eiben
and Smith [62])

Every evolutionary algorithm (EA) follows an iterative process similar to the one

shown in Figure 1.4. As can be seen, the evolutionary process starts with the

random creation of a population of individuals, which are evaluated by the fitness

function. A selection process, which is often based on the quality of the individuals,

picks some of them to become parents. Parents are then recombined to generate

new solutions by interchanging their genetic information. The descendants can

be also mutated, which consists in applying small alterations in their genotypes.

Often, each genetic operator is applied with a configured probability. The resulting

offspring will compete against current population members to become part of the

next population, a process that can also be based on their fitness values. This process

is repeated for a number of generations, i.e. iterations, until a stopping condition

is met. The application of selection pressure, elitism and genetic operators provide

a proper balance between diversification, which is preferred in the first generations,

and intensification, which is required in the last part of the process.

EAs can be used in combination with other metaheuristics or heuristics in order to

exploit their respective abilities. In general, the idea is to incorporate additional

knowledge in some steps of the evolutionary search [62]. For instance, random

initialisation can be replaced by some heuristic procedure, while problem-specific

information can be considered within the genetic operators in order to perform more

informed transformations. A memetic algorithm (MA) is an example of hybrid

technique [25] that integrates local improvements into the evolution by means of

methods like HC or SA. The design of a MA involves deciding the step of the

17

Chapter 1. Background

evolution in which LS is applied and what individuals will be the initial solutions,

among other aspects [108].

1.2.3. Optimisation with multiple objectives

Real-world decision scenarios often present multiple objectives that should be si-

multaneously considered [51]. Furthermore, these objectives are usually in conflict,

meaning that it is not possible to find a solution achieving optimal values for all

objectives. The field of MOO is focused on solving this type of problem, known

as multi-objective problem (MOP). MOO is strongly related to MCDM, since its

main goal is to find a number of solutions representing different trade-offs among

the objectives, so that a decision maker can choose the solution to be implemented

based on additional preferences [51]. The mathematical formulation of a MOP only

differs from Equation 1.1 in that the goal is to maximise (or minimise) k objective

functions [42]:

Given a search space Ω, solving an MOP consists in finding the solution

x = (x1, ..., xn) ∈ Ω, that minimises (or maximises) the evaluation function

F (x) = {f1(x), ..., fk(x) , k ≥ 2}, subject to existing constraints.

Due to the presence of several objectives, a new concept of “optimality” is required to

specify whether one solution is better than another. In MOO, the Pareto dominance

principle establishes that Pareto optimal solutions are those solutions that are non-

inferior than any other solution [42]:

Given a maximisation MOP, a solution x dominates another solution y

(x � y) if and only if fi(x) ≥ fi(y) ∧ ∃j | fj(x) > fj(y) , i = {1, ..., k}

The entire set of Pareto optimal solutions is referred as the Pareto set (PS). Fig-

ure 1.5 illustrates the concept of Pareto dominance and the possible relationships

between solutions. The set of all non-dominated vectors comprises the Pareto

front (PF). Based on these concepts, the goals in MOO are [51]:

To find a good approximation to the optimal PF (a.k.a. PFtrue).

18

1.2. Search techniques

Figure 1.5: The concept of Pareto dominance in multi-objective optimisation

To find a diverse and well-spread set of solutions.

Quality indicators are performance measures that can be used to numerically as-

sess the quality of the returned PF, or PFknown, according to these aspects [42].

More specifically, they usually evaluate some of the following properties [210]: 1)

convergence, i.e. the distance to the optimal PF; 2) uniformity, which ensures a

good distribution of the solutions; and 3) spread, which measures the extent of the

PF. In addition, quality indicators can be classified according to the number of PFs

required for its computation. In this sense, unary indicators estimate the quality

of a PF only based on its vectors, whilst binary indicators require an additional

PF, i.e. a reference PF, to return a relative value. Table 1.1 provides a list of the

most used quality indicators, their description and properties [42, 161]. One of the

most popular is hypervolume, whose value would correspond to the shaded area in

Figure 1.5. The choice of a particular quality indicator to compare algorithm per-

formance is not straightforward, so a general recommendation is to report several

indicators [161].

Multi-objective evolutionary algorithms

An EA that has been adapted to deal with multiple objective functions is referred as

a multi-objective evolutionary algorithm (MOEA) [209]. In general, a MOEA intro-

duces some changes in the selection and replacement procedures, since these steps

19

Chapter 1. Background

Table 1.1: Quality indicators frequently used in MOO and their properties (C:
coverage, U: uniformity, S: spread)

Indicator Definition C U S

U
n
ar

y

Hypervolume Hyperarea covered by a PF 3 3 3

Spacing Distance variance of neighbouring vectors 3

Spread Extent of the PF with respect to extreme vectors 3

Generalised Spread Extension of spread for more than two objectives 3

B
in

ar
y

Iε Minimum shifting in one PF to dominate another 3

Generational Distance Shortest distance from PFknown to PFtrue 3

Inverted Gener. Dist. Shortest distance from PFtrue to PFknown 3 3 3

Maximum PF Error Largest minimum distance to PFtrue 3

Coverage Ratio of dominated vectors in a PF by another PF 3

often perform comparisons based on solution quality. More specifically, three evolu-

tionary aspects need to be revisited [211]: fitness assignment, diversity preservation

and elitism. Frequently, MOEAs define a function based on dominance criteria

that allow ranking solutions according to their optimality. Also, specific mecha-

nisms based on density estimation are used to maintain diversity. Elitism can be

promoted by means of an external archive that stores the best solutions found so

far.

Since the appearance of the first MOEA in 1985 [170], a plethora of algorithms have

been proposed. The first generation of MOEAs is founded on the Pareto domi-

nance, also including some niching or fitness sharing techniques [41]. The design of

an elitism mechanism, either based on external archives or specific selection proce-

dures, is the distinctive characteristic of the so-called second generation [41]. Two

popular algorithms belonging to this category are SPEA2 (Strength Pareto Evolu-

tionary Algorithm 2) [212] and NSGA-II (Non-dominated Sorting Genetic Algorithm

II) [54], which are actually improved versions of first-generation algorithms. On the

one hand, SPEA2 defines a fitness assignment method to determine a strength value

for each individual, counting the number of solutions it dominates. It also applies

a density estimation strategy based on clustering to select more diverse individuals

and maintains a fixed-size archive. On the other hand, NSGA-II defines a sorting

method to rank the solutions in fronts according to the dominance between them.

A crowding distance is also computed to act as a secondary criterion when two

solutions are in the same front. As opposed to SPEA2, NSGA-II does not use an

archive, since the sorting method always guarantees that best solutions are kept.

20

1.2. Search techniques

Many-objective optimisation

Recently, the resolution of optimisation problems with a large number of objec-

tives has gained increasing attention in MOO from both theoretical and practi-

cal views [110, 154, 155]. According to recent literature, a many-objective prob-

lem (MaOP) requires the definition of four objectives at least [35, 112]. First studies

within many-objective optimisation (MaOO) reveal that traditional MOEAs suffer

performance degradation as the number of objectives increases [101, 152, 171]. In an

attempt to solve this, existing MOEAs were adapted to improve their performance in

this new scenario, specially regarding diversity preservation [3, 106]. As the field has

been studied in more depth, a number of challenges have been identified [35, 112]:

Deterioration of selection pressure due to the exponential growth of the number

of non-dominated solutions.

Inefficiency of crossover operators, since solutions tend to be far from each

other.

Some search procedures become computationally expensive, e.g. hypervolume

calculation or distance-based strategies.

Accurate representations of the optimal PF need to be comprised of a high

number of solutions.

Visualisation of high-dimensional PFs, which is essential for decision-making,

requires the use of specialised techniques [199].

The growing interest in solving MaOPs has led to the appearance of a new type of

specialised algorithm, referred as many-objective evolutionary algorithm (MaOEA).

MaOEAs are often categorised into families, depending on the mechanisms proposed

to face some of the aforementioned challenges [110, 196, 198]. Table 1.2 provides a

compilation of current approaches and a list of some representative algorithms. The

algorithms applied in this Ph.D. Thesis are presented next, grouped by family.

Firstly, two algorithms that makes use of relaxed dominance principles are intro-

duced. ε-MOEA [53] divides the objective space into fixed-length hypercubes to

define a new dominance relation, named ε-dominance, over the resulting landscape.

21

Chapter 1. Background

Table 1.2: Families of many-objective evolutionary algorithms

Family Description Algorithms

Relaxed
dominance

Relaxed forms of dominance are considered
to increase selection pressure.

ε-MOEA, MDMOEA,
GrEA

Diversity New mechanisms to mitigate the impact of
previous diversity preservation techniques.

SPEA2+SDE, VaEA,
NSGA-II+SDE

Decomposition Objective values are aggregated to evaluate
or compare solutions.

MOEA/D, MSOP,
MOEA/DD

Indicator An indicator evaluates the contribution of
each solution to the quality of the PF.

HypE, SMS-EMOA,
IBEA, MOMBI

Reference set Reference points, configured by the user or
automatically generated, guide the search.

NSGA-III, RVEA

Preferences The search is directed towards the region of
the PF that represent user’s preferences.

R-NSGA-II, PBEA

Dimensionality
reduction

Redundant objectives are excluded from the
search process.

PCA-NSGA-II,
PCSEA

Thus, solution x ε-dominates solution y if x belongs to better or equal hypercubes

for all the objectives and to a better hypercube for at least one objective than y. In

each iteration, ε-MOEA selects one parent from the current population and another

one from an archive of solutions. Offspring will survive depending on the hyper-

cubes to which they belong and those already filled by archive members. Another

relevant algorithm is GrEA (Grid-based Evolutionary Algorithm) [205]. It also re-

lies on the notion of landscape partition, though hypercubes – here called grids –

are dynamically created. Initially, GrEA uses grid information to choose the most

promising individuals for reproduction. Inspired by NSGA-II, GrEA also ranks the

population by fronts during replacement, but substitutes the crowding distance by

novel grid-based metrics.

The first indicator-based approach is IBEA (Indicator-based Evolutionary Algo-

rithm) [213], which defines a general evolutionary algorithm where any quality in-

dicator could be used as a fitness function. The authors show the applicability of

the approach in combination with two indicators, i.e. hypervolume and Iε. Bi-

nary tournaments based on the fitness function are performed to select parents.

During replacement, the worst individuals with respect to the fitness function are

discarded. Another indicator-based algorithm is HypE (Hypervolume Estimation

Algorithm) [13], which estimates the portion of hypervolume that can be attributed

22

1.2. Search techniques

to each individual. This value is used to determine the winner of binary tourna-

ments during parent selection, while those solutions that contribute the least to

overall hypervolume are removed from the population.

Focusing on decomposition techniques, MOEA/D (Multiobjective Evolutionary Al-

gorithm based on Decomposition) [207] divides the original problem into several

subproblems to be simultaneously optimised. More specifically, each individual is

associated to one subproblem by means of a weighted vector. Neighbourhood in-

formation based on these vectors is considered during replacement, so that each

offspring is matched to the subproblem it can best solve. This algorithm uses an

archive to keep all non-dominated solutions found throughout the evolution pro-

cess. Lastly, NSGA-III [52], the improved version of NSGA-II for solving MaOPs,

requires a set of reference points to guide the search. Parents are randomly selected

before applying genetic operators. Then, individuals are associated to their closer

point, and one individual per reference point is selected for survival thus promoting

diversity.

1.2.4. Interactive optimisation

Decision-making is characterised by uncertainty factors, often requiring a progressive

understanding of causes, alternatives and consequences [146]. The potential of AI

can be insufficient when decision variables or objectives cannot be formally defined

a priori. Other factors hampering the effectiveness of AI techniques conceived for

decision support are the simplification of the real-world problem and user’s reticence

to trust and accept automatically generated results [129]. In order to build an

intelligent DSS of real practice in complex decision scenarios, humans have to be

involved in the process [17]. Cooperation between domain experts and the intelligent

DSS is crucial to improve the efficiency of AI techniques and to ensure that both

the process and the outcomes meet user’s expectations.

The need of putting the “human-in-the-loop” has been also acknowledged by the

EC community, giving rise to the field of interactive evolutionary computation

(IEC) [186]. Originally, IEC was conceived as a way of substituting the fitness

function by subjective human evaluation for those creative tasks in which defin-

ing an accurate fitness function is not possible. Within MOO, user’s preferences –

23

Chapter 1. Background

Figure 1.6: Overview of an interactive algorithm (adapted from Meignan et al. [129])

usually in form of aspiration levels for each objective – can be interactively spec-

ified so that the search is directed towards certain regions of the PF [31]. More

generally, interactive optimisation encompasses any optimisation method, including

metaheuristics, in which the human actively participates in any step of the process

to provide feedback [129].

The principal components of an interactive optimisation algorithm are depicted in

Figure 1.6. As can be seen, the role of the human consists in providing his/her

opinion in light of intermediate results generated by the algorithm, e.g. some can-

didate solutions shown for human evaluation. The feedback can be integrated into

the optimisation model to redefine some objectives or constraints. A model of user’s

preferences could also be learned in order to extract knowledge and reuse it in

other contexts. In addition, the gathered information can have direct impact on

some components of the algorithm, e.g. manually modifying solutions. The taxon-

omy proposed by Meignan et al. [129] provides a framework to characterise these

and other relevant factors, such as the information lifetime and type of feedback

integration. Several authors have also proposed specific techniques to choose rep-

resentative solutions for presentation [175] and schedule interactions [125]. Lastly,

some implementation issues should be also considered in order to offer an engaging

user experience, e.g. intuitive and easy-to-use interaction interfaces [174]. All these

aspects are essential to prevent the fatigue experienced by the user due to frequent

24

1.3. Search-based software engineering

interaction and information overload, which can lead to some inconsistencies and

loss of interest.

1.3. Search-based software engineering

1.3.1. Origin and characteristics

Although AI and SE have been traditionally viewed as separate disciplines, sev-

eral authors have advocated for potential ways of collaboration between them. As

pointed out by D. Partridge in 1988 [147]: “there is opportunity for the use of AI

in system development and maintenance environments to support the development

of conventional software. Constructing software is a real intelligence task”. More

specifically, the “AI perspective” of SE was conceived as the “reformulation of SE

processes in AI terms and an attempt to solve them entirely within AI” [9]. However,

other authors have argued that some AI-based support to software construction is

desirable, but the human still has to play a central role in the process [147]. As

AI has gained maturity, its methods have been progressively adopted by the SE

community, giving rise to the following interdisciplinary, and sometimes overlapped,

research areas [78]:

Machine learning for SE, which is focused on building classification or predic-

tive models for effort estimation [202] or fault prediction [119].

Data mining for SE, which extracts knowledge from historical data, including

specification mining [8] and mining software repositories [95].

Probabilistic SE, which mainly refers to the application of Bayesian networks

to model quality aspects [189] or analyse requirements [55].

SE guided by search, which proposes the reformulation of SE activities as

optimisation problems to be solved by means of search techniques [79].

Initial attempts to apply search algorithms to SE activities date back to the late

1990s, with works focused on testing, cost estimation and automatic program-

ming [81]. However, the idea of applying search techniques to solve optimisation

problems within SE was formalised as research field by M. Harman and F. Jones

25

Chapter 1. Background

in 2001 [81]. Since then, SBSE has experienced a rapid development, with a wide

range of application domains practically covering the entire software development

process [79]. According to Harman and Jones [81], SE activities present a number

of characteristics that make them suitable for optimisation, such as the presence of

competing objectives, the existence of potential solutions, a need to sort out the

good solutions from the bad, and the lack of precise rules for finding these solutions.

Under these assumptions, SBSE proposes that [40, 81]:

SE tasks can be reformulated as optimisation problems, for which two el-

ements need to be defined: 1) a computational representation for possible

solutions and 2) a fitness function defined in terms of the selected represen-

tation.

Compared to other engineering disciplines, the intangible nature of software arte-

facts make relatively easy to capture their characteristics as part of a computational

encoding. Furthermore, software metrics, which have been extensively investigated

by the SE community, represent ideal candidates for the definition of fitness func-

tions [80]. Similarly, the idea of achieving trade-offs, e.g. cost vs. time or cohesion

vs. coupling, perfectly matches with the precepts of MOO, whose techniques have

been explored more recently [169]. For those situations in which more qualita-

tive aspects need to be considered [168], SBSE can also benefit from interactive

approaches [179]. In fact, the potential of SBSE goes beyond the automation of

laborious tasks currently done by engineers, since it also represents an opportunity

to generate unexpected solutions, provide insights into software quality measure-

ment and offer innovative tools to practitioners [78, 81]. All these aspects make

SBSE well-suited for decision support in SE, especially in the earliest stages of the

development process [84].

Due to the broad scope and exponential growth of the field, research within SBSE

is usually reviewed with respect to the phase of the software lifecycle in which

the problem is defined. In this sense, SBSE approaches for project management

are focused on automatic generation of estimation models and staff schedules [68].

For requirements elicitation, SBSE can be applied to select and prioritise require-

ments [151]. Both object-oriented and service-oriented design paradigms present

26

1.3. Search-based software engineering

problems for which search techniques can be helpful [158], such as class respon-

sibility assignment or service composition, respectively. Automatic programming

and code improvement are areas related to SBSE too [149]. Search-based software

testing is the most prolific area, with research into test data generation and test

case selection, among others [127]. Refactoring and modularisation are recurrent

topics within search-based maintenance [124, 137]. Finally, it should be noted that

SBSE has also found synergies with particular SE paradigms that span across mul-

tiple phases, such as cloud computing [82], software product line (SPL) [111] and

model-driven engineering (MDE) [28].

1.3.2. Search-based software design

The area of search-based software design (SBSD) has experienced a significant

growth in the last years [158], where any form of software design, from object-

oriented to service-oriented, can be studied. Even so, the creativity and intuition

required in many design tasks make SBSD particularly challenging. In this sense, the

suitability of interactive optimisation has been highlighted [84], and several works

integrating user’s preferences can be found in the literature [67]. In addition, the

wide range of available modelling techniques and the abstract nature of their arte-

facts imply that problem encoding, fitness evaluation and solution transformation

in SBSD are often problem-specific and hard to define [158]. In fact, how to au-

tomatically assess design quality beyond structural aspects related to cohesion and

coupling is yet an open issue in SBSD [135, 158]. What also remains less explored

is how design choices can influence later stages of the development process, such as

testing or maintenance, and whether such an impact could serve as an evaluation of

design adequacy [83]. Other identified gaps are the support to early architectural

design and the integration of good practices like design patterns [158].

Despite this, SBSD literature now covers a broad range of problems and techniques.

Focusing on object-oriented design, one of the first and most studied problems is

class responsibility assignment [30]. Here, the objective is to find the optimal al-

location of attributes and operations for a given class diagram. Therefore, the

evolutionary algorithm has to move attributes and operations among classes guided

by cohesion and coupling criteria. In his Ph.D. Thesis, C. Simons covered the early

conceptual design, for which attributes and operations extracted from use cases

27

Chapter 1. Background

were combined to create a class diagram [178]. His works [180–182] are particularly

relevant within SBSD as they propose human-in-the-loop approaches that combine

structural metrics with more subjective criteria like elegance. Furthermore, one of

these works applies ant colony optimisation (ACO) as search technique [182], as

opposed to most of the SBSD studies that frequently adopt EAs [158]. Refactoring

at design level has also been studied [85, 120]. Harman and Tratt explore the use of

MOO techniques to find the best sequence of “move method” transformations for an

input class diagram [85]. More recently, Mansoor et al. have also adopted a MOO

approach to propose a multi-view approach, in which both UML class and activity

diagrams are considered [120]. In addition, they implement an extensive catalogue

of refactoring operations, including pushing down and pulling up properties and

operations along class hierarchies.

Several design tasks in the context of MDE have been recently reformulated as

optimisation problems. Firstly, model transformation is redefined as the problem of

automatically deriving transformation rules from a base of examples [99]. In this

case, particle swarm optimisation (PSO) and SA are the search techniques applied to

transform UML class diagrams into relational schemas. For model merging, a genetic

algorithm can be applied to find a tentative combined model in which the number

of invalidated operations due to existing conflicts is minimised [100]. In fact, this

process is equivalent to refactoring, since the merged model is produced as a sequence

that integrates operations belonging to class models developed in parallel. Another

proposal within search-based MDE deals with metamodel matching, in which the

goal is to find the optimal correspondence between metamodel elements [98]. Here,

a genetic algorithm seeks for good solutions that are then refined by using SA. Very

recently, modularisation of model transformation programs has been formulated as

a many-objective problem [69], NSGA-III being the selected algorithm to solve it.

Focusing on service-oriented computing, web service composition is a common prac-

tice to build software applications from third-party services, thus reusing function-

ality [176]. Problems related to web service composition have been also subject of

research within SBSE. The automatic binding of candidate web services for a given

composition structure was introduced by Canfora et al. in 2005 [34], a problem

known as QoS-aware web service composition (QoSWSC). They proposed a single-

objective formulation in which several quality-of-service (QoS) properties, such as

28

1.3. Search-based software engineering

cost and time, are aggregated into a fitness function. Since then, diverse EAs have

been proposed to address this problem, though the suitability of other techniques,

such as GRASP [145], has been also explored. A recent trend is to consider each

QoS property as an independent objective and apply MOEAs [45]. Many-objective

formulations, ranging from 5 to 10 objectives, have also appeared [50, 191, 197, 206].

Another problem related to service composition concerns how services are orches-

trated, i.e. which is the best composition workflow. Genetic programming, a variant

of EC specially well-suited to evolve tree structures, can be applied to address this

problem [163]. Finally, approaches combining both service selection and workflow

construction can be found in recent literature [48, 65].

1.3.3. Software architecture optimisation

Software architecture optimisation methods seek for the automatic specification and

improvement of architectural models [4]. More specifically, optimisation methods

have been mostly used to arrange elements of an architectural specification or semi-

automatically derive new models according to predefined quality attributes and other

existing constraints. The taxonomy proposed by Aleti et al. classifies existing

approaches according to the following aspects [4]: problem, which covers the system

domain, existing constraints and quality attributes under study; solution, which

includes solution encoding, type of transformations and optimisation strategy; and

validation in terms of practicality and algorithm performance. In what follows,

state-of-the-art SBSE methods applied to architecture optimisation, grouped by the

optimisation goal they pursue, are described.

Architecture synthesis from use cases has been addressed with EAs [157]. In this

problem, the algorithm produces a low-level architectural specification composed

by classes and interfaces, which also integrates design patterns. In their works,

Räihä et al. proposed hybrid approaches and specific operators to enhance the

evolutionary search [160, 177]. Furthermore, they later explored the suitability of

multi-objective [159] and interactive [192] approaches. Also starting from use case

modelling, the identification of logical components as groups of related use cases has

been recently proposed as an optimisation problem [87]. In this method, hierarchical

components are created by an EA guided by a cohesion measure. In a later work [88],

analysis classes derived from use cases are the inputs of the evolutionary search, so

29

Chapter 1. Background

each component is created from one “key” class and its related classes. In addition,

the authors included architectural preferences and constraints in the search model,

such as the presence of legacy systems.

Software architectures can be constructed following an assembling approach too, for

which black-box components, e.g. COTS, need to be selected and integrated. This

type of design process presents additional optimisation opportunities. For instance,

Baker et al. have proposed the use of SA and greedy algorithms to select the

subset of pre-existing components to be included in the next release of a system [14].

Support to “buy or build” decisions when designing a component-based architecture

was considered based on cost and reliability criteria [44]. More recently, Vescan

and Şerban have presented an evolutionary approach to automatically generate a

multilevel architecture by selecting components from repositories [195].

There are several studies applying search techniques to automatically recover com-

ponents from source code or their abstracted dependency graphs. In both cases,

the existence of an already developed system is assumed, so the process is carried

out for re-engineering purposes. A first approach can be attributed to R. Lutz, who

proposed a genetic algorithm for evolving tree structures representing hierarchical

module decompositions [116]. Hierarchical clustering is the technique chosen by

Maqbool and Babri [121]. They studied the adequacy of several similarity measures

for grouping related functions, which are considered the basic entities of legacy sys-

tems. Similarly, Cui and Chae [47] compared the performance of several hierarchical

clustering methods for component identification from legacy systems. ROMANTIC

is an optimisation approach that looks for the recovery of an intentional component-

based architecture from object-oriented code [38]. Both SA [36] and EC [173] were

used as part of the recovery process. The approach has been extended to include

clustering methods, a semantic-correctness measurement model and other sources of

information, such as UML diagrams and logs from control version systems [37, 97].

The design of a software architecture in compliance with architectural styles and

patterns has been scarcely investigated. Firstly, a coevolutionary approach for ar-

chitectural synthesis combines responsibility allocation and preservation of pattern

constraints [204]. More specifically, the authors defined some metrics to numerically

assess conformance to the MVC pattern. Recovering a layered architecture from a

package dependency model was recently formulated as an optimisation problem [20].

30

1.3. Search-based software engineering

Similar to the previous approach, a set of constraints defining the essence of the style

are included in the recovery process, which is based on TS. Within the context of

SPL, Mariani et al. have proposed specific operators to preserve the architectural

style of a product line architecture, represented as a UML class diagram, during its

improvement [123]. These operators are conceived for two particular styles, namely

layered architecture and client/server architecture.

Some other works study how SBSE can help improving some aspects of existing

architectural models, sometimes referred as architecture refactoring. Herold and

Mair [90] proposed a recommendation approach, based on HC, to find a sequence

of “move class” refactoring operations, thus suggesting how to repair architecture

violations due to erosion. The aim of a another search-based refactoring approach

is to reduce architectural bad smells in component-based systems [96]. The method

combines detection rules based on metrics with an EA, which takes a source code

model as input.

Architecture optimisation during deployment has been extensively studied, often

relying on MOO techniques. Two recurrent topics are component reconfiguration

and allocation to physical nodes. In both cases, components are viewed as black-

box artefacts with annotated quality attributes. Focusing on reconfiguration, L.

Grunske proposed a MOEA to decide which components should be replicated based

on a cost/reliability trade-off analysis [77]. Other reconfiguration approach focuses

on finding one or more compatible components to substitute an obsolete one [56].

In this case, some heuristics guide a branch and bound strategy to re-build the sys-

tem. Focusing on allocation problems, the component deployment problem consists

in finding the optimal assignment of components into available hosts to guarantee

proper reliability. NSGA-II was embedded into a tool called ArcheOpterix to solve

this problem [128]. A similar tool is PerOPTeryx, which can simultaneously tackle

component allocation, server configuration and component selection [107]. The tool

combines an analytic process with NSGA-II in order to improve an initial archi-

tecture specification in terms of performance and availability. Similarly, AQOSA

toolkit integrates popular MOEAs (NSGA-II, SPEA2 and SMS-EMOA) to optimise

resource utilisation, cost and latency [63]. Here, the objective is to determine an

optimal hardware topology, also considering component allocation and replacement.

DeSi is another tool that can support the analysis and improvement of the current

31

Chapter 1. Background

deployment architecture of a distributed system via greedy and evolutionary algo-

rithms [118]. The optimisation process is guided by a single fitness function that

aggregates multiple QoS properties, such as availability, latency or energy consump-

tion.

Finally, two optimisation-based tools provide architects the necessary support to

carry out additional tasks during the architecting process. On the one hand, Ar-

chiTech is an ontology-based DSS for the management of architectural knowledge

that uses SA as inference mechanism [7]. The system allows architects to understand

the impact of their architectural decisions, e.g. architectural style or development

technologies, in several non-functional requirements, as well as to discover possible

incompatibilities with previous decisions. On the other hand, SADHelper provides

guidance on the production of wiki-based architectural documentation [133]. Based

on a cost-effective analysis of stakeholders’ information needs, documentation up-

date plans can be suggested running NSGA-II.

32

2
Motivation and objectives

“A human must turn information into intelligence. We’ve tended

to forget that no computer will ever ask a new question”.

Grace Hooper

T
he analysis of the state of the art has led to the identification of research op-

portunities within the field of SBSD. More specifically, the area of software

architecture optimisation lacks on methods to support architects on the identifica-

tion of the functional blocks of the software during early software conception. This

type of analysis would allow architects to discover a candidate system structure,

thus making its analysis and improvement easier. From the point of view of search

techniques, it seems appropriate to study the applicability of advanced techniques,

such as many-objective optimisation and interactive optimisation, for the discovery

of software architectures. On the one hand, SE problems like this one often present

a high number of factors to be considered, though they are hard to be defined as ob-

jective functions. If such objectives are properly formulated, then the performance

of novel many-objective search techniques could be analysed. On the other hand,

potential ways of collaboration between the engineer and the search algorithm are

yet to be explored in SBSD. In this sense, it is necessary to carry out a in-depth

study of the interaction requirements, as well as to determine the most appropriate

33

Chapter 2. Motivation and objectives

mechanisms to support it. It would allow the development of an effective interactive

method combining the abilities of the involved actors. The design of experiments to

validate the proposed approaches would also provide insights on the strengths and

weaknesses of these techniques, thus contributing to promote their broader adoption

within SBSE.

In this chapter, the purpose of this research is described in terms of a general ob-

jective and its specific subobjectives. For each of them, at least one research ques-

tion (RQ) is formulated. RQs are equivalent to hypotheses since they both represent

a formal statement of the phenomenon or concept under study [46]. The difference

lies on the intention of such statement, since hypotheses make predictions about

the expected results based on the relation between dependent and independent vari-

ables, whereas RQs are focused on the exploration of the factors surrounding the

phenomenon with the aim of deriving new knowledge or improving previous solu-

tions. Therefore, RQs are more appropriate when the nature of the research does

not allow making predictions, which is often the case of solution-oriented qualita-

tive research [46]. The identification of RQs is a well-established practice in SE

research [61], which has been also adopted by the SBSE community. This chapter

ends with a brief summary of the research tasks carried out to fulfil the objectives

and the results derived from them, which serves to establish a direct correspondence

between objectives and publications.

2.1. Objectives

The general objective of this Ph.D. Thesis is stated as follows:

Development of search models based on metaheuristic algorithms to provide

semi-automatic support to software engineers in early stages of the software

development process.

This general objective was divided into the following subobjectives:

34

2.2. Research questions

O1: Analysis of the state of the art in SBSE, especially in the areas of SBSD

and architecture optimisation, to identify open problems and the techniques

that could be applied to their resolution.

O2: Design and development of a metaheuristic model based on EC to support

the discovery of component-based software architectures, including the study

of the problem characteristics (analysis information, quality metrics, expert’s

needs, etc.)

O3: Design and development of advanced search models, including multi-

objective approaches and hybrid techniques, to study their suitability to the

decision support process. Study of their applicability to different domains

within SBSD.

O4: Design and development of an interactive approach to incorporate human

expertise in the context of software architecture optimisation. Comparison

with previous approaches.

2.2. Research questions

In order to address O1, an extensive literature review needs to be carried out. The

following RQs are proposed to guide such an analysis:

RQ1: What are the current gaps within SBSD and, more specifically, software

architecture optimisation?

RQ2: How have SBSE studies applied multi- and many-objective optimisation

techniques?

RQ3: In what ways has interactivity been adopted within SBSE?

Firstly, RQ1 would allow studying the state of the art regarding the application

of search techniques to support the software design process. Within this area, new

challenges in software architecture optimisation could be identified. Regarding the

search approaches, RQ2 would serve to analyse which are the current techniques

being used, with a special focus on those following the principles of MOO and

35

Chapter 2. Motivation and objectives

MaOO. Finally, RQ3 would provide a deeper understanding of the potential of

interactive optimisation, whose characteristics seem to fit with the requirements of

SBSE.

Focusing on objective O2, two RQs have been defined:

RQ4: Can single-objective EAs help the software engineer to identify an initial

candidate architecture of a system at a high level of abstraction?

RQ5: How does the configuration of the algorithm influence both the evolu-

tionary performance and the quality of the returned solution?

The aim of RQ4 is to explore the use of EC as a supporting method to find opti-

mal software architectures. More specifically, the characteristics of the architecture

discovery process should be analysed in order to design an effective EA. Due to

the lack of previous studies focused on this problem, the experimental evaluation of

the evolutionary model should be oriented towards the study of the influence of its

parameters, as expressed in RQ5.

The knowledge acquired from this first approximation to the problem could indicate

the need of additional design evaluation criteria, which would demand the applica-

tion of more advanced techniques. Accordingly, the following RQs are formulated

for objective O3:

RQ6: How do a larger number and combination of metrics influence the

search-based discovery of software architectures?

RQ7: How do state-of-the-art MOEAs and MaOEAs perform when multiple

objectives guide the discovery process?

RQ8: How can local search be effectively integrated in the multi-objective evo-

lutionary discovery of software architectures?

Firstly, RQ6 emphasises the need of including more decision factors in the discov-

ery process, as a way to adapt it to particular requirements of the system. Addi-

tional software metrics reflecting diverse quality properties could be considered as

independent objective functions to be optimised. If a large number of conflicting

36

2.3. Relation between objectives and publications

metrics is required, then the performance of MOEAs can be greatly degraded and

MaOEAs should be considered instead. With this purpose in mind, RQ7 is posed.

In addition, the performance of pure EAs can be enhanced with trajectory-based

metaheuristics, a process that largely depends on the particularities of the problem

under study. Therefore, RQ7 would serve to analyse their effect in the discovery of

software architectures.

The last two RQs are stated in the context of objective O4:

RQ9: How can the qualitative judgement of the engineer be integrated into the

evolutionary discovery of software architectures?

RQ10: Does putting the human in the loop involve a significant improvement

compared with not considering him/her along the optimisation process?

Apart from the quantitative metrics that can be included in the problem formulation

to measure different aspect of design quality, qualitative aspects could be required as

well. To explore this complementary view, RQ9 seeks for the study of the role of the

software engineer in the process. Once an appropriate interactive model has been

designed, it will be possible to analyse the differences between interactive and non-

interactive approaches as a way to reveal the benefits of the engineer’s participation.

This is the aim underlying the formulation of RQ10.

2.3. Relation between objectives and publications

This section details the research tasks that have been planned in order to achieve the

objectives stated in Section 2.1 and respond to the RQs formulated in Section 2.2.

For objectives O2-O5
1, the following sequence of tasks has been carried out:

1. Literature search and analysis of current approaches related to both the prob-

lem domain and the applied technique.

2. Formulation of the SE task as an optimisation problem, including the software

metrics required to evaluate their artefacts.

1For objective O1, only the first step was required.

37

Chapter 2. Motivation and objectives

3. Design and implementation of the components of the metaheuristic model,

i.e. problem encoding, fitness function, domain-specific search operators and

search algorithm.

4. Experimental validation of the approach with input data derived from real

software systems, including the study of the influence of their parameters.

5. Integration of the proposed models to be provided as part of a DSS oriented

towards software engineers. Development of supporting libraries and tools.

Table 2.1: Objectives, research tasks and publications

Literature Problem Algorithm Experimental Model

analysis formulation implementation validation integration

O1
TSE [J4]

UnderReview1

O2 JISBD’14 [C2] INFSCI [J1]

O3

GECCO’14 [C1], MAEB’15 [C3], EMSE [J2] GECCO’15 [C4]

JISBD’16 [C6], ISDA’16 [C9], CEC’17 [C10] UnderReview2

JISBD’16 [C7] ESwA [J3]

O4

JISBD’15 [C5]

INFSCI [J5] MAEB’16 [C8]

JISBD’17 [C11] JISBD’18 [C12]

The results of this Ph.D. Thesis are supported by seven journal articles: the three

articles comprising the compendium, two articles as a result of both Spanish and

international research collaborations, and two works currently under review, all of

them published (or submitted) to reference journals2 within both AI and SE fields.

Furthermore, four and eight conference papers, some of which were nominated for

best paper, have been published in international and national conferences, respec-

tively. It is worth mentioning that the Thesis proposal was awarded a second prize

in the first Doctoral Consortium organised by the Spanish Society of Software En-

gineering and Software Development Technologies (SISTEDES).

Table 2.1 shows the publications derived from the Ph.D. Thesis, grouped by the

objective and research task(s) to which they are attributed. In the table, J stands

for references to journal publications, while C represents references to conference

2All journals are ranked at the first quartile according to the Journal Citation Reports.

38

2.3. Relation between objectives and publications

publications whether in national or international forums. Those journal articles

comprising the compendium are highlighted in bold typeface, whereas italics is used

to represent journal articles currently under revision3. Publications are identified

with the acronym of the journal or conference, and ordered by publication year.

3UnderReview1 refers to a survey of MaOO in the context of SBSE. UnderReview2 corresponds
to a software library for MaOO.

39

3
Methodology

“Reserve your right to think, for even to think wrongly

is better than not to think at all.”

Hypatia

T
his chapter details the methodology followed in this Ph.D. Thesis, which mainly

concerns the experimental evaluation of the different algorithms proposed.

Also, best practices in SE research have been adopted regarding literature search

and discussion of validity threats. The following sections briefly describe all these

methodological aspects, for which further explanations can be found in the corre-

sponding publications.

3.1. Literature analysis

Along the development of the Ph.D. Thesis, literature searches have been periodi-

cally performed to find relevant works regarding both the application domain and

the selected techniques. The sources of information comprise both general databases

(ACM Library, DBLP, IEEE Xplore, ISI Web of Knowledge, ScienceDirect, Springer-

Link and Scopus) and a specialised repository of SBSE publications [208].

41

Chapter 3. Methodology

In addition, a systematic method for literature review [103, 104] has been followed

to analyse the application of advanced techniques, i.e. MaOO, and interactive opti-

misation in the context of SBSE. The three main phases of a systematic literature

review (SLR) are: 1) planning the review, which consists in defining a review proto-

col and classification scheme; 2) conducting the review, which includes the selection

of primary studies and the data extraction process; and 3) reporting the review,

which refers to the statistical analysis of the extracted data and the discussion of

findings.

3.2. Experimental framework

The methodology followed to achieve objectives O2-O5 (see Section 2.1) is based

on the usual steps of the scientific method, as it is often adopted in experimental

computer science [58]:

Observation. Study of the needs of automation in software architecture design.

Induction. Extraction of decision variables and metrics from real-world sce-

narios in order to define software architecture optimisation problems.

Hypothesis. Formulation of the RQs and design of metaheuristic models to

address them.

Experimentation. Evaluation of the performance and utility of the proposed

algorithms using real software systems.

Antithesis. Analysis of the obtained results with respect to the RQ.

The rest of this section details the characteristics of the experimental phase: the

computing environment to code and run the algorithms, the software systems used

as problem instances and the evaluation mechanisms needed to assess the perfor-

mance of the algorithms. It should be noted that the validation of the interactive

model described in Chapter 4 slightly differs from the rest of experiments. In that

case, the principal experiment consisted in an empirical study in which software de-

velopers were asked to participate in interactive sessions. Details of the experiment

preparation and the analysis of participants’ actions and feedback can be found in

the journal publication associated to that model [J5].

42

3.2. Experimental framework

3.2.1. Implementation and execution environments

Software libraries and tools

All algorithms have been coded in Java using JCLEC [193], a Java library for EC,

and JCLEC-MO, an extension for MOO that has been developed as part of this

Ph.D. Thesis1. Datapro4j [165] and SDMetrics Open Core [172] are supporting

libraries used to process data and extract analysis information from XMI files, re-

spectively. The R statistical environment [156] and STATService [144] have provided

the statistical tests applied for performance assessment.

Hardware platform

For experimentation, machines with 8 cores Intel Core i7 2.67-GHz and 12GB RAM

and hosting Linux distributions (Ubuntu, Debian) have been used. The most exten-

sive experiments have been run on a HPC cluster of 8 compute nodes with Rocks

cluster 6.1 x64 Linux distribution, each node comprising two Intel Xeon E5645 CPUs

with 6 cores at 2.4 GHz and 24 GB DDR memory.

3.2.2. Problem instances

Table 3.1 shows the characteristics of the software systems used for experimentation.

They all are real systems or libraries written in Java, with the exception of Aqualush,

which is a case study for educational purposes. Relationships are divided into the

different types defined by UML, i.e. associations, dependencies, aggregations, com-

positions and generalisations. The analysis models for these systems were obtained

after a thorough manual analysis of the source code and design documentation, when

available.

3.2.3. Performance evaluation

In general, the performance of SBSE methods is quantitatively evaluated following

the same guidelines than other fields applying metaheuristics. Due to the stochastic

nature of this type of algorithms, their performance cannot be inferred from the

1A preliminary version was published at GECCO conference [C4], whereas an article describing
its complete architecture is currently under revision.

43

Chapter 3. Methodology

Table 3.1: Software systems used for experimentation

System #Classes
#Relationships

#Interfaces
Assoc. Depen. Agreg. Comp. Gener.

Aqualush 58 69 6 0 0 20 74

Borg 167 44 109 36 38 90 300

Datapro4j 59 3 4 3 2 49 12

ICal4j 190 36 4 3 11 161 70

Java2HTML 53 20 66 15 0 15 170

JSapar 46 7 33 21 9 19 80

JXLS 96 60 10 10 9 45 136

Logisim 253 113 19 46 25 137 248

Marvin 32 5 11 22 5 8 28

NekoHTML 47 6 17 15 18 17 46

outcomes of a single run. For this reason, the common practice within the field is

to perform several runs with different random seeds and report average results. A

minimum of 30 runs is often suggested [84]. From these runs, different performance

measures can be obtained so that performance can be studied from diverse and

complementary views. More specifically, best or average fitness values at the end

of the evolution are usually reported for single-objective algorithms. For MOEAs,

quality indicators have been also adopted by the SBSE community [200]. In this

Ph.D. Thesis, hypervolume, spacing and coverage have been chosen (see Table 1.1).

Other aspects of great importance in SBSE are the number of solutions returned

to the engineer at the end of the process, and the execution time required to find

them. Both aspects have been investigated in the experimental studies, since they

have implications in the practicality of the proposed methods.

After the collection of these measurements, the relative performance of two or more

metaheuristic algorithms can be compared using statistical methods, a type of anal-

ysis that is highly recommended in SBSE too [12]. Statistical tests serve to estimate

the confidence in the obtained results and prove the existence of significant differ-

ences between them [187]. More specifically, a statistical test verifies whether the

null hypothesis (H0) – that states that the probability distributions of the samples

are equivalent – can be rejected. If so, there is statistical evidence to suggest that

significant differences exist. Two types of errors can appear as a consequence of a

44

3.3. Threats to validity

wrong estimation. Type I error occurs when H0 is rejected but it is actually true,

whereas Type II error indicates that H0 is mistakenly accepted [12]. The outcome

of a statistical test is the probability of Type I error, known as p-value, so lower

values are preferred. The highest p-value that can be accepted to reject H0 is called

significant level, α. Depending on the nature of the test, some of them can also rank

algorithms according to their performance or report the magnitude of their differ-

ences (effect size), thus making interpretation of results easier. For metaheuristic

algorithms, non-parametric tests are frequently applied, as they do not require any

assumption about the distribution of the samples, while H0 is usually formulated to

express that two or more algorithms perform equally well with respect to a selected

measure, e.g. hypervolume. In this Ph.D. Thesis, the following non-parametric tests

have been considered:

Wilcoxon rank sum test [203] for pairwise comparison.

Friedman test [71] with Holm post hoc procedure [91] for multiple comparison.

Cliff’s delta test [164] for effect size measurement.

3.3. Threats to validity

The analysis of validity threats is a common practice within empirical SE [66] that

has been progressively adopted in SBSE studies [16]. When applicable, aspects

related to the four types of validity threats have been discussed in the publications

derived from this Ph.D. Thesis:

Construct validity, which is focused on the relation between the theory and

the observation(s). In SBSE, potential threats arise from the assumptions and

simplifications regarding the problem formulation.

Internal validity, which is related to the causal relation between the hypothesis

and the results. In SBSE, this type of validity is mainly affected by algorithm

parametrisation.

Conclusion validity, which refers to the relationship between the treatment

and the outcome. In SBSE, they can appear if good practices when evaluating

algorithm performance are not followed (see Section 3.2.3).

45

Chapter 3. Methodology

External validity, which is concerned with the generalisation of the results. In

SBSE, it is related to the selection of representative problem instances.

46

4
Results

“However beautiful the strategy, you should occasionally look at the results.”

Unknown

T
his chapter presents the proposed models and a summary of the most relevant

results obtained from the experiments carried out to validate them. Firstly, the

single-objective evolutionary approach to address the discovery of component-based

software architectures is described. The extension of this model considering a greater

number of software metrics as independent objectives is detailed next. Lastly, the

main characteristics of the interactive approach, which allows the integration of

human feedback, are explained. The associated publications to each model are

listed at the end of the corresponding section, and the full content of the journal

publications can be found in Part II of this document.

4.1. Evolutionary discovery of architectures

The recovery of the main functional blocks, and their interactions, from working

systems has only been tackled from a re-engineering perspective, mostly analysing

code or other low-level artefacts. However, the system structure derived from this

process might not be representative, since analysis information is omitted and source

47

Chapter 4. Results

code might not correspond to the conceived architecture. In contrast, the architec-

ture could be better discovered from previous analysis information. Under these

premises, a first contribution of this Ph.D. Thesis consists in the formulation of

such a process as an optimisation problem. For its resolution, a single-objective

evolutionary algorithm with customised operators and a ranking-based fitness func-

tion has been developed. The most relevant aspects of the proposed approach and

a discussion of the experimental results are presented next.

4.1.1. Proposed approach

This section presents the main components of a novel approach, based on EAs, to

find the underlying architecture of a software system [J1]. The discovery process

requires an initial UML2 class diagram as starting point, containing information of

classes and their relationships. The search process is therefore aimed at discover-

ing the elements that constitute a component-based architecture, i.e. components,

interfaces and connectors, represented as a UML2 component diagram. To do this,

an optimal arrangement of classes and relationships should be determined, so that

the specification of the internal structure of components and the identified interfaces

reflect the properties of a good design.

As part of the problem formulation, an analysis of design metrics proposed in the

literature has been carried out. The purpose of such an analysis is to study whether

they are suitable to evaluate architectural solutions automatically generated [C2].

After this analysis, as well as preliminary experiments, the three design metrics

shown in Table 4.1 are proposed. These metrics are the basis of a ranking-based

fitness function that evaluates the quality of each solution.

The rest of the components of the single-objective EA are described next:

Candidate component-based architectures, i.e. individuals, are encoded using

tree structures. This way, the hierarchical composition of the architecture can

be represented and handled.

The initial population is randomly created. For each individual, the number

of components is chosen at random, between a minimum and a maximum

configured by the engineer.

48

4.1. Evolutionary discovery of architectures

Table 4.1: Design metrics to evaluate component-based architectures (I)

Name Intra-modular Coupling Density (ICD)

Quality Modularity

Description Average ratio between the number of interactions inside (CIinc)
and outside (CIoutc) each component, c. The value is weighted with
the ratio of classes that belong to that component (#classesc)
from the total number of classes (#classestotal).

Objective Maximisation

Bounds [0, 1]

Formulation ICDc = num classestotal−num classesc
num classestotal

· CIinc
CIinc +CIoutc

ICD = 1
C ·

∑C
c=1 ICDc

Name External Relations Penalty (ERP)

Quality Modularity

Description Total number of associations (num as), aggregations (num ag),
compositions (num co) and generalisations (num ge) between
each pair of components, c and t, that cannot be abstracted as
an interface. Each type of relationship receives a weight (w).

Objective Minimisation

Bounds Lower bound is 0, upper bound depends on the input class diagram

Formulation ERP =
∑C

c=1

∑C
t=c+1was · num asc,t + wag · num agc,t+

+wco · num coc,t + wge · num gec,t

Name Groups/Components Ratio (GCR)

Quality Reusability

Description Ratio between the number of groups of interdependent classes
(num cgroups) and the total number of components, C.

Objective Minimisation

Bounds Lower bound is 1, upper bound depends on the input class diagram

Formulation GCR = num cgroups/C

A mutation operator applies up to five different architectural transformations

exploiting domain knowledge. The available transformations are: add a com-

ponent, split a component, remove a component, merge two components and

move a class. The engineer can assign a different weight to each one.

Several selection and replacement strategies are implemented with the aim of

analysing the balance between convergence and diversity. These strategies are

those frequently used in EC, such as elitism or tournaments based on fitness

values. The best combination is determined as part of the experimental study.

49

Chapter 4. Results

This algorithm has also served as a basis for further studies that explore the capabil-

ities of trajectory-based metaheuristics to improve the evolutionary search [C6, C9].

More specifically, two MAs have been designed: 1) EA(LS), which applies local im-

provements over a subset of offspring right after mutation; and 2) EA+LS, which

runs HC or SA after the execution of the EA taking a percentage of the best indi-

viduals from the final population as input.

4.1.2. Discussion of results

A parameter study has been carried out to analyse the influence of the parameters

required by the evolutionary model [J1]. The main conclusions drawn from this

study are summarised next. Firstly the analysis shows that the combination of

selection and replacement strategies plays an important role in the behaviour of the

algorithm. Due to its proper convergence and trade-off between metrics, a selection

operator based on binary tournament and an elitist replacement that preserves 10%

of the current population are finally selected.

In addition, the best combination of weights for the five procedures constituting the

mutation operator is also explored. In this case, the algorithm has been executed

with 126 possible combinations. Does this study not only shed light on the influence

of the mutation operator on final fitness values, but also on how its internal proce-

dures promote certain types of solutions regarding the number of components. The

last parameters under study are the population size and the number of generations,

which are analysed together since both are related to the total number of evaluations

allocated to the algorithm. The experimental findings suggest that the algorithm

shows a better performance when 150 individuals are evolved during at least 20000

evaluations.

Once the best algorithm configuration was found, further experiments have been

conducted to analyse additional aspects. From the obtained results, the behaviour

of the algorithm with respect to the optimisation of ERP and ICD metrics clearly

reflects the usual conflict between coupling and cohesion. The comparisons between

problem instances having similar number of classes also suggest that the complexity

of the problem cannot be attributed to the number of classes only, but also to the

number and sort of relationships between them. Finally, the ability of the algorithm

50

4.1. Evolutionary discovery of architectures

to produce architectural specifications close to those manually produced can be also

highlighted.

As for the two MAs proposed as extension, the experimental outcomes indicate that

the way hybridisation is designed has a considerable impact on algorithm perfor-

mance [C6, C9]. On the one hand, EA(LS) works well when low probabilities are

assigned to either HC and SA. However, the original algorithm is preferable when

there is no particular trend for a metric, as it maintains a better trade-off among all

of them. On the other hand, EA+LS does not show great effectiveness compared to

the pure EA. Although the final population reflects some local improvements, the

best solution found during the evolutionary process is not modified.

To conclude, the proposed model and the experiments carried out have served to

respond to the RQs formulated for objective O2 (see Section 2.2). In response to

RQ4, a comprehensible single-objective evolutionary model is provided, since all

its elements were designed taking in mind how an architect would proceed in a

manual process. In addition, the complete experimental study provides evidence of

the effectiveness of the approach, as well as the importance of tuning its parameters

(RQ5).

4.1.3. Associated publications

The principal publication associated to this section is:

A. Ramı́rez, J.R. Romero, S. Ventura. “An approach for the evolutionary

discovery of software architectures”. Information Sciences, vol. 305,

pp. 234-255, 2015.

The following conference publications present the analysis of software metrics and

the hybrid variants of the evolutionary approach:

1. A. Ramı́rez, J.R. Romero, S. Ventura. “Análisis de la aplicabilidad de medidas

software para el diseño semi-automático de arquitecturas”. Proceedings of the

XIX Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD), pp. 307-

320, 2014.

51

Chapter 4. Results

2. A. Ramı́rez, J.A. Molina, J.R. Romero, and S. Ventura. “Estudio de mecan-

ismos de hibridación para el descubrimiento evolutivo de arquitecturas”. Pro-

ceedings of the XXI Jornadas en Ingenieŕıa del Software y Bases de Datos

(JISBD), pp. 481-494, 2016.

3. A. Ramı́rez, R. Barbudo, J.R. Romero, S. Ventura. “Memetic Algorithms

for the Automatic Discovery of Software Architectures”. Proceedings of the

16th International Conference on Intelligent Systems Design and Applications

(ISDA), vol. 557 AISC, pp. 437-447, 2016.

4.2. The multi- and many-objective perspectives

The evolutionary model proposed in Section 4.1 represents an important advance-

ment in automated architecture discovery, but has limited application as supporting

method since only one solution is returned at the end of the process. The con-

clusions drawn from the experimentation also indicate the existence of conflicts

between some of the design metrics used to compute the fitness function. In fact,

additional metrics could be used to guide the process, making necessary to establish

new trade-offs among them. All these aspects motivate the exploration of multi-

objective approaches, including recent developments on MaOO. The application of

these advanced techniques could provide the expert with a variety of architectural

solutions to choose among, while generating more insights on the influence of de-

sign metrics in the optimisation process. Next section reformulates the optimisation

problem in terms of multiple, independent objectives. Then a summary of the ex-

perimental studies carried out to analyse the performance of some selected MOEAs

and MaOEAs follows.

4.2.1. Proposed approach

This section presents the adaptations made in the evolutionary model to cope with

multiple design objectives [J2]. It should be noted that solution encoding and pop-

ulation initialisation remain as described in Section 4.1.1, since the architectural

elements comprising the candidate solutions and how they are derived from the

input class diagram are not affected by the evaluation phase.

52

4.2. The multi- and many-objective perspectives

Table 4.2: Design metrics to evaluate component-based architectures (II)

Name Instability (INS)

Quality Modularity

Description Average component instability, which is obtained as a ratio be-
tween afferent (ACc) and efferent coupling (ECc). These terms
represent the number of components requiring services from c and
the number of components providing services to c, respectively.

Objective Minimisation

Bounds [0, 1]

Formulation INSc = ECc
ECc+ACc

INS = 1
C ·

∑C
i=1 INSc

Name Abstractness (ABS)

Quality Reusability

Description Average component abstractness, which is calculated as the ratio
between abstract classes and total number of classes inside the
component.

Objective Maximisation

Bounds [0, 1]

Formulation ABSc = #abstract classesc
#classesc

ABS = 1
C ·

∑C
i=1ABSc

Name Encapsulation (ENC)

Quality Modularity

Description Average component encapsulation, which is computed as the ratio
between the number of classes that do not participate in external
interactions and the total number of classes inside the component.

Objective Maximisation

Bounds [0, 1]

Formulation ENCc = #inner classesc
#classesc

ENC = 1
C ·

∑C
i=1ENCc

Focusing on solution evaluation, up to nine design metrics have been defined as po-

tential objectives to be simultaneously optimised. Three of them correspond to the

metrics already used in the single-objective approach (see Table 4.1). Analogously,

other six design metrics measuring aspects beyond cohesion and coupling have been

considered. Tables 4.2 and 4.3 show the definition and properties of these new met-

rics. From the metrics above, all possible combinations of two, four, six, eight and

nine metrics – 256 combinations in total – have been defined as the objectives to be

optimised by the state-of-the-art algorithms presented in Section 1.2.3.

In addition, the two hybrid models proposed in Section 4.1.1 have been adapted

to work with a formulation with four objectives (ICD, ERP, CS and CB). This

53

Chapter 4. Results

Table 4.3: Design metrics to evaluate component-based architectures (III)

Name Critical Size (CS)

Quality Modularity

Description Number of critical components (CC), i.e. those whose size ex-
ceeds a threshold, λ. Size is computed as the percentage of classes
allocated in c with respect to the total number of classes.

Objective Minimisation

Bounds [0, C]

Formulation CCsizec = 1 if size(c) > λ, 0 otherwise

CS =
∑C

i=1CC
size
c

Name Critical Link (CL)

Quality Modularity

Description Number of critical components with respect to their interactions,
i.e. their number of provided interfaces exceeds a threshold, λ.

Objective Minimisation

Bounds [0, C]

Formulation CC linkc = 1 if #provided interfacesc > λ, 0 otherwise

CS =
∑C

i=1CC
link
c

Name Component Balance (CB)

Quality Analisability

Description Measure combining the deviation from an optimal number of com-
ponents in the architecture (system breakdown, SB) and the dis-
persion in their size (component size uniformity, CSU). For SB,
γ, ω and µ represent the minimum, maximum and optimal number
of components, respectively.

Objective Maximisation

Bounds [0, 1]

Formulation SB = C−γ
µ−γ if γ ≤ C < µ , 1− C−µ

ω−µ if µ ≤ C ≤ ω
CSU = 1−Gini(#classesc ∀c ∈ [1, C]) CB = SB · CSU

particular combination provides an appropriate trade-off between cohesion, coupling

and size, as will be discussed in Section 4.2.2. Another adaptation concerns the

definition of a comparison criterion to decide whether a neighbour, x′, is better than

the current solution, x, since multiple objectives exist. Four different mechanisms are

proposed for comparative purposes: Pareto dominance, meaning that x′ is accepted

if it dominates x; weights, in which a weighted sum of objective values is computed;

best objective, meaning that only the best objective in the initial solution is used for

comparison; and worst objective, which adopts the same approach but considering

54

4.2. The multi- and many-objective perspectives

the worst objective. The selection and replacement mechanisms of NSGA-II are

applied during evolution. Apart from HC and SA, TS has been implemented in

combination with the four acceptance criteria.

4.2.2. Discussion of results

Extensive experiments were conducted to study the scalability of eight MOEAs and

MaOEAs, as well as the influence of the selected metrics in the structure and quality

of the solutions [J2]. The most relevant findings obtained from this comparative

study are compiled next.

A first analysis in terms of quality indicators yields interesting results regarding

algorithm scalability. For two or four objectives, NSGA-II provides the best results

in terms of hypervolume, whereas SPEA2 obtains the best spacing values. However,

many-objective algorithms like ε-MOEA and HypE demonstrate their superiority

to converge to the PF with the increase in the number of objectives. The good

scalability of NSGA-II is remarkable, being able to ensure a better trade-off between

both indicators than specialised many-objective approaches.

A closer look at these results from the point of view of the metrics being opti-

mised allows making further analyses. When a small number of objectives is set,

the specific combination of metrics can result in a decrease in problem complexity,

since objectives are not strongly opposed. The particular choice of metrics becomes

less relevant as the number of objectives is increased. In this scenario, trade-offs

among all metrics are difficult to achieve, some metrics being highly optimised to

the detriment of others.

The suitability of the multi-objective approach as supporting method for decision-

making have been examined from diverse perspectives. Firstly, the number of so-

lutions returned to the engineer depends on both the number of objectives and the

selected algorithm. Another relevant factor is execution time, since some many-

objective algorithms are computationally expensive.

Finally, it should be noted that the specific combination of metrics inevitably impact

the type of architectural solutions found. A combination of cohesion, coupling and

size, such as using ICD, ERP, CS and CB as objectives, can work well in general. In

fact, NSGA-II guided by this particular combination was able to produce solutions

55

Chapter 4. Results

close or even equal to the known architecture of a system, i.e. designed by a real

architect.

The experiments for the MAs have been analysed with respect to both evolutionary

performance and number of final solutions [C10]. On the one hand, the execution

of trajectory-based methods either during of after the evolution does not decrease

efficiency of the evolutionary search according to the coverage indicator. Regarding

diversity of solutions, spacing values indicate that the hybrid model could lead to

substantial improvements, though the magnitude of the gain depends on the specific

parametrisation. On the other hand, trajectory-based methods can help in the

generation of new non-dominated solutions, specially if EA(LS) is applied. For

both MAs, the use of weights to compare the solutions seems to be more effective

for this purpose.

Coming back to the RQs formulated for objective O3 (see Section 2.2), it can be

concluded that the discovery process can be guided by many diverse design criteria,

whose selection can have a strong impact on the optimisation process (RQ6). In this

sense, MOEAs or even MaOEAs are required to cope with the increasing complexity

of the problem (RQ7). However, the choice of a particular algorithm should not be

based on the number of metrics only, but also on additional aspects like execution

time and expected number of solutions. Focusing on the effect of LS, its impact

can be more effective than in the single-objective formulation, though additional

parameters need to be properly configured (RQ8).

4.2.3. Associated publications

The principal publication associated to this section is:

A. Ramı́rez, J.R. Romero, S. Ventura. “A comparative study of many-objective

evolutionary algorithms for the discovery of software architectures”.

Empirical Software Engineering, vol. 21, no. 6, pp. 2546-2600, 2016.

56

4.3. The human-in-the-loop approach

The following conference publications present preliminary results on the performance

of MOEAs and MaOEAs, a software framework to support their implementation,

and the adaptation of MAs to the multi-objective problem formulation:

1. A. Ramı́rez, J.R. Romero, S.Ventura. “On the Performance of Multiple Objec-

tive Evolutionary Algorithms for Software Architecture Discovery”. Proceed-

ings of the 16th Genetic and Evolutionary Computation Conference (GECCO),

pp. 1287-1294, 2014. Best paper of the SBSE track and nominated to best paper

of GECCO’14.

2. A. Ramı́rez, J.R. Romero, S.Ventura. “Estudio preliminar del rendimiento de

familias de algoritmos multiobjetivo en diseño arquitectónico”. Proceedings

of the X Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y

Bioinspirados (MAEB), pp. 173-180, 2015.

3. A. Ramı́rez, J.R. Romero, S.Ventura. “An Extensible JCLEC-based Solution

for the Implementation of Multi-Objective Evolutionary Algorithms”. Proceed-

ings of the Companion Publication of 17th Genetic and Evolutionary Compu-

tation Conference (GECCO Companion), pp. 1085-1092, 2015.

4. A. Ramı́rez, J.R. Romero, S.Ventura. “On the effect of local search in the

multi-objective evolutionary discovery of software architectures”. Proceedings

of the IEEE Congress on Evolutionary Computation (CEC), pp. 2038-2045,

2017.

4.3. The human-in-the-loop approach

The adaptation of the initial evolutionary approach to a multi-objective space has al-

lowed the introduction of more decision factors, as well as the possibility of returning

a set of solutions at the end of the process. Both aspects enrich the decision-making

scenario, allowing the software engineer to adapt the discovery process to his/her

needs and choose among a set of alternatives, respectively. However, he/she is not

yet involved in the optimisation phase. Therefore, this section is focused on how

human expertise can be incorporated in the discovery process and the experiments

undertaken to validate the approach, including an empirical study with software

developers.

57

Chapter 4. Results

4.3.1. Proposed approach

The IEC model is comprised of a customised MOEA, designed according to previous

findings and new requirements, and an interaction module that coordinates the

communication between the algorithm and the software engineer [J5]. On the one

hand, the proposed MOEA follows the evolution scheme of ε-MOEA, whose archive

has been adapted to store only a small number of representative solutions. The

archive update mechanism, inspired by a general-purpose interactive EA named

iTDEA [105], keeps a portion of diverse non-dominated solutions, as well as those

solutions of interest to the engineer. On the other hand, the interaction module is

characterised by the following aspects:

Interactions are scheduled at regular intervals, though the number of interac-

tions is configurable.

The number of solutions to be shown in each interaction is also a parameter.

Solutions are selected from the current population using a clustering method.

In each interaction, the software engineer is asked to choose one architectural

preference, among those described in Table 4.4, in order to reward or penalise

some aspect of the solution.

The software engineer can also perform additional actions: freeze one com-

ponent, so that its classes cannot be moved; add the solution to the archive;

remove the solution from the current population; and stop the search.

The fitness function combines qualitative and quantitative information, using a

weighted sum of two terms. The former determines the extent to which a can-

didate solution satisfies the preferences established by the software engineer. The

second term makes use of the maximin function [15] to evaluate the dominance of

the solutions according to the configured software metrics.

4.3.2. Discussion of results

To validate the proposed interactive approach, two experiments have been carried

out [J5]. The first experiment is aimed at studying the evolutionary performance,

58

4.3. The human-in-the-loop approach

Table 4.4: Design preferences for the interactive discovery of architectures

Preference Description

Best component The engineer selects the best component according to its
internal structure.

Worst component The engineer indicates the worst component.

Best provided interface The engineer identifies the best interface according to its
operations.

Worst provided interface The engineer locates the worst interface.

Number of components The engineer expresses the number of components for the
architecture he/she considers appropriate.

Metric in range The engineer establishes the desired range for a metric.

Aspiration levels The engineer determines weights and target values for all
design metrics.

so interaction is omitted. Firstly, the influence of the parameter that controls the

archive size is analysed. The main conclusion obtained here is that an intermediate

value is preferred since it provides a good performance, while returning a number

of solutions that is affordable for manual inspection.

Secondly, the algorithm is compared against NSGA-II, which is a representative

MOEA that has proven to be highly competitive. In this sense, the experimental

results indicates that NSGA-II is slightly superior with respect to hypervolume, but

obtains lower spacing values. It should be noted that these results are somehow

conditioned by the fact that NSGA-II returns a larger number of non-dominated

solutions. This suggests that the proposed algorithm is more effective as supporting

method for decision-making, since it provides equivalent performance even if the

number of solutions has to be limited.

Interactive sessions with participants of different expertise in software development

have also been planned in order to assess the effectiveness and usefulness of the

approach. In these sessions, participants were asked to interact with a tool running

the algorithm to solve a case study. Some interesting facts can be extracted from

these sessions. Firstly, the most frequently applied architectural preferences were

selecting the best/worst component or setting the appropriate number of compo-

nents. They were also viewed as the most intuitive and useful options. In occasions,

the participants decided not to select any particular preference as a way to deal with

uncertainty or because they wanted to observe how the algorithm behaves.

59

Chapter 4. Results

Comparing the performance of the algorithm with and without interaction, both

variants behave quite similar in terms of quality indicators. This suggests that the

combination of quantitative and qualitative criteria is effective to guide the process

while adapting the search to the engineer’s preferences. Focusing on the design

metrics under evaluation (see Table 4.1), the actions performed by the participants

were indirectly oriented towards improving cohesion. Furthermore, the influence of

human interaction was also reflected in the number of components comprising final

solutions. When the participants indicated the preferred number of components,

the algorithm rapidly converged to solutions satisfying this preference.

To conclude, the RQs referring to the interactive approach have been fully addressed.

On the one hand, the proposed model not only allows the engineer to evaluate

solutions, but also perform actions with a direct impact on the search algorithm

(RQ9). On the other hand, the empirical study has demonstrated how interaction

positively affects the optimisation process (RQ10).

4.3.3. Associated publications

The principal publication associated to this section is:

A. Ramı́rez, J.R. Romero, and S. Ventura. “Interactive multi-objective

optimization of software architectures”. Information Sciences, vol. 463-464,

pp. 92-109, 2018.

In addition, a SLR covering the whole field of SBSE with respect to the applica-

tion of interactive methods has been published in IEEE Transactions of Software

Engineering in collaboration with Dr. Christopher L. Simons (University of the

West of England, Bristol, UK). Other conference publications refer to preliminary

studies of the suitability of interactive approaches to the discovery problem, as well

as supporting libraries and tools for experimentation:

1. A. Ramı́rez, J.R. Romero, C. Simons. “A Systematic Review of Interaction

in Search-Based Software Engineering”. IEEE Transactions on Software En-

gineering, pp. 1-22. 2018. In press.

60

4.3. The human-in-the-loop approach

2. A. Ramı́rez, J.R. Romero, S.Ventura. “Interactividad en el descubrimiento

evolutivo de arquitecturas”. Proceedings of the XX Jornadas en Ingenieŕıa del

Software y Bases de Datos (JISBD), 2015.

3. A. Ramı́rez, R. Barbudo, J.R. Romero, S. Ventura. “Herramienta basada

en computación evolutiva interactiva para arquitectos software”. Proceedings

of the XI Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y

Bioinspirados (MAEB), pp. 387-396, 2016.

4. A. Ramı́rez, J.R. Romero, S. Ventura. “Búsqueda coevolutiva interactiva apli-

cada al diseño de software”. Proceedings of the XXII Jornadas en Ingenieŕıa

del Software y Bases de Datos (JISBD), 2017.

5. A. Ramı́rez, J.R. Romero, S. Ventura.“API para el desarrollo de algoritmos

interactivos en ingenieŕıa del software basada en búsqueda”. XXIII Jornadas

en Ingenieŕıa del Software y Bases de Datos (JISBD), 2018.

61

5
Conclusions and future work

“The mind that opens to a new idea never returns to its original size.”

Albert Einstein

T
hroughout the development of this Ph.D. Thesis, a number of contributions

to SBSD have been made. These contributions can be viewed from diverse

perspectives, since both SE optimisation problems and search algorithms have been

proposed. In this sense, Section 5.1 compiles the conclusions that can be drawn

from the different research works presented in this Ph.D. Thesis. The novelty of

the problem addressed, together with the application of incipient techniques within

the field of SBSE, suggest that this Ph.D. Thesis could serve as a basis for further

investigation. Therefore, Section 5.2 points out future lines of research, which mainly

concern the extension of the problem formulation, the exploration of additional

techniques, and the application of the proposed models to other design tasks.

5.1. Concluding remarks

This Ph.D. Thesis has explored the use of metaheuristic techniques as effective

and efficient methods for decision support in the context of early software anal-

ysis. Framed within the field of SBSD, a new SE optimisation problem, named

63

Chapter 5. Conclusions and future work

discovery of component-based software architectures, has been defined and several

search techniques have been applied to its resolution. More specifically, the following

contributions can be highlighted:

Definition of software architecture discovery as an optimisation problem.

With the aim of providing semi-automatic support to engineers during software

analysis, the identification of architectural artefacts from previous analysis models

has been formulated as an optimisation problem. Standards for software modelling

and evaluation have been followed to create the conceptual framework. Thus, the

artefacts and software metrics required to address the discovery process are repre-

sentative of the elements a software engineer would adopt in a manual process.

Design of a comprehensible evolutionary model to discover architectures.

Built upon the aforementioned conceptual framework, a single-objective EA has

been proposed to automatically search the underlying architecture of real software

systems. A human-centred evolutionary model has been conceived, whose mutation

operator imitates the architectural transformations usually performed by engineers.

The ranking-based fitness function allows the evaluation of three design metrics

related to coupling and cohesion criteria. A thorough analysis of existing parameters

also provides useful guidelines to adapt some of the elements to the characteristics

of the input system. The proposed model represents a novel approach to the field

of software architecture optimisation, in which component-based architectures have

usually been optimised at lower abstraction levels.

Analysis of the influence of software metrics in a many-objective space.

The evolutionary model has been extended to cope with a larger number of design

metrics, thus allowing to include additional quality criteria in the decision process.

The performance of state-of-the-art MOEAs and MaOEAs has been assessed in

scenarios with different number and combination of metrics. The outcomes reveal

the importance of choosing an appropriate subset of metrics to guide the process.

Furthermore, additional factors, such as execution time and number of returned

solutions, might limit the capabilities of these algorithms as effective supporting

methods.

64

5.1. Concluding remarks

Furthermore, many-objective algorithms have been explored in the context of an-

other design problem too. For the QoSWSC problem, the experimental results

reveal that MaOEAs are effective methods when a large number of QoS properties

has to be optimised. These works constitute two of the first studies adopting MaOO

techniques in SBSE.

Exploration of hybrid approaches to improve the performance of EAs.

Both single- and multi-objective evolutionary models have been adapted to include

local improvements by means of trajectory-based metaheuristics. Two different MAs

have been proposed, one that incorporates LS as an additional genetic operator and

another that executes it after the evolution. The experiments carried out to analyse

the influence of the parameters suggest that the design of MAs is not straightforward.

The results indicate that the moment in which LS is conducted, how often it is

applied and the chosen technique can greatly affect the performance of the algorithm.

Development of a general interactive model to integrate human expertise.

As architectural analysis demands creativity and experience, a human-in-the-loop

approach has been proposed so that the engineer can be fully involved in the op-

timisation process. The analysis of the interaction requirements has led to the

development of an evaluation mechanism that effectively combines quantitative and

qualitative design criteria. The innovative idea of expressing the engineer’s opin-

ion by means of architectural preferences could be easily adapted to other domains

within SBSD. Built upon the knowledge gathered from previous studies, a cus-

tomised MOEA is proposed. An empirical study with engineers demonstrates how

the evolutionary search can be adapted to their needs.

Furthermore, the SLR of human-in-the-loop approaches for SBSE offers an up-to-

date analysis of the current state of the field. This is an emerging area with great

potential, for which the term interactive search-based software engineering (iSBSE)

has been coined [J4]. This work also provides useful guidelines to SBSE researchers

with the aim of promoting a broader adoption of interactive approaches.

65

Chapter 5. Conclusions and future work

5.2. Future lines of research

The contributions of this Ph.D. Thesis lay the foundations to continue exploring the

potential of metaheuristics for software architecture optimisation. In addition, most

of the proposed models are highly adaptable to other domains, which clearly open

up new possibilities regarding their applicability to other areas of SBSD. Finally,

future work should also be oriented towards the integration of these search models

into intuitive tools and their validation in industrial contexts. Both aspects are

clearly necessary to reduce the current gap between SBSE research and software

industry. In the following sections, each of these topics is discussed in more detail.

Design constraints in the discovery process

The current formulation of the automatic discovery of software architectures presents

some limitations regarding the input analysis model and the candidate architecture

returned as output. Therefore, it could be extended to support additional design

elements that frequently appear in real software design scenarios.

Firstly, the input model could present legacy systems that should be properly in-

tegrated in the architectural solution. This type of system is often left aside in

architecture identification methods [24], though some automatic methods partially

consider them [88]. In the discovery process, the specification of the legacy system

could be directly modelled in the input class diagram, also expressing which classes

depend on it. Then, the EA could use this information to generate the candidate ar-

chitectures, establishing proper interfaces to communicate the resulting components

with the legacy system.

Another possible extension in the current problem formulation refers to the adoption

of architectural styles or patterns, as initially explored in some studies [20, 204]. An

potential application domain would be the migration to a different architectural

styles, e.g. from a client/server architecture to a solution based on microservices.

In this case, additional constraints could be defined to express the extend to which

a solution complies with a particular style. It would also require the modification of

mutation procedures to guarantee that new solutions preserve the style. Depending

on the characteristics of the selected styles, adaptations in the encoding to represent

them might be needed.

66

5.2. Future lines of research

Two additional aspects could be included in the problem formulation. On the one

hand, the creation of subcomponents could be an interesting option to deal with

large software systems. This would require additional levels of decomposition in

the tree structure. On the other hand, the discovery process could be completed

with mechanisms to identify the presence of architectural bad-smells. In this sense,

avoiding what it is not desired could be a first step towards obtaining an acceptable

design.

Evaluation and semantic aspects of software architectures

Software metrics are essential for the evaluation phase of any SBSE approach. How-

ever, metrics need to present some properties to be eligible as effective fitness func-

tions, such as approximate continuity and low computational complexity [80]. The

nature of the SE task clearly influences both the availability of metrics and the

consensus on their practical value, software design being a particularly challenging

domain in this regard. More studies focused on the definition of design metrics to

measure quality aspects of software architectures are required, as a pre-requisite to

their adoption as evaluation criteria in SBSE.

In the same line, it is hard to imagine how the quality of a software design can be

measured only in terms of structural properties. The semantic behind the design

concepts modelled by software engineers could provide relevant information to the

discovery process too. There are some initial attempts to include semantic aspects

in automated SE, but mainly referred to code artefacts in the context of modularisa-

tion [19, 43], refactoring [141] and architecture recovery [39]. It would be interesting

to analyse how semantic information could be inferred at a higher level of abstrac-

tion, as well as to study how it might be integrated into an architecture optimisation

method.

Advanced interactive models for architecture optimisation

The great potential of interactive optimisation also opens up new possibilities re-

garding the search models. In current interactive SBSE methods, the engineer par-

ticipates in specific moments of the evolution, meaning that the overall process is

still controlled by the search algorithm. User experience would greatly benefit from

a more flexible interaction mechanism, in which the engineer can influence other

67

Chapter 5. Conclusions and future work

aspects of the search beyond evaluation. Letting the user play the central role in

the optimisation process is the idea behind hyperinteractive evolutionary computa-

tion [33], which remains yet unexplored in SBSE. This advanced IEC model gives

the user the opportunity to select when and how genetic operators will be applied.

In addition, the proposed interactive model could be a basis to design new ways

of collaboration between the algorithm and the engineer. Cooperative coevolution

is an interesting paradigm that could be combined with interactive optimisation in

this regard. Coevolutionary systems have proven to be effective for solving diffi-

cult optimisation problems [62]. Cooperative coevolution is a variant that follows

a divide-and-conquer strategy, meaning that each population solves a part of the

problem. This idea perfectly fits with the precepts of CBSE, since the architecture

is comprised of a set of components that cooperate to create a global architecture.

Furthermore, humans also adopt a decomposition strategy when facing complex

tasks, as it is often the case of architectural analysis. Therefore, an interactive

cooperative coevolutionary algorithm seems to be a promising approach to tackle

software architecture optimisation problems.

Finally, one important aspect in architectural analysis is that decisions rarely depend

on a architect but a design team [162]. Consequently, the interaction mechanism

could be extended to support the intervention of more than one person. In such

a case, the algorithm would need to find those solutions presenting their common

preferences or establish trade-offs among different opinions. Methods from group

decision-making could be investigated with this aim. Also, the interactive model

could be enhanced with machine learning techniques, which has been proposed in

other domains within SBSE as a way to reduce the fatigue caused by constant

evaluation [5, 10]. However, these techniques could also be used to learn from

the interactive experience, allowing the algorithm to infer user’s preferences and

recommend solutions of his/her interest.

68

5.2. Future lines of research

Resolution of new optimisation problems within SBSD

CBSE is only one of the paradigms conceived for architectural analysis, but many

others exist [18]. With the rise of distributed computing, service-oriented architec-

ture (SOA), and particularly its implementation via web services, represents an es-

sential paradigm in the development of modern software systems [143]. The method-

ology followed here to obtain comprehensible search models for the optimisation of

component-based software architectures could be applied to find SOA solutions. In

this context, the search process should consider design principles like autonomy,

loose coupling an abstraction, being guided by new quality attributes specially rel-

evant to SOA, such as interoperability, reliability, security and scalability, among

others [136].

Similarly, the increasing interest in the adoption of cloud-based solutions by leading

companies also pose challenges to software development. Decision-making in cloud

environments is essential, since engineers have to identify a suitable infrastructure,

configure it according to user needs and optimise available resources. Therefore,

cloud engineering is a natural scenario for the application of MCDM methods [11]

and SBSE techniques [82]. In this sense, the proposed models based on many-

objective and interactive optimisation could inspire new methods adapted to the

challenges of cloud computing. Examples of potential applications might be the

migration of software architectures to the cloud ecosystem, as well as the adoption

of cloud design patterns and other best practices during the design process.

Software tools for industrial acceptance

Although research in SBSE has gained maturity, the adoption of its optimisation

methods in industrial environments is still limited. Among other practices, the

validation of SBSE proposals with case studies from industry and the development

of aiding tools are needed to reduce the existing barrier. In fact, several authors,

based on their industrial experiences, have reported on the need of reliable and

usable tools [70, 122]. In this sense, the proposed models consider SE standards

and notations with the purpose of making tool integration easier, and a web-based

DSS is currently under development. Future work should be oriented towards the

application of the proposed models to industrial case studies and the validation of

69

Chapter 5. Conclusions and future work

the tool with practitioners. In addition, a closer collaboration between academia

and industry would allow the identification of new stimulating challenges for SBSE.

70

Bibliography

[1] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and M. A. Jabar. A mapping

study to investigate component-based software system metrics. Journal of

Systems and Software, 86(3):587–603, 2013.

[2] G. Abowd, R. Allen, and D. Garlan. Using Style to Understand Descriptions of

Software Architecture. In Proceedings of the 1st ACM SIGSOFT Symposium

on Foundations of Software Engineering (SIGSOFT), pages 9–20, 1993.

[3] S. F. Adra and P. J. Fleming. Diversity Management in Evolutionary Many-

Objective Optimization. IEEE Transactions on Evolutionary Computation,

15(2):183–195, 2011.

[4] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software

Architecture Optimization Methods: A Systematic Literature Review. IEEE

Transactions on Software Engineering, 39(5):658–683, 2013.

[5] B. Amal, M. Kessentini, S. Bechikh, and J. Dea. On the Use of Machine

Learning and Search-Based Software Engineering for Ill-Defined Fitness Func-

tion : A Case Study on Software Refactoring. In Proceedings of the 6th Inter-

national Symposium on Search Based Software Engineering (SSBSE), pages

31–45, 2014.

[6] D. Ameller, C. P. Ayala, J. Cabot, and X. Franch. Non-functional Require-

ments in Architectural Decision Making. IEEE Software, 30(2):61–67, 2013.

[7] D. Ameller and X. Franch. Assisting software architects in architectural

decision-making using Quark. CLEI Electronic Journal, 17(3), 2014.

[8] G. Ammons, R. Bod́ık, and J. R. Larus. Mining Specifications. In Proceedings

of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (POPL), pages 4–16, 2002.

71

Bibliography

[9] G. Arango, I. Baxter, and P. Freeman. A Framework for Incremental Progress

in the Application of Artificial Intelligence to Software Engineering. In Artifi-

cial Intelligence and Software Engineering, chapter 20, pages 425–438. Ablex

Publishing Corporation, 1991.

[10] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza. An architecture

based on interactive optimization and machine learning applied to the next

release problem. Automated Software Engineering, 24(3):623–671, 2017.

[11] J. Araujo, P. Maciel, E. Andrade, G. Callou, V. Alves, and P. Cunha. Decision

making in cloud environments: an approach based on multiple-criteria decision

analysis and stochastic models. Journal of Cloud Computing, 7(1):7, 2018.

[12] A. Arcuri and L. Briand. A Hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering. Software Testing, Verification

and Reliability, 24(8):591–592, 2014.

[13] J. Bader and E. Zitzler. HypE: an algorithm for fast hypervolume-based many-

objective optimization. Evolutionary computation, 19(1):45–76, 2011.

[14] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. Search Based Ap-

proaches to Component Selection and Prioritization for the Next Release Prob-

lem. In Proceedings of the 22nd IEEE International Conference on Software

Maintenance (ICSM), pages 176–185, 2006.

[15] R. Balling and S. Wilson. The maximin fitness function for multi-objective

evolutionary computation: application to city planning. In Proceedings of

the 3rd Genetic and Evolutionary Computation Conference (GECCO), pages

1079–1084, 2001.

[16] M. Barros and A. Dias Neto. Threats to Validity in Search-based Software

Engineering Empirical Studies. Technical Report 0006/2011, Universidade

Federal do Estado do Rio de Janeiro, 2011.

[17] J. Barthélemy, R. Bisdorff, and G. Coppin. Human centered processes

and decision support systems. European Journal of Operational Research,

136(2):233–252, 2002.

72

Bibliography

[18] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley Professional, 3rd edition, 2012.

[19] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Using structural and

semantic measures to improve software modularization. Empirical Software

Engineering, 18(5):901–932, 2013.

[20] A. B. Belle, G. El Boussaidi, C. Desrosiers, S. Kpodjedo, and H. Mili. The Lay-

ered Architecture Recovery as a Quadratic Assignment Problem. In European

Conference on Software Architecture, pages 339–354, 2015.

[21] P. Berander and A. Andrews. Requirements Prioritization. In Engineering

and Managing Software Requirements, chapter 4, pages 69–94. Springer Berlin

Heidelberg, 2005.

[22] M. F. Bertoa, J. M. Troya, and A. Vallecillo. Measuring the usability of

software components. Journal of Systems and Software, 79(3):427–439, 2006.

[23] D. Birkmeier. On Component Identification Approaches – Classification, State

of the Art, and Comparison. In Proceedings of the 12th International Sympo-

sium on Component-Based Software Engineering (CBSE), volume 5582 LNCS,

pages 1–18, 2009.

[24] D. Q. Birkmeier and S. Overhage. A method to support a reflective derivation

of business components from conceptual models. Information Systems and

e-Business Management, 11(3):403–435, 2013.

[25] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6):1–10,

2012.

[26] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison. ACM Computing Surveys, 35(3):268–

308, 2003.

[27] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization metaheuris-

tics. Information Sciences, 237:82–117, 2013.

73

Bibliography

[28] I. Boussäıd, P. Siarry, and M. Ahmed-Nacer. A survey on search-based model-

driven engineering. Automated Software Engineering, 24(2):233–294, 2017.

[29] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying the analyz-

ability of software architectures. In Proceedings of the 9th Working IEEE/IFIP

Conference on Software Architecture (WICSA), pages 83–92, 2011.

[30] M. Bowman, L. C. Briand, and Y. Labiche. Solving the class responsibility

assignment problem in object-oriented analysis with multi-objective genetic

algorithms. IEEE Transactions on Software Engineering, 36(6):817–837, 2010.

[31] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, editors. Multiobjective Op-

timization: Interactive and Evolutionary Approaches. Springer-Verlag Berlin

Heidelberg, 2008.

[32] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Patern-

Oriented Software Architecture: A System of Patterns, volume 1 of Software

design patterns. Wiley, 1996.

[33] B. J. Bush and H. Sayama. Hyperinteractive evolutionary computation. IEEE

Transactions on Evolutionary Computation, 15(3):424–433, 2011.

[34] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for

QoS-aware service composition based on genetic algorithms. In Proceedings of

the 7th Genetic and Evolutionary Computation Conference (GECCO), pages

1069–1075, 2005.

[35] S. Chand and M. Wagner. Evolutionary many-objective optimization: A

quick-start guide. Surveys in Operations Research and Management Science,

20(2):35–42, 2015.

[36] S. Chardigny and A. Seriai. Quality-driven extraction of a component-based

architecture from an object-oriented system. In Proceedings of the 12th Euro-

pean Conference on Software Maintenance and Reengineering (CSMR), pages

269–273, 2008.

[37] S. Chardigny and A. Seriai. Software Architecture Recovery Process Based on

Object-Oriented Source Code and Documentation. In Proceedings of the 4th

European Conference on Software Architecture (ECSA), pages 409–416, 2010.

74

Bibliography

[38] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzait. Search-Based Ex-

traction of Component-Based Architecture from Object-Oriented Systems. In

Proceedings of the 2nd European Conference on Software Architecture (ECSA),

volume 5292, pages 322–325. Springer Berlin Heidelberg, 2008.

[39] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit. Extraction of

Component-Based Architecture from Object-Oriented Systems. In Seventh

Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),

pages 285–288, 2008.

[40] J. Clarke, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin,

B. S. Mitchell, and S. Mancoridis. Reformulating software engineering as a

search problem. IEEE Proceedings Software, 150(3):161–175, 2003.

[41] C. A. Coello Coello. Evolutionary Multiobjective Optimization: Current and

Future Challenges. In Advances in Soft Computing, pages 243–256, 2003.

[42] C. A. Coello Coello, G. Lamont, and D. van Veldhuizen. Evolutionary Algo-

rithms for Solving Multi-Objective Problems. Springer US, 2nd edition, 2007.

[43] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello. Weighing lexical

information for software clustering in the context of architecture recovery.

Empirical Software Engineering, 21(1):72–103, 2016.

[44] V. Cortellessa, F. Marinelli, and P. Potena. An optimization framework for

“build-or-buy” decisions in software architecture. Computers and Operations

Research, 35(10):3090–3106, 2008.

[45] M. Cremene, M. Suciu, D. Pallez, and D. Dumitrescu. Comparative analysis

of multi-objective evolutionary algorithms for QoS-aware web service compo-

sition. Applied Soft Computing, 39:124–139, 2016.

[46] J. W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Meth-

ods Approaches. SAGE Publications, 3rd edition, 2003.

[47] J. F. Cui and H. S. Chae. Applying agglomerative hierarchical clustering

algorithms to component identification for legacy systems. Information and

Software Technology, 53(6):601–614, 2011.

75

Bibliography

[48] A. S. da Silva, H. Ma, and M. Zhang. Genetic programming for QoS-aware

web service composition and selection. Soft Computing, 20(10):1–17, 2016.

[49] S. Dasanayake, J. Markkula, S. Aaramaa, and M. Oivo. Software Architecture

Decision-Making Practices and Challenges: An Industrial Case Study. In Pro-

ceedings of the 24th Australasian Software Engineering Conference (ASWEC),

pages 88–97, 2015.

[50] A. De Campos Jr., A. T. R. Pozo, S. R. Vergilio, and T. Savegnago. Many-

Objective Evolutionary Algorithms in the Composition of Web Services. In

Proceedings of the 11th Brazilian Symposium on Neural Networks (SBRN),

pages 152–157, 2010.

[51] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley

Interscience Series in Systems and Optimization. Wiley, 2001.

[52] K. Deb and H. Jain. An Evolutionary Many-Objective Optimization Algo-

rithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:

Solving Problems With Box Constraints. IEEE Transactions on Evolutionary

Computation, 18(4):577–601, 2014.

[53] K. Deb, M. Mohan, and S. Mishra. Towards a Quick Computation of Well-

Spread Pareto-Optimal Solutions. In Proceedings of the 2nd International Con-

ference on Evolutionary Multi-Criterion Optimization (EMO), volume 2632 of

LNCS, pages 222–236, 2003.

[54] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[55] I. M. del Águila and J. del Sagrado. Bayesian networks for enhancement

of requirements engineering: a literature review. Requirements Engineering,

21(4):461–480, 2016.

[56] N. Desnos, M. Huchard, G. Tremblay, C. Urtado, and S. Vauttier. Search-

based many-to-one component substitution. Journal of Software Maintenance

and Evolution, 20(5):321–344, 2008.

76

Bibliography

[57] L. Dobrica and E. Niemela. A survey on software architecture analysis meth-

ods. IEEE Transactions on Software Engineering, 28(7):638–653, 2002.

[58] G. Dodig-Crnkovic. Scientific methods in computer science. In Proceedings of

the Conference for the Promotion of Research in IT at New Universities and

at University Colleges in Sweden, pages 126–130, 2002.

[59] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A Process-

Oriented Taxonomy. Journal of Transactions on Software Engineering,

35(4):573–591, 2009.

[60] A. Dutta. Integrating AI and optimization for decision support: a survey.

Decision Support Systems, 18(3):217–226, 1996.

[61] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting Empirical

Methods for Software Engineering Research. In Guide to Advanced Empirical

Software Engineering, chapter 11, pages 285–311. Springer London, London,

2008.

[62] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

Springer-Verlag Berlin Heidelberg, 2nd edition, 2015.

[63] R. Etemaadi, K. Lind, R. Heldal, and M. R. V. Chaudron. Quality-driven

optimization of system architecture: Industrial case study on an automotive

sub-system. Journal of Systems and Software, 86(10):2559–2573, 2013.

[64] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten. Decision-making tech-

niques for software architecture design. ACM Computing Surveys, 43(4):1–28,

2011.

[65] Y.-Y. FanJiang and Y. Syu. Semantic-based automatic service composition

with functional and non-functional requirements in design time: A genetic

algorithm approach. Information and Software Technology, 56(3):352–373,

2014.

[66] R. Feldt and A. Magazinius. Validity Threats in Empirical Software Engineer-

ing Research - An Initial Survey. In Proceedings of the 22nd International Con-

ference on Software Engineering and Knowledge Engineering (SEKE), pages

374–379, 2010.

77

Bibliography

[67] T. N. Ferreira, S. R. Vergilio, and J. T. de Souza. Incorporating User Pref-

erences in Search-Based Software Engineering: A Systematic Mapping Study.

Information and Software Technology, 90:55–69, 2017.

[68] F. Ferruci, M. Harman, and F. Sarro. Search-Based Software Project Manage-

ment. In Software Project Management in a Changing World, pages 373–399.

Springer-Verlag Berlin Heidelberg, 2014.

[69] M. Fleck, J. Troya, M. Kessentini, and M. Wimmer. Model Transformation

Modularization as a Many-Objective Optimization Problem. IEEE Transac-

tions on Software Engineering, 43(11):1009–1032, 2017.

[70] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated

unit test generation really help software testers? a controlled empirical study.

ACM Transactions on Software Engineering and Methodology, 24(4):23, 2015.

[71] M. Friedman. The use of ranks to avoid the assumption of normality implicit

in the analysis of variance. Journal of the American Statistical Association,

32(200):675–701, 1937.

[72] J. Garcia, P. Daniel, G. Edwards, and N. Medvidovic. Identifying Architec-

tural Bad Smells. In Proceedings of the 13th European Conference on Software

Maintenance and Reengineering (CSMR), pages 255–258, 2009.

[73] D. Garlan. Software architecture: a roadmap. In Proceedings of the Conference

on The Future of Software Engineering, pages 91–101, 2000.

[74] M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics, volume

146 of International Series in Operations Research & Management Science.

Springer US, 2010.

[75] F. Glover. Future paths for integer programming and links to artificial intel-

ligence. Computers & Operations Research, 13(5):533–549, 1986.

[76] I. Gorton. Essential Software Architecture. Springer, 2nd edition, 2011.

[77] L. Grunske. Identifying ”good” architectural design alternatives with multi-

objective optimization strategies. In Proceedings of the 28th International

Conference on Software Engineering (ICSE), pages 849–852, 2006.

78

Bibliography

[78] M. Harman. The role of Artificial Intelligence in Software Engineering. In

Proceedings of the 1st International Workshop on Realizing AI Synergies in

Software Engineering (RAISE), pages 1–6, 2012.

[79] M. Harman, S. Afshin Mansouri, and Y. Zhang. Search Based Software En-

gineering: Trends, Techniques and Applications. ACM Computing Surveys,

45(1):1–64, 2012.

[80] M. Harman and J. Clark. Metrics are fitness functions too. In Proceedings of

the 10th International Symposium on Software Metrics, pages 58–69, 2004.

[81] M. Harman and B. F. Jones. Search-based software engineering. Information

and Software Technology, 43(14):833–839, 2001.

[82] M. Harman, K. Lakhotia, J. Singer, D. R. White, and S. Yoo. Cloud engi-

neering is Search Based Software Engineering too. Journal of Systems and

Software, 86(9):2225–2241, 2013.

[83] M. Harman, S. Mansouri, and Y. Zhang. Search Based Software Engineering:

A Comprehensive Analysis and Review of Trends, Techniques and Applica-

tions. Technical Report TR-09-03, King’s College London, 2009.

[84] M. Harman, P. McMinn, J. De Souza, and S. Yoo. Search based software en-

gineering: Techniques, taxonomy, tutorial. In Empirical Software Engineering

and Verification, volume 7007 LNCS, pages 1–59. Springer Berlin Heidelberg,

2012.

[85] M. Harman and L. Tratt. Pareto Optimal Search Based Refactoring at the

Design Level. In Proceedings of the 9th Genetic and Evolutionary Computation

(GECCO), pages 1106–1113, 2007.

[86] E. F. Harrison. A process perspective on strategic decision making. Manage-

ment Decision, 34(1):46–53, 1996.

[87] S. M. H. Hasheminejad and S. Jalili. An evolutionary approach to identify

logical components. Journal of Systems and Software, 96:24–50, 2014.

[88] S. M. H. Hasheminejad and S. Jalili. CCIC: Clustering analysis classes to

identify software components. Information and Software Technology, 57:329–

351, 2015.

79

Bibliography

[89] Y. He, X. Wang, and J. Z. Huang. Recent advances in multiple criteria de-

cision making techniques. International Journal of Machine Learning and

Cybernetics, pages 1–4, 2016.

[90] S. Herold and M. Mair. Recommending refactorings to re-establish architec-

tural consistency. In Proceedings of the 8th European Conference on Software

Architecture (ECSA), volume 8627 LNCS, pages 390–397, 2014.

[91] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6:65–70, 1979.

[92] International MCDM Society. Definition of Multiple Criteria Decision Making.

http://www.mcdmsociety.org/.

[93] ISO. ISO/IEC 25010:2011(E). Software product Quality Requirements and

Evaluation (SQuaRE) - System and software quality models, 2011.

[94] ISO. ISO/IEC FDIS 42010/D9. Systems and software engineering - Architec-

ture description, 2011.

[95] W. Jung, E. Lee, and C. Wu. A survey on mining software repositories. IEICE

Transactions on Information and Systems, E95-D(5):1384–1406, 2012.

[96] S. Kebir, I. Borne, and D. Meslati. A genetic algorithm-based approach for au-

tomated refactoring of component-based software. Information and Software

Technology, 88:17–36, 2017.

[97] S. Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui. Quality-centric approach

for software component identification from object-oriented code. In Proceed-

ings of the 10th Joint Working Conference on Software Architecture and 6th

European Conference on Software Architecture (WICSA/ECSA), pages 181–

190, 2012.

[98] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh. Search-based

metamodel matching with structural and syntactic measures. The Journal of

Systems & Software, 97:1–14, 2014.

[99] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. B. Omar. Search-based

model transformation by example. Software and Systems Modeling, 11(2):209–

226, 2012.

80

Bibliography

[100] M. Kessentini, W. Werda, P. Langer, and M. Wimmer. Search-based model

merging. In Proceedings of the 15th Genetic and Evolutionary Computation

Conference (GECCO), pages 1453–1460, 2013.

[101] V. Khare, X. Yao, and K. Deb. Performance Scaling of Multi-objective Evolu-

tionary Algorithms. In Proceedings of the 2nd International Conference on

Evolutionary Multi-Criterion Optimization (EMO), volume 2632 of LNCS,

pages 376–390. Springer Berlin Heidelberg, 2003.

[102] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[103] B. Kitchenham and S. Charters. Guidelines for performing Systematic Litera-

ture Reviews in Software Engineering. Technical report, Keele University and

Durham University, 2007.

[104] B. A. Kitchenham, D. Budgen, and P. Brereton. Evidence-Based Software

Engineering and Systematic Reviews. CRC Press, 2016.

[105] M. Koksalan and I. Karahan. An Interactive Territory Defining Evolution-

ary Algorithm: iTDEA. IEEE Transactions on Evolutionary Computation,

14(5):702–722, 2010.

[106] M. Köppen and K. Yoshida. Substitute Distance Assignments in NSGA-II for

Handling Many-Objective Optimization Problems. In Evolutionary MultiCri-

terion Optimization, pages 727–741, 2007.

[107] A. Koziolek, D. Ardagna, and R. Mirandola. Hybrid multi-attribute QoS

optimization in component based software systems. Journal of Systems and

Software, 86(10):2542–2558, 2013.

[108] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:

Model, taxonomy, and design issues. IEEE Transactions on Evolutionary

Computation, 9(5):474–488, 2005.

[109] J. K. Lee, S. J. Jung, S. D. Kim, W. H. Jang, and D. H. Ham. Component

identification method with coupling and cohesion. In Proceedings of the 8th

Asia-Pacific Software Engineering Conference (APSEC), 2001.

81

Bibliography

[110] B. Li, J. Li, K. Tang, and X. Yao. Many-Objective Evolutionary Algorithms.

ACM Computing Surveys, 48(1):1–35, 2015.

[111] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A systematic mapping

study of search-based software engineering for software product lines. Infor-

mation and Software Technology, 61:33–51, 2015.

[112] A. López Jaimes and C. A. Coello Coello. Many-Objective Problems: Chal-

lenges and Methods. In Springer Handbook of Computational Intelligence,

pages 1033–1046. Springer Berlin Heidelberg, 2015.

[113] F. Losavio, L. Chirinos, A. Matteo, N. Lévy, and A. Ramdane-Cherif. ISO

quality standards for measuring architectures. Journal of Systems and Soft-

ware, 72(2):209–223, 2004.

[114] A. Lozano-Tello and A. Gómez-Pérez. BAREMO: How to Choose the Ap-

propriate Software Component Using the Analytic Hierarchy Process. In Pro-

ceedings of the 14th International Conference on Software Engineering and

Knowledge Engineering (SEKE), pages 781–788, 2002.

[115] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidović, and

R. Kroeger. Measuring the Impact of Code Dependencies on Software Archi-

tecture Recovery Techniques. IEEE Transactions on Software Engineering,

44(2):159–181, 2018.

[116] R. Lutz. Evolving Good Hierarchical Decompositions of Complex Systems.

Journal of Systems Architecture, 47:613–634, 2001.

[117] S. Mahmood, R. Lai, Y. S. Kim, J. H. Kim, S. C. Park, and H. S. Oh. A survey

of component based system quality assurance and assessment. Information and

Software Technology, 47(10):693–707, 2005.

[118] S. Malek, N. Medvidović, and M. Mikic-Rakic. An extensible framework for

improving a distributed software system’s deployment architecture. IEEE

Transactions on Software Engineering, 38(1):73–100, 2012.

[119] R. Malhotra. A systematic review of machine learning techniques for software

fault prediction. Applied Soft Computing, 27:504–518, 2015.

82

Bibliography

[120] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb. Multi-view refactoring

of class and activity diagrams using a multi-objective evolutionary algorithm.

Software Quality Journal, 25(2):473–501, 2017.

[121] O. Maqbool and H. Babri. Hierarchical clustering for software architecture

recovery. IEEE Transactions on Software Engineering, 33(11):759–780, 2007.

[122] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding. Transferring interactive

search-based software testing to industry. Journal of Systems and Software,

142:156–170, 2018.

[123] T. Mariani, T. Elita Colanzi, and S. Regina Vergilio. Preserving architectural

styles in the search based design of software product line architectures. Journal

of Systems and Software, 115:157–173, 2016.

[124] T. Mariani and S. R. Vergilio. A systematic review on search-based refactoring.

Information and Software Technology, 83:14–34, 2017.

[125] J. Marquis, E. S. Gel, J. W. Fowler, M. Köksalan, P. Korhonen, and J. Wal-

lenius. Impact of Number of Interactions, Different Interaction Patterns, and

Human Evolutionary Multiobjective Optimization Algorithms. Decision Sci-

ences, 46(5):981–1006, 2015.

[126] J. N. Martin. Overview of an Emerging Standard on Architecture Evaluation

– ISO/IEC 42030. In Proceedings of the 27th Annual INCOSE International

Symposium, pages 1139–1156, 2017.

[127] P. McMinn. Search-based software test data generation: A survey. Software

Testing Verification and Reliability, 14(2):105–156, 2004.

[128] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability opti-

mization with uncertain model parameters. Journal of Systems and Software,

85(10):2340–2355, 2012.

[129] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud. A Review

and Taxonomy of Interactive Optimization Methods in Operations Research.

ACM Transactions on Interactive Intelligent Systems, 5(3):1–43, 2015.

83

Bibliography

[130] Z. Michalewicz and D. B. Fogel. How to Solve it: Modern Heuristics. Springer-

Verlag Berlin Heidelberg, 2nd edition, 2004.

[131] S. Moaven, J. Habibi, H. Ahmadi, and A. Kamandi. A Decision Support

System for Software Architecture-Style Selection. In Proceedings of the 6th

International Conference on Software Engineering Research, Management and

Applications (SERA), pages 213–220, 2008.

[132] V. L. Narasimhan and B. Hendradjaya. Some theoretical considerations for

a suite of metrics for the integration of software components. Information

Sciences, 177(3):844–864, 2007.

[133] M. Nicoletti, S. Schiaffino, and J. A. Diaz-Pace. An optimization-based tool to

support the cost-effective production of software architecture documentation.

Journal of Software: Evolution and Process, 27:674–699, 2015.

[134] M. Nowak and C. Pautasso. Goals, Questions and Metrics for Architectural

Decision Models. In Proceedings of the 6th international workshop on SHAring

and Reusing architectural Knowledge (SHARK), pages 21–28, 2011.

[135] M. Ó Cinnéide, I. Hemati Moghadam, M. Harman, S. Counsell, and L. Tratt.

An experimental search-based approach to cohesion metric evaluation. Em-

pirical Software Engineering, pages 1–38, 2016.

[136] L. O’Brien, L. Bass, and P. Merson. Quality attributes and service-oriented ar-

chitectures. Technical Report CMU/SEI-2005-TN-014, Carnegie Mellon Uni-

versity, 2005.

[137] M. O’Keeffe and M. Ó Cinnéide. Search-based software maintenance. Proceed-

ings of the European Conference on Software Maintenance and Reengineering

(CSMR), pages 249–258, 2006.

[138] OMG. Unified Modeling Language 2.5.1, Dec. 2017.

https://www.omg.org/spec/UML/2.5.1.

[139] S. Orlov and A. Vishnyakov. Decision Making for the Software Architecture

Structure Based on the Criteria Importance Theory. Procedia Computer Sci-

ence, 104:27–34, 2017. ICTE 2016, Riga Technical University, Latvia.

84

Bibliography

[140] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of

Operations Research, 63:513–623, 1996.

[141] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi. Improving

multi-objective code-smells correction using development history. Journal of

Systems and Software, 105:18–39, 2015.

[142] R. Paiva, G. N. Rodrigues, R. Bonifácio, and M. Ladeira. Exploring the

Combination of Software Visualization and Data Clustering in the Software

Architecture Recovery Process. In Proceedings of the 31st ACM Symposium

on Applied Computing (SAC), pages 1309–1314, 2016.

[143] M. P. Papazoglou and W.-J. van den Heuvel. Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal, 16(3):389–

415, 2007.

[144] J. A. Parejo, J. Garćıa, A. Ruiz-Cortés, and J. C. Riquelme. STATService:

Herramienta de análisis estad́ıstico como soporte para la investigación con

Metaheuŕısticas. In Proceedings of the VIII Congreso Expañol sobre Meta-

heuŕısticas, Algoritmos Evolutivos y Bio-inspirados, 2012.

[145] J. A. Parejo, S. Segura, P. Fernandez, and A. Ruiz-Cortés. QoS-aware web

services composition using GRASP with Path Relinking. Expert Systems with

Applications, 41(9):4211–4223, jul 2014.

[146] I. C. Parmee. Poor-Definition, Uncertainty, and Human Factors - Satisfying

Multiple Objectives in Real-World Decision-Making Environments. In Pro-

ceedings of the 1st International Conference on Evolutionary Multi-Criterion

Optimization (EMO), pages 52–66, 2001.

[147] D. Partridge. Artificial intelligence and software engineering: a survey of

possibilities. Information and Software Technology, 30(3):146–152, 1988.

[148] D. Perez-Palacin, R. Mirandola, and J. Merseguer. On the relationships be-

tween QoS and software adaptability at the architectural level. Journal of

Systems and Software, 87(1):1–17, 2014.

85

Bibliography

[149] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and

J. R. Woodward. Genetic Improvement of Software: A Comprehensive Survey.

IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

[150] G. Phillips-Wren and N. Ichalkaranje, editors. Intelligent Decision Making:

An AI-Based Approach. Springer-Verlag Berlin Heidelberg, 1st edition, 2008.

[151] A. M. Pitangueira, R. S. P. Maciel, and M. Barros. Software requirements

selection and prioritization using SBSE approaches: A systematic review and

mapping of the literature. Journal of Systems and Software, 103:267–280,

2015.

[152] K. Praditwong and X. Yao. How well do multi-objective evolutionary al-

gorithms scale to large problems. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC), pages 3959–3966, 2007.

[153] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw

Hill, 8th edition, 2014.

[154] R. Purshouse and P. Fleming. On the evolutionary optimisation of many

conflicting objectives. IEEE Transactions on Evolutionary Computation,

11(6):770–784, 2007.

[155] R. C. Purshouse and P. J. Fleming. Evolutionary Many-Objective Optimi-

sation: An Exploratory Analysis. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC), pages 2066–2073, 2003.

[156] R. The R Project for Statistical Computing, 2018. https://www.r-project.org/.

[157] O. Räihä. Genetic Algorithms in Software Architecture Synthesis. PhD thesis,

University of Tampere, 2008.

[158] O. Räihä. A survey on search-based software design. Computer Science Re-

view, 4(4):203–249, 2010.

[159] O. Räihä and K. Koskimies. Multi-Objective Genetic Synthesis of Software

Architecture. In Proceedings of the Companion Publication of the 13th Genetic

and Evolutionary Computation Conference (GECCO Companion), pages 249–

250, 2011.

86

Bibliography

[160] O. Räihä, K. Koskimies, and E. Mäkinen. Complementary crossover for genetic

software architecture synthesis. In Proceedings of the 10th International Con-

ference on Intelligent Systems Design and Applications (ISDA), pages 266–

271, 2010.

[161] M. Ravber, M. Mernik, and M. C̆repins̆ek. The impact of Quality Indica-

tors on the rating of Multi-objective Evolutionary Algorithms. Applied Soft

Computing, 55:265–275, 2017.

[162] S. Rekha V. and H. Muccini. Suitability of Software Architecture Decision

Making Methods for Group Decisions. In Proceedings of the 8th European

Conference on Software Architecture (ECSA), pages 17–32, 2014.

[163] P. Rodŕıguez-Mier, M. Mucientes, M. Lama, and M. I. Couto. Composi-

tion of web services through genetic programming. Evolutionary Intelligence,

3(3):171–186, 2010.

[164] J. Romano, J. D. Kromrey, J. Coraggio, and J. Showronek. Appropriate

statistics for ordinal level data: Should we really be using t-test and cohen’s

d for evaluating group differences on the nsse and other surveys? In Annual

Meeting of the Florida Association of Institutional Research, 2006.

[165] J. R. Romero, J. M. Luna, and S. Ventura. datapro4: the data processing

library for Java, 2012. http://www.uco.es/grupos/kdis/datapro4j.

[166] S. Russell and P. Norvig. Artiticial Intelligence: A Modern Approach. Prentice

Hall, 3rd edition, 2016.

[167] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P. Lucena. On the Modular-

ity of Software Architectures: A Concern-Driven Measurement Framework. In

Proceedings of the 1st European Conference on Software Architecture (ECSA),

pages 207–224, 2007.

[168] G. R. Santhanam. Qualitative optimization in software engineering: A short

survey. Journal of Systems and Software, 111:149–156, 2016.

[169] A. S. Sayyad and H. Ammar. Pareto-optimal search-based software engineer-

ing (POSBSE): A literature survey. In Proceedings of the 2nd International

87

Bibliography

Workshop on Realizing Artificial Intelligence Synergies in Software Engineer-

ing (RAISE), pages 21–27, 2013.

[170] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. In Proceedings of the 1st International Conference on Genetic

Algorithms, pages 93–100, 1985.

[171] O. Schütze, A. Lara, and C. A. Coello Coello. On the influence of the number

of objectives on the hardness of a multiobjective optimization problem. IEEE

Transactions on Evolutionary Computation, 15(4):444–455, 2011.

[172] SDMetrics. SDMetrics core functionality, 2018.

https://www.sdmetrics.com/OpenCore.html.

[173] A.-D. Seriai and S. Chardigny. A Genetic Approach for Software Architecture

Recovery from Object-Oriented Code. In Proceedings of the 23rd International

Conference on Software Engineering & Knowledge Engineering (SEKE), pages

515–520, 2011.

[174] M. R. N. Shackelford. Implementation issues for an interactive evolutionary

computation system. In Proceedings of Companion Publication of the 9th

Genetic and Evolutionary Computation Conference (GECCO), pages 2933–

2935, 2007.

[175] M. R. N. Shackelford and C. L. Simons. Metaheuristic Design Pattern: Inter-

active Solution Presentation. In Proceedings of the Companion Publication of

the 16th Genetic and Evolutionary Computation Conference (GECCO), pages

1431–1433, 2014.

[176] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu. Web

services composition: A decade’s overview. Information Sciences, 280:218–

238, 2014.

[177] O. Sievi-Korte, E. Mäkinen, and T. Poranen. Simulated Annealing for Aid-

ing Genetic Algorithm in Software Architecture Synthesis. Acta Cybernetica,

21(2):235–265, 2013.

[178] C. L. Simons. Interactive Evolutionary Computing in Early Lifecycle Software

Engineering Design. PhD thesis, University of the West of England, 2011.

88

Bibliography

[179] C. L. Simons. Whither (away) Software Engineers in SBSE? In Proceedings

of the 1st International Workshop on Combining Modelling and Search-Based

Software Engineering (CMSBSE), pages 49–50, 2013.

[180] C. L. Simons and I. C. Parmee. Elegant Object-Oriented Software Design via

Interactive, Evolutionary Computation. IEEE Transactions on Systems, Man

and Cybernetics Part C: Applications and Reviews, 42(6):1797–1805, 2012.

[181] C. L. Simons, I. C. Parmee, and R. Gwynllyw. Interactive, Evolutionary

Search in Upstream Object-Oriented Class Design. IEEE Transactions on

Software Engineering, 36(6):798–816, 2010.

[182] C. L. Simons, J. Smith, and P. White. Interactive ant colony optimization

(iACO) for early lifecycle software design. Swarm Intelligence, 8(2):139–157,

2014.

[183] I. Stavropoulou, M. Grigoriou, and K. Kontogiannis. Case study on which

relations to use for clustering-based software architecture recovery. Empirical

Software Engineering, 22(4):1717–1762, 2017.

[184] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattson. A Quality-Driven

Decision Support Method for Identifying Software Architecture Candidates.

International Journal of Software Engineering and Knowledge Engineering,

13(05):547–573, 2003.

[185] C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Longman, 2nd edition, 2002.

[186] H. Takagi. Interactive evolutionary computation: fusion of the capabilities of

EC optimization and human evaluation. Proceedings of the IEEE, 89(9):1275–

1296, 2001.

[187] E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley, 2009.

[188] D. A. Tamburri and R. Kazman. General methods for software architecture

recovery: a potential approach and its evaluation. Empirical Software Engi-

neering, 23(3):1457–1489, 2018.

89

Bibliography

[189] A. Tosun, A. B. Bener, and S. Akbarinasaji. A systematic literature review

on the applications of Bayesian networks to predict software quality. Software

Quality Journal, 25(1):273–305, 2017.

[190] E. Triantaphyllou. Multi-criteria Decision Making Methods: A Comparative

Study. Number 44 in Applied Optimization. Springer, 1st edition, 2000.

[191] I. Trummer, B. Faltings, and W. Binder. Multi-Objective Quality-Driven

Service Selection - A Fully Polynomial Time Approximation Scheme. IEEE

Transactions on Software Engineering, 40(2):167–191, 2014.

[192] S. Vathsavayi, Hadaytullah, and K. Koskimies. Interleaving human and search-

based software architecture design. Proceedings of the Estonian Academy of

Sciences, 62(1):16–26, 2013.

[193] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás. JCLEC: A

Java framework for evolutionary computation. Soft Computing, 12(4):381–392,

2008.

[194] T. Vernazza, G. Succi, and G. Granatella. Defining Metrics for Software

Components. In Proceedings of the World Multiconference on Systemics, Cy-

bernetics and Informatics, pages 16–23, 2000.

[195] A. Vescan and C. Şerban. Multilevel component selection optimization toward

an optimal architecture. Soft Computing, 21(15):4481–4495, 2017.

[196] C. Von Lücken, B. Barán, and C. Brizuela. A survey on multi-objective evolu-

tionary algorithms for many-objective problems. Computational Optimization

and Applications, 58(3):707–756, 2014.

[197] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. E3: A Multiobjective Opti-

mization Framework for SLA-Aware Service Composition. IEEE Transactions

on Services Computing, 5(3):358–372, 2012.

[198] T. Wagner, N. Beume, and B. Naujoks. Pareto-, aggregation-, and indicator-

based methods in many-objective optimization. In Evolutionary MultiCrite-

rion Optimization, volume 4403, pages 742–756, 2007.

90

Bibliography

[199] D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualizing mutually non-

dominating solution sets in many-objective optimization. IEEE Transactions

on Evolutionary Computation, 17(2):165–184, 2013.

[200] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. A practical guide to select

quality indicators for assessing pareto-based search algorithms in search-based

software engineering. Proceedings of the 38th International Conference on

Software Engineering (ICSE), pages 631–642, 2016.

[201] H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In Proceedings of the 5th International

Workshop on Enterprise Networking and Computing in Healthcare Industry,

pages 211–223, 2003.

[202] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang. Systematic literature review of

machine learning based software development effort estimation models. Infor-

mation and Software Technology, 54(1):41–59, 2012.

[203] F. Wilcoxon. Individual Comparison by Ranking Methods. Biometrics, 1:80–

83, 1945.

[204] Y. Xu and P. Liang. Automated Software Architectural Synthesis using Pat-

terns: A Cooperative Coevolution Approach. Proceedings of the 26th In-

ternational Conference on Software Engineering and Knowledge Engineering,

24(10):1387–1411, 2014.

[205] S. Yang, M. Li, X. Liu, and J. Zheng. A Grid-Based Evolutionary Algorithm

for Many-Objective Optimization. IEEE Transactions on Evolutionary Com-

putation, 17(5):721–736, 2013.

[206] Y. Yu, H. Ma, and M. Zhang. F-MOGP: A novel many-objective evolutionary

approach to QoS-aware data intensive web service composition. In Proceedings

of the IEEE Congress on Evolutionary Computation (CEC), pages 2843–2850,

2015.

[207] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007.

91

Bibliography

[208] Y. Zhang, M. Harman, and A. Mansouri. The SBSE Repository: A reposi-

tory and analysis of authors and research articles on Search Based Software

Engineering. http://crestweb.cs.ucl.ac.uk/resources/sbse repository/.

[209] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang. Mul-

tiobjective evolutionary algorithms: A survey of the state of the art. Swarm

and Evolutionary Computation, 1(1):32–49, 2011.

[210] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[211] E. Zitzler, M. Laumanns, and S. Bleuler. A Tutorial on Evolutionary Mul-

tiobjective Optimization. In Metaheuristics for Multiobjective Optimisation,

volume 535 of LNE, pages 3–37. Springer Berlin Heidelberg, 2004.

[212] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. In Proceedings of the International Confer-

ence on Evolutionary Methods for Design Optimization and Control with Ap-

plications to Industrial Problems (EUROGEN), pages 95–100, 2001.

[213] E. Zitzler and K. Simon. Indicator-Based Selection in Multiobjective Search.

In Proceedings of the 8th International Conference on Parallel Problem Solving

from Nature (PPSN), pages 832–842, 2004.

92

Scientific publications

[C1] A. Ramı́rez, J. R. Romero, and S. Ventura. On the Performance of Multiple Ob-

jective Evolutionary Algorithms for Software Architecture Discovery. Proceed-

ings of the 16th Genetic and Evolutionary Computation Conference (GECCO),

pp. 1287–1294, 2014.

[C2] A. Ramı́rez, J. R. Romero, and S. Ventura. Análisis de la aplicabilidad de

medidas software para el diseño semi-automático de arquitecturas. Proceedings

of the XIX Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD),

pp. 307–320, 2014.

[C3] A. Ramı́rez, J. R. Romero, and S. Ventura. Estudio preliminar del rendimiento

de familias de algoritmos multiobjetivo en diseño arquitectónico. Proceedings of

the X Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioin-

spirados (MAEB), pp. 173–180, 2015.

[C4] A. Ramı́rez, J. R. Romero, and S. Ventura. An Extensible JCLEC-based Solu-

tion for the Implementation of Multi-Objective Evolutionary Algorithms. Pro-

ceedings of the Companion Publication of 17th Genetic and Evolutionary Com-

putation Conference (GECCO Companion), pp. 1085–1092, 2015.

[C5] A. Ramı́rez, J. R. Romero, and S. Ventura. Interactividad en el descubrimiento

evolutivo de arquitecturas. Proceedings of the XX Jornadas en Ingenieŕıa del

Software y Bases de Datos (JISBD), 2015.

[J1] A. Ramı́rez, J. R. Romero, and S. Ventura. An approach for the evolutionary

discovery of software architectures. Information Sciences, vol. 305, pp. 234–255,

2015.

93

Scientific publications

[C6] A. Ramı́rez, J. A. Molina, J. R. Romero, and S. Ventura. Estudio de mecanis-

mos de hibridación para el descubrimiento evolutivo de arquitecturas. Proceed-

ings of the XXI Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD),

pp. 481–494, 2016.

[C7] J. Parejo, A. Ramı́rez, J. Romero, S. Segura, and A. Ruiz-Cortés. Configuración

guiada por búsqueda de aplicaciones basadas en microservicios en la nube.

Proceedings of the XXI Jornadas en Ingenieŕıa del Software y Bases de Datos

(JISBD), pp. 499–502, 2016.

[C8] A. Ramı́rez, R. Barbudo, J. R. Romero, and S. Ventura. Herramienta basada

en computación evolutiva interactiva para arquitectos software. Proceedings of

the XI Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioin-

spirados (MAEB), pp. 387–396, 2016.

[C9] A. Ramı́rez, R. Barbudo, J. R. Romero, and S. Ventura. Memetic Algo-

rithms for the Automatic Discovery of Software Architectures. Proceedings of

the 16th International Conference on Intelligent Systems Design and Applica-

tions (ISDA), vol. 557 AISC, pp. 437–447, 2016.

[J2] A. Ramı́rez, J. R. Romero, and S. Ventura. A comparative study of many-

objective evolutionary algorithms for the discovery of software architectures.

Empirical Software Engineering, vol. 21, no. 6, pp. 2546–2600, 2016.

[C10] A. Ramı́rez, J. R. Romero, and S. Ventura. On the effect of local search in the

multi-objective evolutionary discovery of software architectures. Proceedings of

the IEEE Congress on Evolutionary Computation (CEC), pp. 2038–2045, 2017.

[C11] A. Ramı́rez, J. R. Romero, and S. Ventura. Búsqueda coevolutiva interactiva

aplicada al diseño de software. Proceedings of the XXII Jornadas en Ingenieŕıa

del Software y Bases de Datos (JISBD), 2017.

[J3] A. Ramı́rez, J. A. Parejo, J. R. Romero, S. Segura, and A. Ruiz-Cortés. Evolu-

tionary composition of QoS-aware web services: A many-objective perspective.

Expert Systems with Applications, vol. 72, pp. 357–370, 2017.

94

[J4] A. Ramı́rez, J. R. Romero, and C. Simons. A Systematic Review of Interaction

in Search-Based Software Engineering. IEEE Transactions on Software Engi-

neering, pp. 1–22, 2018. In press.

[C12] A. Ramı́rez, J. R. Romero, and S. Ventura. API para el desarrollo de algo-

ritmos interactivos en ingenieŕıa del software basada en búsqueda. Proceedings

of the XXIII Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD),

2018.

[J5] A. Ramı́rez, J. R. Romero, and S. Ventura. Interactive multi-objective optimiza-

tion of software architectures. Information Sciences, vol. 463-464, pp. 92-109,

2018.

Part II

Scientific Publications

6
Compendium of publications

99

6.1. Approach for the evolutionary discovery of architectures

6.1. An approach for the evolutionary discovery of software

architectures

Title An approach for the evolutionary discovery of software architectures

Authors A. Ramı́rez, J.R. Romero, S. Ventura

Journal Information Sciences

Volume 305

Pages 234-255

Year 2015

Editorial Elsevier

DOI 10.1016/j.ins.2015.01.017

IF (JCR 2015) 3.364

Category Computer Science, Information Systems

Position 8/144 (Q1)

Cites 7 (WoS), 11 (Scopus)

101

https://doi.org/10.1016/j.ins.2015.01.017

An approach for the evolutionary discovery of software
architectures

Aurora Ramírez, José Raúl Romero ⇑, Sebastián Ventura
Department of Computer Science and Numerical Analysis, University of Córdoba, 14071 Córdoba, Spain

a r t i c l e i n f o

Article history:
Received 30 July 2014
Received in revised form 6 January 2015
Accepted 24 January 2015
Available online 7 February 2015

Keywords:
Search based software engineering
Software architecture discovery
Evolutionary algorithms
Ranking aggregation fitness

a b s t r a c t

Software architectures constitute important analysis artefacts in software projects, as they
reflect the main functional blocks of the software. They provide high-level analysis arte-
facts that are useful when architects need to analyse the structure of working systems.
Normally, they do this process manually, supported by their prior experiences. Even so,
the task can be very tedious when the actual design is unclear due to continuous uncon-
trolled modifications. Since the recent appearance of search based software engineering,
multiple tasks in the area of software engineering have been formulated as complex search
and optimisation problems, where evolutionary computation has found a new area of
application. This paper explores the design of an evolutionary algorithm (EA) for the dis-
covery of the underlying architecture of software systems. Important efforts have been
directed towards the creation of a generic and human-oriented process. Hence, the selec-
tion of a comprehensible encoding, a fitness function inspired by accurate software design
metrics, and a genetic operator simulating architectural transformations all represent
important characteristics of the proposed approach. Finally, a complete parameter study
and experimentation have been performed using real software systems, looking for a
generic evolutionary approach to help software engineers towards their decision making
process.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Throughout software development, software engineers need to make decisions about the most appropriate structures,
platforms and styles of their designs. The automatic inference and evaluation of different design alternatives is a challenging
application domain where computational intelligence techniques serve to provide support to software engineers, especially
when limited information about the system being developed is still available.

In this context, architectural analysis constitutes an important phase in software projects, as it provides methods and
techniques for handling the specification and design of software in the earlier stages [9]. It is considered a human-centered
decision process with a great impact on the quality and reusability of the end product. During high level analysis, component
identification allows the discovery of system blocks, their functionalities and interactions. For this reason, it is a good prac-
tice when dealing with complex systems [35], resulting in more comprehensible software and making its development and
maintenance simpler and more affordable.

Frequently, software engineers need to tackle architectural analysis from a working system in order to migrate it or
extend its functionality [10]. This could be a difficult task when the underlying system conception has been perverted

http://dx.doi.org/10.1016/j.ins.2015.01.017
0020-0255/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +34 957 21 26 60.
E-mail address: jrromero@uco.es (J.R. Romero).

Information Sciences 305 (2015) 234–255

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

due to requirements changes. A more dramatic situation occurs when reverse engineering techniques from source code are
the only way to extract system information, leading to inappropriate abstractness because of missing documentation. In the-
se cases, engineers must expend their time and effort, with their own experience as their only guarantee, in the manual dis-
covery of these functional blocks.

Architectural optimisation methods in the field of software engineering (SE) have often proposed guidelines and recom-
mendations to modellers for the identification and improvement of software architectures [5,6]. Hence, semi-automatic tools
and intelligent systems might be an efficient solution to support the engineering work in order to obtain quality models.

More specifically, the discovery of the architecture of a software specification can also be formulated as the search of the
most appropriate distribution of available software artefacts in more abstract units of construction. Traditionally, proposed
approaches are based on the refactoring of source code [21,34], implying that architectural blocks are recovered at the end of
the development process without regarding analysis decisions. Besides, it is frequent that source code is evolved without an
exhaustive control from the analysis perspective, and it is likely not to be representative of the original conception of the
system. Instead, the discovery process can be carried out using earlier available information, like the detailed analysis mod-
els in the form of class diagrams. These models offer an intermediate view of the software, between the abstractness of the
architecture specification and the specificity of the code.

Recently, the combination of metaheuristic approaches and software engineering as problem domain, denominated
search based software engineering (SBSE), has undergone a huge growth [17]. Since the appearance of SBSE, evolutionary
computation (EC) has emerged as the most applied metaheuristic [16], demonstrating that it constitutes an interesting
and complementary way to help software engineers in the improvement of their object-oriented class designs [33] or user
interfaces [36]. In this paper, EC is explored as a search technique to extract the underlying software architecture of a system.
It constitutes a novelty in SBSE, where architectural discovery has been viewed as a re-engineering task from source code,
which is more oriented towards maintenance and refactoring purposes. The main research questions posed in this work are
the following:

RQ1: Can single-objective evolutionary algorithms (EA) help the software engineer to identify an initial candidate architecture of
a system at a high level of abstraction? Such an approach should be heavily oriented towards the expert domain, looking for
the interoperability with software engineering standards and tools, as well as for the comprehension of the elements
involved within the evolutionary model.

RQ2: How does the configuration of the algorithm influence both the evolutionary performance and the quality of the returned
solution? In order to answer to this question, an in-depth parameter study is required, aiming to provide useful guidelines on
this regard to the software architect.

In the proposed evolutionary approach, class diagrams constitute the source artefacts used to abstract the software archi-
tecture, which is encoded using a flexible tree structure. Design alternatives are explored by a specific genetic operator
applying domain knowledge. Concepts like cohesion and coupling guide the search, defining a ranking-based fitness
function.

The rest of the paper is structured as follows. Section 2 introduces some background in SBSE and architectural modelling.
Section 3 details the problem description, whereas the evolutionary model is described in Section 4. Next, experimentation is
presented in Section 5, including a detailed parameter study. An illustrative example of the approach is explained in
Section 6, and results are discussed in Section 7. Finally, concluding remarks are outlined in Section 8.

2. Background

This section presents the most relevant subjects and background related to our work. More specifically, it introduces evo-
lutionary computation as a technique to solve software engineering tasks, as well as the main terminology related to archi-
tectural analysis. Finally, previous works on software architecture optimisation in SBSE are presented.

2.1. Evolutionary computation in software engineering

Evolutionary computation [7] is one of the first population-based and bio-inspired metaheuristics for the resolution of
optimisation problems. For this reason, EC has been applied for many years now to a variety of topics and considerable
efforts have been applied in order to propose new techniques and operators [38] to solve complex applications.

Applying metaheuristics like EC to any domain requires that the scenario to be solved must be reformulated as an opti-
misation problem. Software engineering is not an exception [8]. Since the appearance of SBSE, considerable efforts have been
devoted to this field. Although the first and most studied area has been the automation of test case generation [12], other
tasks related to the rest of phases in the software development, from requirements specification [39] to software verification
[27], have already been studied. The advances in the field demonstrate that the application of EC to software enhancement is
not only focused in the generation of automated programs, other activities classically performed by humans present new
challenges.

Since SE is mainly a human-centered activity, the automation of the expert’s reasoning presents a great challenge, espe-
cially in the analysis and design phases [29]. Design tasks considered in SBSE encompass problems like the conception of
both object-oriented [33] and service-oriented [30] architectures, software module clustering [28] or software refactoring

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 235

[20]. These activities are characterised by the need of constructing some type of software model from requirements. Both
module clustering [28] and software refactoring [20] are more relevant to software maintenance, since existing software
artefacts must be scrutinised in order to provide design alternatives.

In [33], an evolutionary algorithm is combined with software agents to extract the most fitting UML class diagram for a
given set of methods and attributes from use cases. This type of software requirement information is also taken as an input of
the evolutionary approach proposed in [18], where logical groups of use cases are identified and put together into compo-
nent packages. In this case, the authors presented a generic framework inspired by clustering techniques. In [30], genetic
programming is used to deal with service composition in order to obtain the best orchestration of web services.

Frequently, popular evolutionary schemes and generic operators are selected and adapted when needed, since EC
research history provides sufficient candidate elements [22]. Quite the opposite occurs when addressing more complex
problems and specific implementations are required [11]. The problem description determines the need for either generic
or specific elements. In this sense, the genetic algorithms conceived in [18,28] handle integer encodings for the allocation
of software artefacts, whereas those designed in [20,30] require tree structures and special operators for the application
of genetic programming approaches. Additionally, an object-oriented encoding to represent the set of classes, methods
and attributes is proposed in [33].

2.2. Component-based software architectures

According to the ISO Std. 42010 [19], the architecture of a software system conceives ‘‘the fundamental concepts or prop-
erties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolu-
tion’’. These high-level abstraction models are very appropriate for guiding and controlling its subsequent development,
since it constitutes a bridge between software requirements and the implementation with specific programming languages
[13]. Ideally, these models should be considered during the entire process, evolving as the software does. However, they fre-
quently tend to be shifted during the implementation and the maintenance phases, since architectures do not have a direct
representation in code artefacts.

A component-based architecture depicts a special type of architectural model, founded on the idea of constructing the
software by means of independent artefacts that aim to promote the reuse of functionality. A commonly accepted definition
of component is given by Szyperski [35]: ‘‘a component is a unit of composition with contractually specified interfaces and
explicit context dependencies only’’. It is also mentioned that a component ‘‘can be deployed independently and is subject to
third party composition’’. Internal objects implement its functionality, although they remain hidden and inaccessible beyond
the component limits. Relations between components should be defined by means of provided and/or required interfaces. A
provided interface is defined as ‘‘a set of named operations that can be invoked by clients’’, separating the specification of the
functionality from its real implementation. On the other hand, a required interface specifies the services invoked by the com-
ponent, and provided by others. Finally, connectors link two or more interaction points between interfaces.

The importance of component-based architectures lies in its capability to represent a variety of software systems by
means of abstract units of construction, without the consideration of the final specific technology or context in which the
software will be deployed. Thus, components could be implemented as packages, modules or even single classes in
object-oriented systems, as well as a set of services provided in the cloud or distributed objects in open and large distributed
systems.

Software architects require, just like metaheuristics do, mechanisms to evaluate the adequacy of their models. The most
frequently used measures are related to cohesion and coupling [14]. Cohesion refers to the degree to which the elements
comprising the component are necessary and sufficient to carry out a single, well-defined function. Coupling is related to
the interdependence between components, probably caused by references to other modules and data flows. Good compo-
nent-based designs, i.e. specifying cohesive components with low dependencies, provide highly scalable software systems
with better encapsulation and modularity. There exist other diverse metrics that help engineers in either the measurement
of non-functional properties of its component-based designs, like integration [1] or usability [4], or the quantification of the
symmetrical elegance of the software design [32].

2.3. Search-based architectural design

Current SBSE proposals in the context of software architectures can be viewed from diverse perspectives [2], since there
are different kinds of factors to be considered in an architectural specification. The architecture definition (i.e. modelling
languages, available constructs or the algorithm representation); the quality attributes to be measured, either functional
or non-functional; the presence of prior components or design patterns, as well as the design purpose (recovery, refactoring,
software implementation and hardware deployment) present a variety of application problems.

The conception of a low-level architecture from use cases as a software architecture synthesis problem is proposed in
[31]. The authors present a genetic algorithm that takes as input an initial grouping of classes obtained by a simulated
annealing algorithm from a graph of functional dependencies, previously extracted from use cases. The resulting architec-
tural specification is composed by classes and interfaces, according to the design patterns that best fit the requirements.

Next, the process proposed in [21] combines a clustering approach and a genetic algorithm for the recovery of compo-
nent-based architectures from source code. It is a re-engineering model where the genetic search is performed over an initial

236 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

architecture obtained after the study of relationships among source code elements (classes, interfaces, packages) from a
functional dependency graph. It requires a complex mapping process, since it considers a fixed linear encoding representing
the distribution of each class into a component, and needs a transformation mechanism to properly present the solution to
the user. The proposed evolutionary model focuses on the architecture reconstruction from source code, its goal being closest
to software maintenance. The software code constitutes a powerful source of detailed information about how the system
works, but it is not clear that high-level characteristics can be directly extracted from it, since human decisions and abstract
information are commonly faded away throughout the software construction process.

Assembling COTS (components off-the-shelf) is another example of architecture construction. These COTS already imple-
ment specific functionalities whose combination is optimised in order to conform with the overall system functional require-
ments. In [24], well-known multi-objective genetic algorithms are used to generate design alternatives from an initial
component-based architectural model. Besides, the proposal requires precise annotations of the evaluable metrics on each
component from the expert, i.e. cost or performance, being components considered as black-box artefacts. Along the same
lines, the authors explore in [3] the selection of the optimal subset of pre-existing components, which determine the next
release of a system, using simulated annealing and greedy algorithms.

Finally, the framework presented in [23] addresses the issue concerned to architectural deployment, where software
components within a distributed system must be allocated in hardware nodes in order to properly satisfy the non-functional
requirements given, such as cost, latency and memory consumption. Here, the software specification already exists, so the
evolutionary search is focused on exploring several different platforms where the deployed software would be executed.

3. Problem description

The identification of the architectural models is considered during the early stages of software conception, when software
modellers still want to modify their current software structure as requirements change or they are requested to check the
correctness of the resulting design.

When source code artefacts are not yet available, architects require other sources of information in order to discover the
intended architecture. Initial class diagrams, usually the most used representations in the analysis phase, constitute an inter-
esting starting point for architecture discovery. These diagrams offer more specific analysis information than source code,
and they use modelling languages like UML 2 [26] instead of programming languages.

Therefore, the originally intended elements that conform a component-based architecture (components, interfaces and
connectors) will be identified from these analysis models, resulting in an architecture represented with a UML 2 component
diagram. At this point, the semi-automatic discovery of components including its internal structure, candidate interfaces and
connectors can be constrained by the following assumptions:

1. A component is defined as a cohesive group of classes, meaning that they work together to satisfy the expected behaviour
of the component. Thus, classes within the diagram will be organised searching the best abstraction of the different func-
tionalities that can be identified in the software.
A very important constraint to consider is that any class in the input diagram must be contained in one and only one com-
ponent in the resulting architecture. Additionally, any operation or transformation of the architecture must ensure that no
empty components are returned.

2. A directed relationship between classes in the analysis model belonging to different components represents a candidate
interface. Although groups of related classes should be allocated in the same component, some interactions could remain
between classes belonging to other components, representing operational flows among them. Then, these relationships,
required to perform the overall functionality of the system, will be abstracted as interactions between components, i.e.
defining its interfaces.
It can be observed that not all the relationships can constitute a candidate interface. For instance, generalisations repre-
sent data abstractions, so they do not imply a flow of operational information. The navigability of the relationship is also
important because, if it is not explicitly represented, it would mean that information is exchanged in both directions, the
corresponding classes being highly dependent. If the navigability is presented for only one direction, the flow represents a
provided or required candidate service.
Focusing on the interactions between components, isolated components are not appropriated as they do not provide any ser-
vice to others. Secondly, mutually dependent components are not permitted from the architectural perspective. This latter
circumstance occurs when a component requires and provides services from another component.

3. Connectors can be described as the linkage between a pair of required/provided interfaces interconnecting different com-
ponents. They will be identified after the discovery of the interfaces created between components.

4. Proposed model for architecture discovery

In this section, the different elements of the proposed evolutionary model are presented, including the encoding chosen,
the fitness function and the genetic operator. All these elements are conceived with the aim of creating a comprensible EA as
posed by RQ1. Finally, the description of the evolutionary algorithm is detailed.

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 237

4.1. Encoding of solutions

Selecting the most appropriate problem encoding is a key step in any search algorithm. Usually, a trade-off between the
performance and comprehensibility must be achieved, especially when genetic algorithms are aimed at supporting non
expert users in metaheuristics. Although the linear encodings proposed in Sections 2.1 and 2.3 seem to be efficient represen-
tations, difficult design problems still require its adaptation by means of superstructures or groups of consecutive genes to
represent more complex features. In these cases, efficiency decreases due to the use of operators which are too specific or the
need for corrective procedures after the application of generic operators.

Human interpretation is usually hampered by complex genotype/phenotype mappings. Therefore, an easier mapping pro-
cess for software design problems might be beneficial. Tree structures seem to be an interesting option, as they have been
used successfully in both computational and human domains. Moreover, these types of representation are also familiar to
software architects, because they are common structures in modelling tools, and they allow a flexible management of solu-
tions with different sizes, e.g. architectures with a variable number of components and connectors.

Components, interfaces, connectors and inner elements clearly present a hierarchical composition. Classes and their rela-
tionships may constitute a component, whose complete specification requires the definition of its provided and required
interfaces. Connectors can be split into the interfaces they link. Then, mapping a component diagram into a tree structure
is feasible as shown in Fig. 1, where shading nodes constitute the solution frame, comprised by those mandatory artefacts
appearing in any architectural model. The rest of nodes represent the elements that can be different from one solution to
another, i.e. a number of component and connectors as well as the distribution of classes and interfaces among them. More
specifically, the root node, Architecture, represents the component diagram that is comprised of a set of components and con-
nectors. Each component is defined by a node Component in terms of its internal classes and its interfaces. Similarly, each
connector is described by the pair of required and provided interfaces that it links. Since they are compound elements, they
are represented as non-terminal nodes. Finally, classes and interfaces constitute the terminal nodes.

4.2. Initial population

From the problem description (see Section 3), it can be noted that the search space is constituted by all possible combi-
nations of class distribution among components, also identifying its interfaces and the connectors. These candidate groups of
classes, and the way in which interfaces and connectors are deduced from them, must also guarantee that the correspondent
architecture represents a valid solution.

Firstly, a random number of components is selected between a minimum and a maximum. Default values are set to a
minimum of two and a maximum of n components, n being the number of classes in the input model. The higher limit guar-
antees that no empty components will be generated. Then, each class is assigned to one component, assuring that each com-
ponent has at least one class. After this initial assignment, the rest of the constraints detailed in Section 3 are omitted,
allowing a faster initialisation process. As will be explained later, the main idea is that these invalid individuals will be pro-
gressively removed along the generations.

4.3. Ranking fitness function

As mentioned in Section 2.2, diverse functional or non-functional properties can be considered depending on the under-
lying goal of the architectural optimisation. In this case, the search process is mainly focused on structural aspects, closely
related to reusability, since it looks for the optimal identification of well-defined components, interfaces and connectors.
Thus, the fitness function considers the strength and independence of the inner functionality of each component.

The fitness function is calculated as an aggregation of rankings. The use of rankings cancels out the need for stan-
dardisation between metrics, which could result in an artificial procedure when they are not defined in an appropriate range

(a) Phenotype (b) Genotype

Fig. 1. The phenotype/genotype mapping process.

238 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

for a fair scalarisation and aggregation. Each ranking belongs to a specific metric related to desirable characteristics in the
architectural design. Therefore, evaluating these design criteria requires the existence of quantifiable measures applicable
to the problem domain.

Firstly, the intra-modular coupling density (ICD) [15] in Eq. (1) serves to determine a trade-off between cohesion and cou-
pling. For each component i; ICDi is calculated as the ratio between internal and external relations, which has to be max-

imised. CIin
i is the number of interactions inside the component, i.e. the relationships between classes allocated in the

same component. CIout
i represents the number of relationships between component i and the others, i.e. the number of can-

didate interfaces of the component. Then, every value is properly weighted with the ratio of classes that participate in these
relationships. Hence, if two components reach the same ratio of interactions, the smaller component, i.e. the one with less
inner classes, is preferable meaning that the density of interactions per class is higher. ICDi varies in [0,1]. Finally, the ICD of
the overall architecture (individual) is calculated as the average of every ICDi.

ICDi ¼ ð#classestotal �#classesiÞ=#classestotalð Þ � CIin
i =ðCIin

i þ CIout
i Þ

� �

ICD ¼
Xn

i¼1

ICDi=n ð1Þ

The second metric, named external relations penalty (ERP), applies a penalty if some relations are not specified by means of
interfaces. The optimum value is 0, meaning that no relationship outside the identification of a candidate interface is pre-
sented between classes allocated in different components. The minimisation of these dependencies between components
is an important characteristic to be considered, as it reflects that only interactions among interfaces are adequate in good
designs. These external relationships could be generalisations (ge) or not directed relationships like associations (as), aggre-
gations (ag) and compositions (co), as they do not allow the abstraction of candidate interfaces. Dependencies are not includ-
ed because they always have a direction. Since the software architect might be interested in setting certain design
preferences by demoting some relationships to others, a weight (wx) can be assigned to the number of occurrences of each
type of relationship (nx). As an example, the modeller may want to avoid dividing into different components a parent class
and its subclasses, i.e. sharing data structures, which could be more harmful to the overall cohesion than just splitting a sin-
gle association between them, usually involving an operational flow. This would imply assigning a higher weight value to
generalisations. Therefore, ERP is calculated using the expression in Eq. (2), where i and j represent each pair of components
in the architectural solution.

ERP ¼
Xn

i¼1

Xn

j¼iþ1

ðwas � nasij
þwag � nagij

þwco � ncoij
þwge � ngeij

Þ ð2Þ

Finally, the groups/components ratio (GCR) metric, presented in Eq. (3), is inspired by the component packing density (CPD)
metric defined in [25]. CPD calculates the ratio between the number of constituents, e.g. operations, classes or modules, and
the number of components in the overall architecture. Here, the constituents are groups of interdependent classes (cgroups).
In a graph visualisation of the model, where classes are the nodes and its relationships, the edges, each cgroup is a connected
component of this graph. Since software architects prefer a set of components with a well-defined functionality, the optimal
value of GCR is equal to its minimum, 1, meaning that each component is comprised by a unique group of strongly interre-
lated classes.

GCR ¼ #cgroups=#components ð3Þ

Once the three design metrics have been defined, the fitness function can be calculated as a ranking aggregation, where
the best values are the lowest and, consequently, the overall fitness should be minimised. A ranking method is applied over
the population and independently for each metric, resulting in three ranking values that are added, as can be seen in Eq. (4),
where r returns the ranking position of a specific individual.

fitnessind ¼
rðICDindÞ þ rðERPindÞ þ rðGCRindÞ if ind is valid
#indiv iduals �#metricsþ 1 if ind is invalid

�
ð4Þ

Special attention is given to invalid solutions. In such a case, a high value is assigned to the individual, i.e. a fitness value
even greater than the value computed for the worst valid individual. If a valid individual would have reached the worst val-
ues in all the metrics, its ranking for each metric would be equal to the number of individuals in the population, and the
aggregate value would be equal to the product of the number of metrics composing the ranking and the population size.
Thus, an invalid solution always has a greater fitness than any valid individual just by adding 1 to this value.

4.4. Genetic operator

Genetic operators allow the creation of new solutions from others. Here, a mutation operator is considered for exploring
design alternatives. Due to the characteristics of the problem, the execution of other kinds of operators does not seem to be

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 239

applicable, as they would probably cause the replication of classes after the combination of components from different
individuals.

Five mutation procedures are proposed in order to provide a variety of new solutions, simulating those architectural
transformations that software architects could manually apply during the discovery process. Domain knowledge is properly
used in most cases, being an important success factor, as some of them have a great impact in the structure of the resulting
architecture. Next, the description of each procedure is detailed.

Add a component. A new component is added to the architecture. Since empty components are not valid, one or more
classes are selected from others to be inserted into the new one. The underlying heuristic considers the number of groups
of classes inside the rest of components as a decision factor. More precisely, components built with more unconnected
groups (which probably do not present a well defined functionality) are considered better candidates to provide classes than
those with a unique group of classes.

At this point, the heuristic procedure uses the expression in Eq. (5) as a probability threshold of selection of each com-
ponent i to act as contributor. As can be seen, this formula calculates a probabilistic value for each component i as the ratio
between its number of groups of classes (#cgroupsi) and the maximum number of groups (maxcgroups) corresponding to some
component j of the architecture. Thus, the higher the number of groups inside the component i, the greater the probability of
selecting some of its groups.

ProbðicontributorÞ ¼ #cgroupsi=maxcgroups

maxcgroups ¼ maxð#cgroupsjÞ j 2 ½1; n� ð5Þ

The complete heuristic procedure is shown in Algorithm 1. Firstly, variables are initialised and the probability of ‘‘acting
as contributor’’ is calculated for each component. If a random generated value surpasses the probability threshold, the
groups of classes inside the component are obtained (lines 4–5). If the component comprises more than one group, their size
(i.e. the number of classes composing it) is calculated and the smallest groups are searched (lines 6–13). Notice that small-
sized groups are preferable because the new component could also receive groups of classes from others. Thus, a group of
classes between those candidates, i.e. the smallest groups, is randomly selected, and its classes are removed and inserted
into the new component, while the rest of the component is copied in the offspring (lines 14–16). The process is repeated
for each available component in the parent. If no component in the parent meets the requirements (all of them presents a
unique group of classes), or the randomness of the result cannot be guaranteed (only one candidate exists, so the descendant
would be always the same), the new component is generated completely at random, extracting classes from all existing com-
ponents (lines 18–30).

Algorithm 1. Add a component

Require: parent
Ensure: offspring
1: offspring ø
2: for all component in parent do
3: candidates ø
4: if (random(0,1) > Prob(component)) then
5: allGroups getGroups(component)
6: if (size(groupsOfClassesÞ > 1) then
7: for all groupOfClasses in allGroups do
8: if (size(groupOfClasses) ¼ min) then
9: candidates groupOfClasses

10: end if
11: end for
12: end if
13: end if
14: newComp randomGroup(candidates)
15: offspring component � candidates
16: candidates ø
17: end for
18: if (newComp ¼¼ ø) then
19: offspring ø
20: for all component in parent do
21: for all class in component do
22: if (random(0,1) > 0:5) then
23: candidates class

240 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

24: end if
25: end for
26: offspring component � candidates
27: newComp candidates
28: candidates ø
29: end for
30: end if
31: offspring newComp
32: setInterfacesAndConnectors(offspring)
33: return offspring

At the end, the new component is added to the offspring (line 31) and the interfaces and connectors have to be arranged
(line 32), considering that the new distribution of classes may produce changes in the interactions among components. More
precisely, interfaces are moved from the contributors to the new component if the classes that would implement these inter-
faces have been displaced. At this point, two circumstances can occur: (a) an interface remains in the new component
because the interaction target continues to exist within the original component, or (b) both interfaces must be removed,
since the classes specifying them have been allocated in the new component, and the interaction only happens internally.
Similarly, the movement or loss of interfaces may also affect the number of connectors.

Fig. 2b corresponds to the resultant individual after the application of this mutation procedure over the individual shown
in Fig. 2a. As can be seen, the movement of classes F from Component 2 and B from Component 1 implies that interface
B req D is also removed from Component 2 and allocated in the new one (Component 3). After that, Component 1 interacts
with Component 3, providing it some services, instead of with Component 2.

Split a component. One component is divided into two new components. The heuristic firstly tries to randomly select a
component among those with more than one group of classes. In Algorithm 2, candidate components are identified (lines
3–7). If more than one candidate exists, one of them is randomly selected and each of its inner groups is randomly allocated
in one of the two new components with equal probability (lines 8–17). If all components present a unique group of classes,
one component in the parent is chosen and its classes are randomly distributed (lines 18–26). Then, all components in the
parent except the component to be split are copied, and the two new components are also added (lines 27–29). Finally, inter-
faces and connectors are identified again, as the creation of new components can produce the appearance of new interactions
(line 30).

Algorithm 2. Split a component

Require: parent
Ensure offspring
1: offspring ø
2: candidates ø
3: for all component in parent do
4: if (numberOfGroups(componentÞ > 1) then
5: candidates component
6: end if
7: end for
8: if (size(candidatesÞ > 0) then
9: compToSplit randomComponent(candidates)

10: for all groupOfClasses in compToSplit do
11: if (random(0,1) > 0:5) then
12: component1 groupOfClasses
13: else
14: component2 groupOfClasses
15: end if
16: end for
17: else
18: compToSplit randomComponent(parent)
19: for all class in compToSplit do
20: if (random(0,1) > 0:5) then
21: component1 class
22: else

(continued on next page)

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 241

23: component2 class
24: end if
25: end for
26: end if
27: offspring parent � compToSplit
28: offspring component1
29: offspring component2
30: setInterfacesAndConnectors(offspring)
31: return offspring

Remove a component. One component will be removed and its inner classes, randomly distributed among the remaining
components. An aim of this operator is to improve the solution by reducing the ERP metric. As can be seen in Algorithm 3, the
number of external relations outside the bounds of each component is obtained and those with the highest value are selected
(lines 4–8). Then, a random component is chosen among them and the rest of components are copied in the offspring (lines
9–10). Next, the inner classes of the removed component are randomly distributed in the remaining components of the off-
spring (lines 11–13).

Algorithm 3. Remove a component

Require: parent
Ensure offspring
1: offspring ø
2: candidates ø
3: maxRel maxNumExtRel(parent)
4: for all component in parent do
5: if (numExtRel(componentÞ ¼¼ maxRel) then
6: candidates component
7: end if
8: end for
9: compToRemove randomComponent(candidates)

10: offspring parent � compToRemove
11: for all class in compToRemove do
12: randomComponent(offspring) class
13: end for
14: setInterfacesAndConnectors(offspring)
15: return offspring

Finally, interfaces and connectors are checked in the offspring (line 14). In this case, interfaces from the removed com-
ponent are either bound to other components when they have received the corresponding classes, i.e. those specifying
the required or provided service, or removed, if the target component was the owner of the other interaction point.

Merge two components. The elements of two previously selected components are all put together into a new component.
The proposed procedure, detailed in Algorithm 4, looks for the reduction of the ERP metric. As can be seen, one of the two
components taking part in the mutation is the component having the highest number of external relations (lines 4–9). When
some components present the highest values, two of them are selected (lines 10–11). If not, the other component is random-
ly selected between the rest of components in the parent (lines 12–13). Next, components not selected in the parent are cop-
ied in the offspring, as well as the union of the two selected components (lines 15–16). Finally, interfaces and connectors
must be compacted due to the merge of the two components, so the previous interactions between them are discarded (line
17).

Algorithm 4. Merge two components

Require: parent
Ensure offspring
1: offspring ø
2: candidates ø
3: maxRel maxNumExtRel(parent)

242 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

4: for all component in parent do
5: if (numExtRel(componentÞ ¼¼ maxRel) then
6: candidates component
7: end if
8: end for
9: component1 randomComponent(candidates)

10: if (size(candidatesÞ > 1) then
11: component2 randomComponent(candidates)
12: else
13: component2 randomComponent(parent)
14: end if
15: offspring parent � component1� component2
16: offspring component1 [component2
17: setInterfacesAndConnectors(offspring)
18: return offspring

Move a class. A simple movement of a class from one component to another is performed. As it is the least destructive
procedure in terms of structural modifications of the original solution, both the class and the source and target components
are always randomly selected (see lines 2–4 of Algorithm 5). The selected class is removed from the origin component and
added to the destination component (lines 5–6). Then, the original and modified components are copied to the offspring
(lines 7–9). Since the class repositioning could also imply the creation of new interfaces in the target component and its
elimination from the source, or vice versa, interfaces and connectors are revised (line 10).

(a) Initial individual

(b) Add a component mutation procedure

(c) Move a class mutation procedure

Fig. 2. Examples of mutation procedures.

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 243

Algorithm 5. Move a class

Require: parent
Ensure offspring
1: offspring ø
2: origin randomComponent(parent)
3: destination randomComponent(parent)
4: class randomClass(origin)
5: removeClass(class,origin)
6: addClass(class,destination)
7: offspring parent � ðorigin [destinationÞ
8: offspring origin
9: offspring destination

10: setInterfacesAndConnectors(offspring)
11: return offspring

An example of the application of this procedure is shown in Fig. 2c. In the original individual (see Fig. 2a), class B is chosen
and moved from Component 2 to Component 1. This operation also affects the interaction between both components, since
interfaces D prov B and B req D disappear because the classes B and D belong now to the same component.

After the explanation of the different mutation procedures proposed, the mutator itself can be described. As detailed in
Algorithm 6, a probabilistic roulette is built for each parent comprising only those mutation procedures that could be applied
(lines 4–8). For example, a component cannot be removed if the individual already comprises the minimum number of com-
ponents. Once the roulette is completed, a mutation procedure can be randomly selected according to its configured weight
(line 9). If the resulting individual does not satisfy all the architectural constraints, a new mutation is performed until a valid
individual is obtained or a maximum number of attempts is reached (lines 10–19).

Algorithm 6. Mutation operator

Require: parent, weights
Ensure offspring
1: offspring ø
2: roulette ø
3: selectedMutator ø
4: for all mutator in mutators do
5: if (isApplicable(mutator, parent)) then
6: roulette mutator
7: end if
8: end for
9: selectedMutator rouletteSelection(roulette,weights)

10: attempts 0
11: invalid TRUE
12: while (invalid ¼¼ TRUE and attempts < 10) do
13: offspring mutate(selectedMutator, parent)
14: if (isInvalid(offspring)) then
15: attemptsþþ
16: else
17: invalid FALSE
18: end if
19: end while
20: if (isInvalid(offspring) and

random(0,1) < Thresholdinvalid) then
21: offspring parent
22: end if
23: return offspring

244 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

If all attempts fail and no valid solution is found, the mutated individual could survive (lines 20–22) depending on the
stage of the evolution process. A probabilistic method is proposed in order to determine whether this invalid individual will
be considered as a candidate to be part of the new population, i.e. an offspring in the survival competition. A dynamic thresh-
old, Thresholdinvalid, which decreases with the elapse of generations (gener), is calculated in Eq. (6). Notice that, at the begin-
ning of the algorithm, invalid individuals are permitted. Nevertheless, less invalid solutions generated by the mutator will
survive due to the dynamic decrease of the threshold during the evolutionary process. Then, the replacement strategy deter-
mines whether the invalid individual will finally be part of the next generation.

ThresholdinvalidðgenerÞ ¼ ð#generations� generÞ=#generations ð6Þ

4.5. Algorithm

The proposed algorithm (see Algorithm 7) follows the classical generational scheme. Firstly, some preprocessing is
required (lines 1–3) in order to extract classes and its relationships from the analysis model (classDiagram). Then, candidate
interfaces are identified using the information comprised by these relationships. Connectors are not explicitly obtained at
this step, as they depend on the association of two specific candidate interfaces, and this process is performed during the
creation of individuals. Next, these elements are used in combination with the number of individuals (nInds) and the mini-
mum and maximum in the number of components (minComp and maxComp respectively), to initialise the population (line 4).
Then, individuals are evaluated (line 5) and the iterative process begins. In each generation, parents are selected (line 8) and
mutated (line 9) according to the mutation weights (weights). Candidate individuals must be evaluated next (line 10), so
metrics are computed over them and the ranking fitness function is calculated. Note that this evaluation requires both
the offsprings and the actual population in order to assign rankings in a proper way. Finally, the replacement strategy (line
11) chooses those individuals that will survive, assigning them to the next population. When the maximum number of gen-
erations (maxGen) is reached, the evolution ends and the best individual in the current population is returned as the candi-
date architecture (lines 14–15).

Algorithm 7. Proposed evolutionary algorithm

Require: classDiagram, nInds, maxGen, weights, minComp, maxComp
Ensure candidateArchitecture
1: classes extractClasses(classDiagram)
2: relationships extractRelationships(classDiagram)
3: interfaces identifyInterfaces(relationships)
4: population create(nInds, minComp, maxComp, classes, interfaces)
5: evaluate(population, relationships)
6: generation 0
7: while generation <¼ maxGen do
8: parents select(population)
9: offsprings mutate(parents, weigths)

10: evaluate(population [offsprings, relationships)
11: population replace(population [offsprings)
12: generationþþ
13: end while
14: candidateArchitecture best(population)
15: return candidateArchitecture

5. Experimentation

The complete approach and all the experiments performed have been written in Java. Additionally, its functionalities have
been supported by diverse publicly available Java libraries. SDMetrics Open Core1 offers some utilities for parsing XMI files,
the most commonly used XML format for model interchange, providing interoperability and serialisation across different mod-
elling tools. Thus, the proposed approach provides support to directly collect information from analysis models created, in this
case, with MagicDraw tool.2 The Datapro4j library3 has been used to preprocess and manage internal data structures. Finally,
the evolutionary algorithm has been coded using the JCLEC framework [37].

1 http://www.sdmetrics.com/OpenCore.html.
2 http://www.nomagic.com/.
3 http://www.uco.es/grupos/kdis/datapro4j.

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 245

The experiments were run on a HPC cluster of 8 compute nodes with Rocks cluster 6.1 x64 operating system. Each node
comprises two Intel Xeon E5645 CPUs with 6 cores at 2.4 GHz and 24 GB DDR memory.

5.1. Problem instances

Seven system designs were used for experimentation, allowing a variety of complexity in both number of classes and
number of candidate interfaces. Table 1 shows the characteristics of the problem instances considered. The interfaces col-
umn (#Interfaces) represents the number of relationships among classes where its navigability is explicitly specified, i.e.
the number of candidate interfaces. Note that the total number of relationships (navigable in one or both directions) is also
included and categorised by the types of relations defined by UML 2: associations (As), dependencies (De), aggregations (Ag),
compositions (Co) and generalisations (Ge).

Focusing on the nature of the software models, it is worth mentioning that six of them belong to real working systems,
whereas the first one, Aqualush4 is a benchmark used for educational purposes. All of them apart from Datapro4j can be
accessed from the Java Open Source Code Project Website.5

5.2. Parameter study

Due to the complexity of the problem, the performance of an accurate parameter study is recommended in order to ana-
lyse their suitability and influence. Firstly, different selection and replacement methods are combined and proved in order to
check its influence in two important factors: the selection pressure and the capability to remove invalid solutions. Addition-
ally, the behaviours shown by setting different weights associated to the roulette of mutation procedures (see Section 4.4)
permit analysing their influence on the quality and type of returned solutions. Finally, other parameters, like the number of
generations or the population size, need to be considered, since they represent key aspects in the evolutionary performance.

Regarding RQ2, the aim here is to obtain the most fitting setup for the proposed algorithm, whilst also providing some
guidelines on the parameters that can be helpful to the software architect, who is likely not to be an expert in optimisation
techniques. In this sense, we want to stress the ability of the algorithm to serve as a generic framework for architecture opti-
misation, where different types of solutions can be simultaneously evolved.

5.2.1. Selection and replacement strategies
Selection and replacement procedures constitute important factors in the algorithm design. Selection determines the way

in which individuals are chosen to be mutated, whereas the replacement defines the type of survival competition between
them. The selection methods probed are the following:

� Deterministic selector (DS): Each individual in the population is selected to act as a parent.
� Tournament selector (TS): A binary tournament is performed as often as the number of individuals in the population, in

order to generate the same number of descendants than the previous method.
� Roulette selector (RS): A roulette is applied to select the parents. In the same way, the process is applied until the number

of parents reaches the population size.

Focusing on the replacement strategies, some special constraints are considered in the replacement methods that are
given below. Firstly, the best individual in the current population will survive. Secondly, when some type of competition
must be established between a current invalid solution and a generated invalid descendant, both having the same maximum
fitness value, the descendant is preferred, promoting the evolution of the population. The strategies considered in the pre-
liminary study are the following:

� Best individuals (BR): The best n individuals from parents and descendants are selected to conform the new population, n
being the population size.
� Parent/descendant competition (CR): A competition between each parent and its descendant is performed, and only the

best survives.
� Elitism (1) and descendants (EL1R): After saving the best individual found in the current population, the rest of the popula-

tion is filled with the n� 1 best descendants.
� Elitism (10%) and descendants (EL10R): Similar to EL1R, but keeping a major percentage of individuals from the current

population.
� Binary Tournament (TR): all individuals are participants of the tournament, and the n best individuals are selected for the

next population.

4 http://www.ifi.uzh.ch/rerg/research/aqualush.html.
5 http://java-source.net/.

246 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

To perform an accurate experimentation and setup, each selection method has been combined with the aforementioned
replacement strategies, resulting in 15 different algorithm variants. Then, 30 executions for each algorithm version have
been performed with different random seeds. The rest of the parameters are fixed to default values. All mutation procedures
have the same probability to be executed, 0.2 being the corresponding weight for each one. The default minimum and max-
imum number of components is set to 2 and to the number of classes within the original analysis model, respectively. Here,
the maximum limit has been fixed to 8, providing a wide enough range of types of solutions for the considered problem
instances. The weights for the different types of UML relationships, used in the ERP metric, are internally fixed using the fol-
lowing configuration: was ¼ 2; wag ¼ 3; wco ¼ 3; wge ¼ 5. Finally, 100 individuals and 100 generations complete the para-
meter configuration at this point of the study.

The first analysis of the obtained results has consisted in the evaluation of two important criteria: (a) the ability of remov-
ing invalid solutions and (b) an appropriate convergence of the population. Some variants have been discarded, as they do
not achieve a final population of valid individuals, owing to an inappropriate selection pressure. This situation frequently
occurs with the replacement based on TR, especially with the most difficult problem instances. On the contrary, other ver-
sions suffer an excessive convergence, so they too are rejected. In this case, the main factor that promotes this fact is the
replacement strategy, since BR and CR methods strongly encourage the survival of the best individuals and also lead the
search towards the same type of architectural solutions.

After this preliminary study, those variants showing an appropriate behaviour in terms of the criteria aforementioned
have been analysed considering the best solutions found for all the problem instances. The Friedman test was applied to sta-
tistically validate these results, where the null hypothesis, H0, determines that all the remaining variants perform equally
well. Next, the Holm post hoc test was used when H0 was rejected with a significance level of 95% (a ¼ 0:05).

Since the ranking value reached by the best individual is relative to the population to which it belongs, fitness values are
not directly comparable among different executions. Therefore, the aggregate rankings of all the individuals returned by each
variant and execution were recomputed. Adding the ranking obtained for every individual for a given algorithm, i.e. aggre-
gating the results of the 30 executions per algorithm, the quality of the obtained solutions can be estimated in a proper way.
The first column in Table 2 compiles the results after applying the Friedman test to these representative values.

As can be observed, DS-EL10R obtains the lowest ranking value. The corresponding value of the Iman and Davenport
statistics, called z, is 0.4312, whereas the critical value, according to the F-Distribution with 5 and 30 degrees of freedom,
the p-value, is 2.5336. Since p-value > z, H0 cannot be rejected. At this point, there are no significant differences between
them, and a further analysis is still required.

The preceding procedure has been repeated considering the values of each metric associated with the fitness formula
separately, i.e. ICD, ERP and GCR. Table 2 shows the average ranking values after performing the Friedman test over the cor-
responding metrics in the best individuals found. The value of the statistics, according to the aforementioned Iman and
Davenport procedure, and the conclusion about the null hypothesis are also included. Thus, significant differences exist
for the ICD and ERP metrics (highlighted in bold typeface), z being greater than the p-value (2.5336).

In order to reveal those differences regarding ICD and ERP, the Holm test has been performed as a post hoc procedure.
Tables 3 and 4 detail the obtained results for ICD and ERP metric, respectively. As for the ICD, the algorithm RS-EL10R
obtained the best average ranking in the Friedman test, so it is the control algorithm. At a significance level of a ¼ 0:05, Holm
test rejects the hypothesis that the algorithm performs equally well than the control algorithm when p-value < 0.0167.
Regarding the correspondent a=i column, RS-EL10R is statistically better than DS-EL10R and TS-EL1R. Related to ERP, the same
procedure can be realised. In this case, TS-EL1R acts as the control algorithm, and significant differences can be appreciated
when p-value < 0.0167. As can be seen, TS-EL1R is better, in terms of ERP, than RS-10R and TS-CR.

After this analysis, some conclusions can be drawn. As shown, ERP and ICD constitute two conflicting metrics, whilst GCD
is easily optimised by the considered algorithms, since there are no significant differences between them. The algorithm with
the best average ranking when comparing by fitness, DS-EL10R, has not such a proper behaviour, since ICD is heavily harmed
in favour of ERP and GCR. On the contrary, TS-10R comes up as an interesting option since it shows good performance in
terms of its fitness, having the second better ranking. Moreover, it can be noted that, regarding the ICD and ERP metrics, there
is no significant difference between this and the control algorithm. Usually, this variant is able to discard solutions where
ERP is highly optimised. Consequently, it leads to the loss of quality in the structure of the final individuals. More specifically,

Table 1
Problem instances and its internal properties.

Problem #Classes #Relationships #Interfaces

As De Ag Co Ge

Aqualush 58 69 6 0 0 20 74
Borg 167 44 109 36 38 90 300
Datapro4j 59 3 4 3 2 49 12
Java2HTML 53 20 66 15 0 15 170
JSapar 46 7 33 21 9 19 80
Marvin 32 5 11 22 5 8 28
NekoHTML 47 6 17 15 18 17 46

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 247

notice that low values for ICD illustrate the fact that the obtained solutions comprise large components with only a few inter-
action paths through interfaces, similarly to the case of DS-EL10R. The rest of variants of the algorithm can only obtain better
ICD values by getting a fairly poor performance on the ERP metric. TS-EL10R achieves an appropriate trade-off between the
three considered metrics, obtaining lower values for ERP and GCR without requiring a considerable decrease of ICD. Further-
more, it performs well in terms of convergence along the overall evolution. Consequently, TS-EL10R is the variant selected for
the proposed version of the algorithm.

5.2.2. Mutation weights
One important characteristic of the proposed model lies in the existence of a roulette of mutation procedures as a way to

control the diversity of solutions in the evolutionary process. These weights have a direct effect on two aspects of the gen-
erated solutions: its quality, as each procedure acts guided by their heuristics, and the diversity of types of solution, since
they apply changes in their structure.

Several experiments have been performed to analyse the aforementioned characteristics of the generated solutions. The
proposed roulette for mutation method selection comprises, as detailed in Section 4.4, five different procedures, each having
an specific weight. Considering increments of 0.1 units, each mutation procedure could have a weight in the range [0.1,0.6],
126 being the total number of possible configurations. For each of those combinations, 30 executions have been carried,
keeping the default values in the remaining setup, over all the problem instances. Afterwards, the procedure detailed in
Section 5.2.1 is performed once again to reassign the ranking values of the best individuals.

Due to space limitations, only two representative instances, Marvin and Datapro4j, are shown and discussed next. Figs. 3
and 4 represent five box plots, where each one shows the distribution of the overall ranking value of the algorithm when
each mutator weight is fixed at certain value in the range [0.1,0.6], whereas the others are combined in order to complete
the roulette (the sum of all weights must be 1). Note that if the weight is fixed to 0.6, only one configuration can be generated
for the rest of procedures (all fixed to 0.1), so a single line is drawn, representing the global ranking of this combination, i.e.
the sum of the rankings of the best individual found in each of the 30 executions.

As for Marvin, interesting tendencies of fitness variation in most of the mutation procedures can be appreciated in Fig. 3.
As the probability of the Move a class procedure is increased, the overall ranking of the algorithm is significantly punished. On
the contrary, addition of components is beneficial. The Merge two components and Split a component procedures show an
intermediate behaviour, where low or median weights seem to be more appropriate. In general, a trade-off between the

Table 2
Friedman rankings for fitness and design metrics.

Algorithm Fitness ICD ERP GCR

DS-EL10R 2.8571 4.2857 2.1429 3.0000
TS-CR 4.9286 3.4286 5.4289 5.2143
TS-EL1R 3.3571 5.4286 1.8571 3.1429
TS-EL10R 2.9286 3.1429 3.0000 3.2143
RS-EL1R 3.2857 3.0000 3.6429 2.7143
RS-EL10R 3.6429 1.7143 4.9286 3.7143

z 1.1757 4.9468 9.1546 1.8132
H0 Accepted Rejected Rejected Accepted

Table 3
Holm test results for ICD.

i Algorithm z p a=i H0

5 TS-EL1R 3.7143 2.0378 0.0100 Rejected
4 DS-EL10R 2.5714 0.0101 0.0125 Rejected
3 TS-CR 1.7143 0.0865 0.0167 Accepted
2 TS-EL10R 1.4286 0.1531 0.0250 Accepted
1 RS-EL1R 1.2858 0.1985 0.0500 Accepted

Table 4
Holm test results for ERP.

i Algorithm z p a=i H0

5 TS-CR 3.5714 3.5504 0.0100 Rejected
4 RS-10R 3.0714 0.0021 0.0125 Rejected
3 RS-EL1R 1.7857 0.0714 0.0167 Accepted
2 TS-EL10R 1.1429 0.2531 0.0250 Accepted
1 DS-EL10R 0.2858 0.7751 0.0500 Accepted

248 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

removal and the addition of components is advisable to obtain an improvement of the quality of the solutions without a loss
of the population diversity.

Fig. 4 shows the box plots regarding Datapro4j, a problem instance having more classes and relationships. The Add a com-
ponent procedure presents worse performance than for Marvin, specially for high weight values, so its variation influences
more strongly here than in simpler problems. Remove a component and Merge to component present an ascendant tendency,
low weights being preferable. On the contrary, the algorithm behaviour with respect to the Split a component procedure is
similar to the observed for Marvin, Datapro4j having a slightly higher variation for each fixed weight. Finally, it seems that
the search process can get better results for this kind of problem when the movement of classes is promoted. The algorithm
performance is strongly impacted by those procedures that imply a large change in the solutions.

As can be seen, the algorithm behaviour substantially relies on the current weight configuration. In general, high values
are not advisable in most procedures. The removal of components deserves special mention, where low values are highly
expedient to restrict its influence on the overall performance. The default weight of the Add a component procedure can
remain unaltered, since it contributes to keep the trade-off necessary between the different problem instances. Considering
the results obtained by the procedures Split a component and Merge two components, especially when applied to small-sized
instances, a proper use of these procedures requires increasing their chances in the roulette selective process. Furthermore,
notice that reducing too much the weight of the procedure Move a class could be harmful, as it is the only procedure main-
taining the current structure of the individual to be mutated and, consequently, it promotes the convergence of the algo-
rithm. This scenario is beneficial when going through the last algorithm iterations, specially for complex instances. In
short, after scrutinising the results obtained by the weight combinations satisfying all the constraints aforementioned,
the proposed configuration is wadd ¼ 0:2; wremove ¼ 0:1; wmerge ¼ 0:1; wsplit ¼ 0:3 and wmove ¼ 0:3.

5.2.3. Number of evaluations and population size
The previous experiments were focused on the algorithm needs with respect to its exploration and convergence. Further-

more that, even when the algorithm is able to properly deal with invalid individuals and diverse solutions, a further analysis
of the most appropriate combination between the number of evaluations and the population size is still required.

Four different population sizes, from 50 to 200 individuals, have been set. The fitness convergence has been checked every
1200 evaluations, up to 24000 evaluations. Notice that previous experiments have reach a maximum of 10,000 evaluations,
100 individuals being evolved over 100 generations. Here, each variant of the algorithm has been iterated a different number
of generations to fairly compare by the number of evaluations. These variants have been executed 30 times, as well.

Since the average fitness for the different runs is not representative, the following experimentation aims to evaluate the
quality of the resulting solutions in terms of the three metrics comprising their fitness value separately. Again, the discussion
is focused on the systems Marvin and Datapro4j due to space limitations. On the one hand, Fig. 5 shows the convergence of
the evolutionary process for the Marvin problem instance. The average values of the best individual found along the evalua-
tions in terms of ICD, ERP and GCR are depicted for each considered population size. Remind that ICD should be maximised,
whereas ERP and GCR should be minimised. As can be observed, the algorithm tends to perfom worse when the population
size is set to 50 individuals, specially for the ICD metric. On the contrary, the algorithms evolving 100, 150 and 200 indi-
viduals behave similarly for the three metrics. Actually, a further analysis of the optimisation process for each individual
metric in relation to the number of evaluations shows that the four algorithms remain considerably steady beyond 10000
evaluations. In fact, only some slight improvement concerning the ICD is obtained. Thus, standard values for both the popula-
tion size and the number of evaluations, like those considered in previous experiments, still work properly for small problem
instances.

On the other hand, Fig. 6 shows how the evolution for the Datapro4j problem takes place. In contrast with the Marvin
instance, substantial differences among the different algorithms are noticeable. Firstly, the problem complexity clearly ham-
pers the jointly optimisation of the considered metrics. In this case, the algorithm with the population consisting of 50 indi-
viduals is prone to optimise ERP and GCR better than ICD. Just the opposite occurs when the population size has been set to
200 individuals. Then, the influence of the number of evaluations becomes important, and the value previously set to 10000
is not sufficient to achieve good enough results.

Summarising the experimental findings, the recommended population size is 150, whereas the number of maximum
evaluations has to be fixed between 20000 and 24000, depending on the problem complexity. Here, the number of evalua-
tions is set to 20400 evaluations, which corresponds with 136 generations for the selected population size. In regard to RQ2,
this study has served to find the configuration that best enhances the performance of the evolutionary algorithm. Given this
configuration, the algorithm achieves good results for all the considered design metrics and problem instances, satisfactorily
keeping the trade-off between exploration and exploitation.

6. An illustrative example of the approach

After explaining the setup process of the proposed algorithm, a more detailed description about how the evolutionary
search operates through the generations can be illustrative. Due to space limitations, this section focuses on a simple exam-
ple, which allows both intermediate and final solutions to be shown. This example requires a small number of generations
and population size, fixed to 10 and 5 respectively, whilst the other parameters remain unaltered.

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 249

Fig. 3. Box plots of the distribution of best individuals found by the algorithm with different weights of the roulette in the mutation operator for Marvin
problem instance.

Fig. 4. Box plots of the distribution of best individuals found by the algorithm with different weights of the roulette in the mutation operator for Datapro4j
problem instance.

250 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

Fig. 7a shows the sample analysis model used as case study. As can be observed, it has 8 classes related among them with
different types of relationships: 1 association, 2 dependencies, 1 composition, 1 aggregation and 2 generalisations. Moreover,
two groups of well-connected classes can be distinguished: A–B–C–D and E–F–G–H. The rest of snapshots in Fig. 7 represent
the phenotype of the best individuals found at different stages of the search, as well as its quality in terms of the proposed
metrics and fitness values.

As can be seen in Fig. 7b, the best individual in the initial population presents an architecture composed by 3 components,
in which all the classes are randomly distributed. This architecture is, as expected at this evolutionary step, a non-optimal
solution. More specifically, there are some external relationships among classes belonging to different components and a few
relationships among the inner classes on each one. Since two generalisations and one composition appear outside the com-
ponents boundaries, then ERP ¼ 13:00. Similarly, the GCR can be obtained from the number of groups (two per component)
and the total number of components, so GCR ¼ 6:00=3:00 ¼ 2:00. Finally, ICD is calculated as the sum of ICDi (from
i ¼ 1 . . . 3). For this solution, its first component does not comprise any internal relationship between its inner classes and
therefore ICD ¼ ðICDComponent 2 þ ICDComponent 3Þ=3 ¼ ð0:21þ 0:31Þ=3:00 ¼ 0:17. At this stage, the corresponding solution has
not the minimum ranking, but a low value representing that the individual is fairly good enough for some of the design
criteria.

After 5 generations (see Fig. 7c), the ERP metric has been reduced because the genetic operator has grouped together
more related classes. For example, classes E; F; G and H belong now to the same component, creating a well-connected
group of classes that implement the functionality of Component 2. GCR has also been improved, since the number of groups
of classes has been reduced and only Component 2 presents more than one separate group. Finally, ICD also achieves a
greater value than the previous best individual, as there is a better trade-off between internal and external interactions of
components, i.e. classes are combined more adequately to provide the functionalities of the system with fewer dependencies
among components. As a result of the improvements in all the values, the fitness achieves the minimum ranking value, 3.00,
meaning that this individual represents the best solution in all the proposed design characteristics in comparison with the

Fig. 5. Convergence of the algorithm for each selected population size (Marvin).

Fig. 6. Convergence of the algorithm for each selected population size (Datapro4j).

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 251

rest of members in the current population, even though it does not achieve the optimum value for every metric. For example,
ERP ¼ 5:00 since there is a generalisation between the separate classes A and C. Moreover, the structure of the solution has
also been modified, showing that the algorithm has got to a simpler architecture.

Then, after 10 generations updating the distribution of classes (see Fig. 7d), the fitness value representing the solution
quality has been significantly improved, reflecting the suitability of the solution found in terms of a good design that effec-
tively identifies both groups of classes. Firstly, all the metrics achieve optimal values: each component presents a unique
group of classes that implements its functionality, these classes are highly cohesive inside the component, and components
only interact by means of a pair of interfaces. The solution also represents the simplest architecture from those obtained in
previous generations, showing that the algorithm is able to adapt the structure of the solution through the evolution process.

7. Results and discussion

Table 5 shows final average results of the proposed configuration from 30 executions, including the execution time. The
standard deviation is shown as subindexes. An important aspect concerning RQ2 is that the evolutionary algorithm is able to
discover good solutions 6 in the major problem instances.

For example, the algorithm achieves very good GCR results, close to the minimum, 1.0. Average fitness ranking values are
omitted because they depend on each specific execution and therefore they are not representative. Nevertheless, low values
are usually obtained, meaning that the architecture returned by the discovery process is the best for at least one or two of the
design criteria compared to the rest of solutions found in the final population.

Focusing on the trade-off between ICD and ERP, some differences can be established between the considered problem
instances. Firstly, for software designs like JSapar or NekoHTML, smaller architectures are sufficient to abstract their designs,
so the ICD does not need to achieve very high values. On the contrary, with more complex problem instances (Borg and
Java2HTML), the behaviour of the algorithm is quite different, where the ERP metric, which is likely to be the most difficult
metric to be optimised, is highly improved. The reason is that these systems are the most complex ones, as they present a
great number of interactions among classes. Therefore, the algorithm is able to find an equivalent type of solution, consisting

Fig. 7. Phenotype of best individual, for the class diagram which is shown in (a), found in the initial population (b), after 5 generations (c), and the final
solution after 10 generations (d).

6 A comparative analysis of the fitness metrics applied to a manually produced software architecture can be found at http://www.uco.es/grupos/kdis/sbse/
RRV14.

252 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

in components that cover many dependent functionalities that cannot easily be dispersed in smaller components without a
dramatic increase of ERP values.

Other interesting analyses can be made with Aqualush and Datapro4j, which could be considered equivalent problems,
because of their similar number of classes. However, the obtained results clearly show that it is not a really relevant char-
acteristic for the performance of the algorithm. More precisely, the identification of the Datapro4j architecture produces the
poorest ERP value of all the considered instances. The reason is that this system is strongly hierarchical, presenting a con-
siderable amount of generalisations in contrast to other problem instances, where associations and dependencies are the
most common relationships in the system specification. This has an impact in the ERP values, since generalisations deter-
mine the maximum penalty in this measure, i.e. hierarchically-dependent classes usually tend to belong to the same com-
ponent. Hence, although the number of external relationships could be similar to those obtained in the other cases, the
computed ERP dramatically increases. In contrast, ICD values in Datapro4j are better than in Aqualush. This behaviour shows
that the desirable trade-off between coupling and cohesion becomes difficult to achieve, not only as the amount of classes
and relationships increases but also depending on the sort of software specification.

Focusing on the execution time, it is possible to determine some type of relation between the characteristics of the prob-
lem instances and the required time to perform the process. In this case, the number of relationships between classes clearly
have an impact on the execution time. Medium or small instances only need a few seconds to complete the process, whereas
more complex software specifications require several minutes. The underlying cause is that as the number of interactions
increases, it is more difficult to generate architectures under the existing constraints, and the algorithm requires more muta-
tion operations to obtain valid individuals.

Finally, in response to RQ1, some interesting information can also be extracted after studying the solutions obtained from
an architectural perspective. The evolutionary algorithm provides solutions that identify and allocate well-connected groups
of classes into components that correctly match with the possible intended architecture. In this way, results from the evo-
lutionary process supply the software architect with valuable information that could be properly used to analyse the
strengths and weaknesses of the system structure, reconsider some design decisions made and explore different configura-
tions to appropriately mitigate risks. For example, some large components might be returned if the amount of relationships
among classes is excessively high. Here, the software designer should remodel their interdependencies in order to get dif-
ferentiate functional groups. It would reduce the system complexity and benefit maintenance and reusability. Moreover,
it can be noted that the presented model is able to evolve and keep solutions with different architectural structures of inter-
est during the search.

8. Concluding remarks

Making decisions during the software design process requires important human-centered contributions and skills that
could be mitigated by search-based approaches, which are able to easily cover a great number of design alternatives. With
the ultimate aim of providing support for such a decision making process, this paper presents a single-objective evolutionary
approach for the discovery of component-based software architectures from analysis models, where classes and their rela-
tionships are used in the search of architectural artefacts, like components and interfaces. This proposal constitutes the first
approximation to semi-automatic architectural analysis as a way to help software engineers in the improvement of their
highly abstract designs which facilitate the understanding of the software foundation.

The approach is conceived as an exploratory mechanism for decision support. The underlying methodology is focused on
the comprehension of the metaheuristic formulation of the problem by the software architect. Moreover, the consideration
of standards like UML 2 and XMI promotes the integrability of this approach within the software engineering communities
and modelling tools.

The proposed encoding is based on tree structures, similarly to the way in which specification models are handled by the
different tools in this domain, bringing a flexible and intuitive representation of software architectures. Design alternatives
are explored by means of five different types of mutation procedures based on those architectural transformations that soft-
ware engineers usually perform for their specifications. The fitness function is calculated as the ranking aggregation of
design criteria, like coupling and cohesion, as well as some specific characteristics to the problem formulation. Focusing

Table 5
Final results of the proposed algorithm.

Problem ICD ERP GCR Time (ms)

Aqualush 0:41240:0604 6:23333:8443 1:08330:1708 116:10198:4891

Borg 0:28200:0689 3:93332:4626 1:16670:2274 2489:1223171:2028

Datapro4j 0:64250:0356 33:600014:7436 2:39890:6744 37:11012:8308

Java2HTML 0:25930:0000 0:00000:0000 1:00000:0000 250:45727:4674

JSapar 0:37510:0307 9:00001:5492 1:16670:2981 94:88915:1418

Marvin 0:50800:0187 3:16671:0980 1:67500:1146 14:11940:6885

NekoHTML 0:45940:0345 3:26675:3037 1:23890:3768 57:11503:5524

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 253

on the search for well-defined functionalities, the optimisation model considers the minimisation of interactions among
classes and interfaces, as well as the presence of well-connected groups on classes inside the components.

The influence of the parameter setup has been discussed in detail in order to properly tune the method for semi-automat-
ic architectural modelling, which has been tested over diverse software systems. The obtained results demonstrates the algo-
rithm capabilities in the management of different types of solutions as well as a trade-off between the conflicting metrics,
showing that the automatic discovery of the system architecture constitutes a difficult and stimulating problem.

The evolutionary approach has been conceived to deal with component-based architectures, even when it could serve as a
basis for being applied to other sorts of design paradigms and areas. For example, dealing with service oriented architectures
would imply a further study of the suitability of other factors, like cost and response time, whilst a model extended to com-
prise low-level details, like methods and properties, could serve to deal with refactoring tasks. Future research will explore
the inclusion of the expert’s opinion in the evolutionary search.

Acknowledgements

Work supported by the Spanish Ministry of Science and Technology, project TIN2011-22408, and FEDER funds. This
research was also supported by the Spanish Ministry of Education under the FPU program (FPU13/01466).

References

[1] M. Abdellatief, A.B.M. Sultan, A.A.A. Ghani, M.A. Jabar, A mapping study to investigate component-based software system metrics, J. Syst. Softw. 86
(2013) 587–603.

[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya, Software architecture optimization methods: a systematic literature review, IEEE Trans.
Softw. Eng. 39 (5) (2013) 658–683.

[3] P. Baker, M. Harman, K. Steinhofel, A. Skaliotis, Search based approaches to component selection and prioritization for the next release problem, in:
22nd IEEE Int. Conf. on Software Maintenance, 2006, pp. 176–185.

[4] M.F. Bertoa, J.M. Troya, A. Vallecillo, Measuring the usability of software components, J. Syst. Softw. 79 (3) (2006) 427–439.
[5] D. Birkmeier, S. Overhage, On component identification approaches: classification, state of the art, and comparison, in: Proc. 12th Int. Symp. on

Component-Based Software Engineering, 2009, pp. 1–18.
[6] J. Bosch, P. Molin, Software architecture design: evaluation and transformation, in: Proc. IEEE Conf. and Workshop on Engineering of Computer-Based

Systems, 1999, pp. 4–10.
[7] I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Inf. Sci. 237 (0) (2013) 82–117.
[8] J.A. Clark, J.J. Dolado, M. Harman, R.M. Hierons, B.F. Jones, M. Lumkin, B.S. Mitchell, S. Mancoridis, K. Rees, M. Roper, M.J. Shepperd, Reformulating

software engineering as a search problem, IEEE Proc. Softw. 150 (3) (2003) 161–175.
[9] L. Dobrica, E. Niemela, A survey on software architecture analysis methods, IEEE Trans. Softw. Eng. 28 (7) (2002) 638–653.

[10] S. Ducasse, D. Pollet, Software architecture reconstruction: a process-oriented taxonomy, IEEE Trans. Softw. Eng. 35 (4) (2009) 573–591.
[11] R. Etemaadi, M.T.M. Emmerich, M.R.V. Chaudron, Problem-specific search operators for metaheuristic software architecture design, in: Proc. 4th Int.

Symp. on Search Based Software Engineering, Springer, 2012, pp. 267–272.
[12] J. Ferrer, P.M. Kruse, F. Chicano, E. Alba, Evolutionary algorithm for prioritized pairwise test data generation, in: Proc. 14th Genetic and Evolutionary

Computation Conference, 2012, pp. 1213–1220.
[13] D. Garlan, Software architecture: a roadmap, in: Proc. 22th Int. Conf. of Software Engineering, 2000, pp. 91–101.
[14] P.D.S. Gui Gui, Measuring software component reusability by coupling and cohesion metrics, J. Comput. 4 (9) (2009) 797–805.
[15] P. Gupta, S. Verma, M. Mehlawat, Optimization model of COTS selection based on cohesion and coupling for modular software systems under multiple

applications environment, in: Computational Science and Its Applications, LNCS, vol. 7335, Springer, 2012, pp. 87–102.
[16] M. Harman, Software engineering meets evolutionary computation, Computer 44 (10) (2011) 31–39.
[17] M. Harman, S.A. Mansouri, Y. Zhang, Search-based software engineering: trends, techniques and applications, ACM Comput. Surv. 45 (1) (2012) 11:1–

11:61.
[18] S.M.H. Hasheminejad, S. Jalili, An evolutionary approach to identify logical components, J. Syst. Softw. 96 (0) (2014) 24–50.
[19] ISO. ISO/IEC FDIS 42010/D9, Systems and Software Engineering – Architecture Description, March 2011.
[20] A.C. Jensen, B.H. Cheng, On the use of genetic programming for automated refactoring and the introduction of design patterns, in: Proc. 12th Genetic

and Evolutionary Computation Conference, 2010, pp. 1341–1348.
[21] S. Kebir, A.-D. Seriai, A. Chaoui, S. Chardigny, Comparing and combining genetic and clustering algorithms for software component identification from

object-oriented code, in: Proc. 5th Int. C* Conference on Computer Science and Software Engineering, 2012, pp. 1–8.
[22] C. Le Goues, W. Weimer, S. Forrest, Representations and operators for improving evolutionary software repair, in: Proc. 14th Ann. Conf. on Genetic and

Evolutionary Computation, 2012, pp. 959–966.
[23] S. Malek, N. Medvidovic, M. Mikic-Rakic, An extensible framework for improving a distributed software system’s deployment architecture, IEEE Trans.

Softw. Eng. 38 (1) (2012) 73–100.
[24] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, R. Reussner. A hybrid approach for multi-attribute QoS optimisation in component based software

systems, in: Proc. 6th Int. Conf. on the Quality of Software Architectures, 2010, pp. 84–101.
[25] V.L. Narasimhan, B. Hendradjaya, Some theoretical considerations for a suite of metrics for the integration of software components, Inf. Sci. 177 (3)

(2007) 844–864.
[26] OMG. Unified Modeling Language 2.4 Superstructure Specification, November 2010.
[27] C.M. Poskitt, S. Poulding. Using contracts to guide the search-based verification of concurrent programs, in: Proc. 5th Int. Symp. on Search Based

Software Engineering, 2013, pp. 263–268.
[28] K. Praditwong, M. Harman, X. Yao, Software module clustering as a multi-objective search problem, IEEE Trans. Softw. Eng. 37 (2) (2010) 264–282.
[29] O. Räihä, A survey on search-based software design, Comput. Sci. Rev. 4 (4) (2010) 203–249.
[30] P. Rodríguez-Mier, M. Mucientes, M. Lama, M. Couto, Composition of web services through genetic programming, Evol. Intell. 3 (2010) 171–186.
[31] O. Sievi-Korte, E. Mäkinen, T. Poranen, Simulated annealing for aiding genetic algorithm in software architecture synthesis, Acta Cybernetica 21 (2)

(2013) 235–265.
[32] C.L. Simons, I.C. Parmee, Elegant object-oriented software design via interactive, evolutionary computation, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.

42 (6) (2012) 1797–1805.
[33] C.L. Simons, I.C. Parmee, R. Gwynllyw, Interactive, evolutionary search in upstream object-oriented class design, IEEE Trans. Softw. Eng. 36 (6) (2010)

798–816.
[34] J. Smith, D. Stotts, SPQR: flexible automated design pattern extraction from source code, in: Proc. 18th IEEE Int. Conf. on Automated Software

Engineering, 2003, pp. 215–224.

254 A. Ramírez et al. / Information Sciences 305 (2015) 234–255

[35] C. Szyperski, Component Software: Beyond Object-Oriented Programming, second ed., Addison-Wesley Longman, Boston, MA, 2002.
[36] L. Troiano, C. Birtolo, Genetic algorithms supporting generative design of user interfaces: examples, Inf. Sci. 259 (0) (2014) 433–451.
[37] S. Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervás, JCLEC: a java framework for evolutionary computation, Soft Comput. 12 (4) (2008) 381–392.
[38] D. Whitley, An overview of evolutionary algorithms: practical issues and common pitfalls, Inf. Softw. Technol. 43 (14) (2001) 817–831.
[39] Y. Zhang, M. Harman, S.L. Lim, Empirical evaluation of search based requirements interaction management, Inf. Softw. Technol. 55 (1) (2013) 126–152.

A. Ramírez et al. / Information Sciences 305 (2015) 234–255 255

6.2. Many-objective evolutionary algorithms for architecture discovery

6.2. A comparative study of many-objective evolutionary

algorithms for the discovery of software architectures

Title A comparative study of many-objective evolutionary

algorithms for the discovery of software architectures

Authors A. Ramı́rez, J.R. Romero, S. Ventura

Journal Empirical Software Engineering

Volume 21(6)

Pages 2546-2600

Year 2016

Editorial Springer

DOI 10.1007/s10664-015-9399-z

IF (JCR 2016) 3.275

Category Computer Science, Software Engineering

Position 7/106 (Q1)

Cites 2 (WoS), 4 (Scopus)

125

https://doi.org/10.1007/s10664-015-9399-z

Empir Software Eng (2016) 21:2546–2600
DOI 10.1007/s10664-015-9399-z

A comparative study of many-objective evolutionary
algorithms for the discovery of software architectures

Aurora Ramı́rez1 · José Raúl Romero1 ·
Sebastián Ventura1

Published online: 28 September 2015
© Springer Science+Business Media New York 2015

Abstract During the design of complex systems, software architects have to deal with a
tangle of abstract artefacts, measures and ideas to discover the most fitting underlying archi-
tecture. A common way to structure such complex systems is in terms of their interacting
software components, whose composition and connections need to be properly adjusted.
Along with the expected functionality, non-functional requirements are key at this stage to
guide the many design alternatives to be evaluated by software architects. The appearance
of Search Based Software Engineering (SBSE) brings an approach that supports the soft-
ware engineer along the design process. Evolutionary algorithms can be applied to deal with
the abstract and highly combinatorial optimisation problem of architecture discovery from a
multiple objective perspective. The definition and resolution of many-objective optimisation
problems is currently becoming an emerging challenge in SBSE, where the application of
sophisticated techniques within the evolutionary computation field needs to be considered.
In this paper, diverse non-functional requirements are selected to guide the evolutionary
search, leading to the definition of several optimisation problems with up to 9 metrics con-
cerning the architectural maintainability. An empirical study of the behaviour of 8 multi-
and many-objective evolutionary algorithms is presented, where the quality and type of the
returned solutions are analysed and discussed from the perspective of both the evolutionary

Communicated by: Marouane Kessentini and Guenther Ruhe

� José Raúl Romero
jrromero@uco.es

Aurora Ramı́rez
aramirez@uco.es

Sebastián Ventura
sventura@uco.es

1 Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba,
14071, Spain

Empir Software Eng (2016) 21:2546–2600 2547

performance and those aspects of interest to the expert. Results show how some many-
objective evolutionary algorithms provide useful mechanisms to effectively explore design
alternatives on highly dimensional objective spaces.

Keywords Software architecture discovery · Search based software engineering ·
Many-objective evolutionary algorithms · Multi-objective evolutionary algorithms

1 Introduction

Software architects face some of the most difficult decisions in the earliest stages of project
execution, since they must guarantee that their designs satisfy multiple quality criteria. At
this point, only a few concrete items of information are known about the final system, even
though its structure already has to be determined (Bosch and Molin 1999). In this scenario,
the discovery of software architectures constitutes an abstract and complex task, where
software engineers have to identify high-level architectural artefacts, like components and
interfaces, from a prior analysis model. As a result, an architectural specification is obtained
comprising the underlying system structure, which will serve throughout the software devel-
opment to add later functionality, to get suitable designs or to ensure proper maintenance
(Ducasse and Pollet 2009).

Along the design phase, software architects have to deal with multiple design alterna-
tives that need to be factually evaluated in order to find those solutions that best meet
the system requirements. However, characteristics like modularity and reusability clearly
hamper the decision making process because of the lack of quantifiable measures that
really would represent the quality of the resulting software designs. Therefore, efforts
have been directed towards the definition of specific metrics at the architectural level
(Narasimhan and Hendradjaya 2007; Sant’Anna et al. 2007) like those already existing and
commonly accepted for more concrete artefacts (Bansiya and Davis 2002). Nevertheless,
selecting the most suitable subset of metrics is a complex task usually accomplished by
experts only guided by their own experience. Since many different design criteria have to
be simultaneously balanced, they may affect the manner in which architectural constraints
are considered to meet the software architects expectations.

The automatic evaluation of design alternatives constitutes an interesting application
field for Evolutionary Computation (EC) according to the rationale used by Search Based
Software Engineering (SBSE) (Harman et al. 2012), where traditional Software Engineer-
ing (SE) activities, usually performed by humans, are formulated as search problems to
be solved using metaheuristics. In the last years, EC has been successfully applied to the
resolution of combinatorial problems in Software Engineering like requirements selection
(Durillo et al. 2011) or resource allocation in project scheduling (Luna et al. 2014). In this
sense, other SE tasks have demanded the attention of more sophisticated EC approaches in
order to provide a higher performance in terms of the quality of the solutions and the sat-
isfaction of the engineer’s expectations when more than one or two objectives should be
considered (Yao 2013).

In this context, a trade-off between different objectives is required, resulting in a set
of equivalent solutions among which the expert will decide. Well-known multi-objective
evolutionary algorithms (MOEAs) (Zhou et al. 2011), like SPEA2 (Strength Pareto Evolu-
tionary Algorithm 2) and NSGA-II (Nondominated Sorting Genetic Algorithm II), usually
arise as the first option when SE practitioners want to adopt a multi-objective approach

2548 Empir Software Eng (2016) 21:2546–2600

(Sayyad and Ammar 2013). Less often, comparative studies of different MOEAs are pre-
sented with the aim of providing a further analysis of the abilities of each proposal. These
studies are really useful to gain empirical evidence of the adequacy of a specific algorithm
to a given problem domain (Luna et al. 2014; Zhang et al. 2013).

These studies have traditionally considered optimisation problems with 2 or 3 predefined
objectives, though there exist many SE tasks whose nature clearly demands the defini-
tion of a large number of objectives. Therefore, many-objective evolutionary algorithms
appear to be an interesting approach for dealing with this kind of situation (Purshouse
and Fleming 2007; von Lücken et al. 2014). The current interest within the EC com-
munity in tackling highly dimensional objective spaces creates an opportunity to benefit
from novel and powerful algorithms to support software design. Traditionally, many-
objective approaches have been tested on benchmarks considering a continuous search
space (Bader and Zitzler 2011; Yang et al. 2013; Zhang and Li 2007). For this specific
kind of problems, many-objective evolutionary algorithms have shown to clearly outper-
form MOEAs in terms of the standard performance metrics defined within the field of
multi-objective optimisation (Coello Coello et al. 2007; Zitzler et al. 2004). Only a few
authors have more deeply studied the performance of many-objective approaches in real-
world environments like those appearing in SE and, consequently, SBSE practitioners seem
to be less familiar with this kind of algorithms. In this sense, the works presented in
Kalboussi et al. (2013), Mkaouer et al. (2014), and Sayyad et al. (2013) are the first pro-
posals that are actually focused on the application of a specific many-objective evolutionary
algorithm in testing, refactoring and software product lines design activities, respectively.

The greater the number of factors required to reach architectural decisions is, the more
dependent the performance, in terms of quality and feasibility, of the obtained architectural
solution becomes on the selection of the most appropriate optimisation approach. Therefore,
even though many-objective approaches have proven capable of providing improvements in
other related fields of application, the intrinsic characteristics of each algorithm make it nec-
essary to thoroughly study them with the aim of identifying those aspects having a greater
influence on the satisfactory resolution of a given design problem. In this context, an empir-
ical analysis allows offering a more in-depth comprehensive overview of the behaviour of
different types of algorithms when dealing with a different number and sort of objectives.

In Ramı́rez et al. (2014), we presented an initial discussion on the performance of 5
multi- and many-objective evolutionary algorithms. This research, performed on a set of
6 different design metrics using 6 representative case studies, highlighted the suitability
of this new branch of algorithms in terms of their evolutionary performance and ability to
support the decision making process as the number of objectives increased. Nevertheless, we
consider it necessary to broaden and deepen in different ways this previous analysis in order
to get more valuable findings on the performance of different families of many-objectives
algorithms applied to the automatic discovery of software architectures. Firstly, the number
of problem instances has been increased to 10 real-world system specifications. Secondly,
the study focuses on the maintainability of software systems, considering up to 9 metrics
to represent the optimisation objectives. These design metrics quantify diverse related non-
functional properties of an architectural specification. The experimental framework, which
includes a detailed discussion on the existing dependencies between objectives, provides a
complete study of the most suitable characteristics of the different families of algorithms to
deal with the evolutionary discovery of software architectures. Amongst these families, 8
different algorithms have been chosen to carry out this empirical research. Due to the very
wide range of algorithms within the multi-objective optimisation field, such an analysis has

Empir Software Eng (2016) 21:2546–2600 2549

served to articulate the distinctive features of the families of algorithms that best fit into the
problem domain under study.

The rest of the paper is structured as follows. Section 2 presents some background,
focused on multi- and many-objective optimisation and SBSE. Section 3 introduces the
conceptual framework related to software architecture design and the search problem being
addressed. The evolutionary model is explained in Section 4, including the definition of
the evaluation objectives. The experimental framework is described in Section 5. Section 6
presents the obtained outcomes, whereas a discussion from the perspective of the decision
making process is given in Section 7. The threats to the validity are explained in Section 8.
Finally, some concluding remarks are pointed out in Section 9.

2 Background

The key concepts of multi- and many-objective optimisation are introduced in this section,
as well as the evolutionary algorithms used for this comparative study. Additionally, the
prior application of these multiple objective approaches in the SBSE field is reviewed.

2.1 Multi- and Many-objective Evolutionary Optimisation

Solving a multi-objective optimisation problem (MOP) consists in looking for solu-
tions characterised by a set of decision variables that can find the most optimal trade-
off among a set of objective functions, which are usually in conflict with each other
(Coello Coello et al. 2007). One initial approximation to address a MOP is to turn it into
a single-objective problem by formulating a new objective function that calculates the
weighted sum of all the objectives. Similarly, other approaches have proposed its resolution
by keeping only one objective and considering the rest of them as constraints. Even though
they are just simple proposals, they have handicaps like the weight selection or requiring
the reformulation of the problem (Deb 2001).

Therefore, any search algorithm specifically devoted to address MOPs will deal with
objectives independently, so it can return a set of optimal solutions. Each solution is
determined by a different trade-off between all the objectives, in which the improvement
achieved by one could imply the loss of others. This idea is formally stated by the Pareto
dominance definition (Coello Coello et al. 2007) as follows: a solution a is said to dominate
another solution b if a has equal or better objective values for all the objectives and a better
value for at least one objective than b. If that condition cannot be satisfied by either a or b,
then both solutions are referred as non-dominated, meaning that they are incomparable or
equivalent. The set of non-dominated solutions constitutes the Pareto set (PS), whereas the
mapping of these solutions to the objective space is called Pareto front (PF). Finding a fitting
approximation to the PF is a twofold task (Deb 2001). On the one hand, a multi-objective
approach is requested to find non-dominated solutions that are close to the front, which is
known as the convergence to the true PF. On the other hand, the resulting PF should be prop-
erly distributed within the objective space, making a good spread of non-dominant solutions
important. Having both ideas in mind, the search algorithm should be able to provide an inte-
resting set of high-quality solutions for the decision maker to choose among.

Evolutionary algorithms (EAs) are a metaheuristic technique inspired on the princi-
ples of natural evolution that deals with a set of solutions to solve optimisation problems
(Boussaı̈d et al. 2013). Each solution is characterised by its genotype, i.e. the structure used
to encode the decision variables that need to be managed during the problem resolution.

2550 Empir Software Eng (2016) 21:2546–2600

In contrast, the phenotype symbolises the real-world representation of its genotype. The
algorithm begins with the random creation of a set of candidate solutions, known as popu-
lation. Each solution, also called individual, is then evaluated considering how well it can
solve the optimisation problem according to its fitness function. The rest of the evolution
is performed by an iterative process in such a way that individuals in the population are
modified in each iteration, also called generation, using genetic operators until the stop-
ping condition, e.g. a maximum number of generations, is reached. With this purpose, some
individuals are selected to act as parents, from which new solutions are generated accord-
ing to the specific EC paradigm. The most commonly used genetic operators are crossover
and mutation. The former is applied to create offspring tending to be similar to their par-
ents, whereas the latter is performed to introduce diversity among offspring. New solutions
have to be evaluated and compared against one another in order to decide whether they
should be part of the next population of individuals. Finally, the best individual found
in terms of its fitness function is returned. Notice that several paradigms have emerged
from the general concept of Evolutionary Computation, such as genetic algorithms (GAs),
evolution strategy (ES), evolutionary programming (EP) and genetic programming (GP)
(Boussaı̈d et al. 2013). On the one hand, GA and GP apply both crossover and mutation. In
the latter, individuals represent executable programs encoded using a tree structure instead
of a fixed-length genotype as proposed by GAs. On the other hand, ES and EP do not usu-
ally implement any crossover operator, EP being characterised by the use of domain-specific
encodings.

Evolutionary computation has traditionally been a way to efficiently solve com-
plex search problems having a unique fitness function. Nevertheless, they can be also
adapted to cover a multidimensional objective space. In fact, the application of EAs for
the resolution of multi-objective problems, i.e. multi-objective evolutionary algorithms
(Coello Coello et al. 2007), has been widely studied for the resolution of real-world appli-
cations. They work well in objective spaces with 2 or 3 objectives, in both combinatorial
and continuous optimisation problems. MOEAs perform in general the same iterative pro-
cess than EAs. However, a specific terminology is often used Zitzler et al. (2004), and they
require some additional steps to be executed, as shown in Algorithm 1. Observe that MOEAs
provide a mating selection method to pick individuals to act as parents. After the gener-
ation of offspring through a domain-specific variation mechanism, i.e. genetic operators,
environmental selection is performed to select the individuals that will survive in the next
generation. The former can determine an overall fitness value, which is independent from

Empir Software Eng (2016) 21:2546–2600 2551

the objective values and represents a quality criterion to classify individuals, usually promot-
ing the selection of non-dominated solutions. The latter applies some diversity preservation
techniques in order to choose between equivalent solutions. In addition, an external popu-
lation, called archive, can be maintained throughout the evolution containing the best found
solutions. Finally, the Pareto set is returned by extracting non-dominated solutionsl from
either the population or the archive. Two well-known examples of MOEAs adopting this
latter structure are SPEA2 (Zitzler et al. 2001) and NSGA-II (Deb et al. 2002).

In the last decades, important efforts have been devoted to deal with the increasing
complexity of MOPs, especially with those having a large number of objectives, known
as many-objective optimisation problems. Although the actual difference between multi-
and many-objective problems has not been clearly stated in the literature (Purshouse and
Fleming 2007), some works initially considered that having more than 2 objectives can
be considered as a many-objective problem (Adra and Fleming 2011). Nevertheless, most
authors agree today with the idea that many-objective problems require the presence of
at least 4 objectives (Deb and Jain 2014; von Lücken et al. 2014; Zhou et al. 2011).
In this paper, this latter criterion is followed in order to distinguish among optimisation
problems. Even so, notice that algorithms originally conceived as multi-objective have
served to address many-objective problems, whereas other authors use the term multi-
objective to refer to the algorithm, and the term many-objective to the optimisation problem.
Here, algorithms will be categorised as prescribed by their respective authors. There are
studies which conclude that proposals like SPEA2 and NSGA-II tend to decrease their
performance as the number of objectives increases, at least when solving continuous opti-
misation benchmarks (Khare et al. 2003; Praditwong and Yao 2007). In highly dimensional
objective spaces, the Pareto dominance loses the efficiency required to guide the search,
since a great number of population members become non-dominated solutions. For this
reason, many-objective optimisation problems require new techniques to deal with such
complexity (Schutze et al. 2011; von Lücken et al. 2014).

Recently, different strategies have been applied in order to improve the performance
of EAs for solving many-objective problems, including the adaptation of some already
existing algorithms (Adra and Fleming 2011; Wang et al. 2014) or the design of new frame-
works (Hadka and Reed 2013). Some of the proposed features are related to the modification
of the dominance principle (He et al. 2014) or the inclusion of specific diversity preservation
techniques (Wang et al. 2014), among others. Thus, they are usually classified in families
in accordance with the selected technique (Wagner et al. 2007).

2.2 Selected Algorithms

Eight evolutionary algorithms have been selected for this comparative study. Two multi-
objective evolutionary algorithms, SPEA2 and NSGA-II, are included as baseline algo-
rithms, their original implementation being maintained. Additionally, other representative
proposals, especially well-suited to deal with many-objective problems, were chosen from
the different families of algorithms in accordance to the literature (von Lücken et al. 2014;
Wagner et al. 2007). Notice that for this selection, algorithms could not consider any previ-
ous assumption about domain-specific elements like the encoding or the genetic operators,
since both characteristics need to be configured according to the problem domain under study.

SPEA2 (Zitzler et al. 2001) assigns a fitness value based on a strength rate and a density
estimator strategy. The former counts the number of dominated and non-dominated solu-
tions considering each individual, whereas the latter uses a clustering approach to select

2552 Empir Software Eng (2016) 21:2546–2600

more diverse individuals. Both values are combined and used in the mating selection. Non-
dominated solutions are stored in a fixed-size archive using a truncation method if it is
required, while the new population will be set using all the offspring.

NSGA-II (Deb et al. 2002) involves a sorting method in order to rank the solutions in
fronts considering the dominance between them. Both this ranking and a crowding dis-
tance are used in the mating selection. During the environmental selection, individuals
are progressively kept by fronts, the crowding distance being used to decide which individ-
uals are selected when a front cannot be stored entirely. This algorithm does not define an
external archive, so the non-dominated solutions are extracted from the final population.

MOEA/D (Multiobjective Evolutionary Algorithm based on Decomposition)
(Zhang and Li 2007) proposes a decomposition approach where the multi-objective
problem is divided into several scalar problems to be simultaneously optimised, looking
for a better diversity among solutions. More specifically, MOEA/D associates each sub-
problem to one individual in the population by means of a weighted vector. Individuals
are randomly chosen in the mating selection, whereas the neighbourhood information is
determined on the weighted vectors during the environmental selection in order to match
each offspring to the subproblem that it can best solve. The Tchebycheff approach is
applied to evaluate individuals over their specific problem, computing its distance to a
reference point. This algorithm uses an archive to keep all the non-dominated solutions
found throughout the evolution process. Originally proposed to solve MOPs, MOEA/D
is frequently used in many-objective problems, as well as to try out new proposals
(Deb and Jain 2014; von Lücken et al. 2014; Yang et al. 2013).

A common technique to avoid the poor selection pressure of the Pareto dominance cri-
terion is to divide the objective space into hypercubes or grids. Then, a relaxed dominance
relation, usually referred as the ε-dominance, is defined over the resulting landscape. Thus,
solution a ε-dominates solution b if a belongs to better or equal hypercubes for all the
objectives and to a better hypercube for at least one objective than b. This idea is explored
in ε-MOEA (Deb et al. 2003), a steady-state algorithm which establishes a fixed length of
the hypercubes for every objective, named εi . In each iteration, one parent from the cur-
rent population and another one from an archive of solutions are selected to generate one
or more offspring. These new solutions will survive depending on the hypercubes to which
they belong and those already filled with the solutions previously saved in the external
population. Similarly to MOEA/D, ε-MOEA was originally conceived to deal with 2 or 3
objectives, although it has turned into a reference algorithm due to its notable performance
to address many-objective optimisation problems (Wagner et al. 2007; Yang et al. 2013).

GrEA (Grid-based Evolutionary Algorithm) (Yang et al. 2013) is a many-objective
evolutionary algorithm based on the notion of landscape partition, though grids are here
dynamically created considering the objective values in the current population. Initially,
GrEA calculates some properties of the individuals based on the grids. Such information is
used by the mating selection in order to obtain the most promising reproducible solutions.
Inspired by NSGA-II, GrEA also ranks the population by fronts during the environmental
selection, but it uses its own specific distance and diversity metrics to discard equivalent
solutions. GrEA does not define an external archive, the returned solutions being extracted
from the final population.

Indicator-based methods propose the use of indicators to guide the evolution process.
The selected indicator can represent the preferences of the decision maker, so the evolu-
tion is heavily oriented towards a region of interest. Some popular indicator of the quality
of a Pareto set approximation, e.g. the hypervolume, can be considered. This kind of algo-

Empir Software Eng (2016) 21:2546–2600 2553

rithms has become an interesting alternative to address many-objective optimisation, since
they transform the original problem into a task consisting in optimising the quality indica-
tor (von Lücken et al. 2014). One representative approach here is IBEA (Indicator-based
Evolutionary Algorithm) (Zitzler and Künzli 2004), which defines a general evolutionary
algorithm where any binary indicator could be used as a fitness function. The selected mea-
sure is a key factor, since the fitness function is heavily involved in both the mating and
the environmental selection procedures. For instance, the authors proposed the application
of the ε-indicator, representing the minimum distance by which a set of solutions should
be translated in each dimension such that another set of solutions is weakly-dominated. It
requires a less complex operation than hypervolume, which could be prohibitive in terms
of computational effort when a large number of objectives is set. During the mating selec-
tion, binary tournaments are performed to generate the set of parents. For each tournament,
two randomly selected individuals are compared with each other according to their fitness
values, so the best individual is returned as parent. The worst individuals are discarded
during the environmental selection.

Another relevant proposal is HypE (Hypervolume Estimation Algorithm)
(Bader and Zitzler 2011), which allows the optimisation of many-objective problems
replacing the exact value of the hypervolume with an estimated value based on Monte Carlo
simulations. This value represents the portion of the hypervolume to be actually attributed
to each solution and used to determine the winner of each binary tournament in the mating
selection process. Environmental selection is based on the minimum loss of hypervolume,
discarding those solutions that contribute the least to the overall hypervolume as a way to
promote convergence to the most promising solutions in terms of this indicator. Neither
IBEA nor HyPE makes use of an archive of non-dominated solutions.

Finally, NSGA-III (Deb and Jain 2014) is a many-objective evolutionary algorithm which
looks for the improvement of the performance of its predecessor, NSGA-II, when dealing
with highly dimensional objective spaces. It is classified as a reference-point-based method,
being characterised by the promotion of those individuals that are close to a set of refer-
ence points supplied by the user or uniformly generated by the algorithm. In NSGA-III,
the crowding distance of NSGA-II is replaced by a new method, where each individual is
associated to the closest reference point. In this way, diversity is preserved attending to the
survival of, at least, one representative solution for each reference point. Apart from belong-
ing to a different family of many-objective approaches, NSGA-III has shown promising
results when coping with complex real-world combinatorial SBSE problems like software
refactoring (Mkaouer et al. 2014).

2.3 Multiple Objective Approaches in SBSE

Multi-objective optimisation algorithms have been widely applied in SBSE (Yao 2013),
since they have demonstrated their ability to reach a trade-off between objectives, as is often
the case in Software Engineering. Focusing on search-based software design (Räihä 2010),
i.e. the field within SBSE that proposes the application of metaheuristics to the design
and improvement of different software artefacts, some classical MOEAs have already been
used. Object-oriented analysis using SPEA2 (Bowman et al. 2010), software module clus-
tering executing the Two-Archive algorithm (Praditwong et al. 2011), or the application of
NSGA-II to code refactoring (Ouni et al. 2013) represent some examples of software design
activities that have been solved from a multi-objective perspective.

Within the field of search-based software design, software architecture optimisa-
tion (Aleti et al. 2013) encompasses those works devoted to automatically specifying,

2554 Empir Software Eng (2016) 21:2546–2600

re-designing, discovering or deploying software architectures. Recently, these tasks have
also being addressed with multi-objective evolutionary approaches. Grunske (2006) pre-
sented a first analysis of the applicability of a multi-objective strategy facing several specific
non-functional requirements to the software architecture refactoring problem. In this case,
no implementation was proposed.

The generation of a set of alternative architectural specifications by means of a spe-
cific multi-objective genetic algorithm is proposed in Räihä et al. (2011). Here, a structural
model, specified as a class diagram representing a low level architecture, is derived from its
corresponding behavioural specification, modelled in terms of sequence diagrams, which
are extracted from the software requirement specification and drawn as use cases. Simul-
taneously, 4 design metrics related to modifiability and efficiency are optimised in the
process. NSGA-II is the algorithm chosen to perform the architectural deployment in
Koziolek et al. (2013), looking for a trade-off between availability, performance and cost.
Here, the optimisation problem consists of the optimal allocation of components into
servers, including the server configuration and component selection.

Although NSGA-II stands out as the preferred algorithm in all the SBSE fields, some
comparative studies have recently appeared to empirically decide the most appropriate
MOEA for a given design problem. With reference to software architecture deployment,
Li et al. (2011) compares SPEA2, NSGA-II and SMS-EMOEA (S Metric Selection Evo-
lutionary Multiobjective Optimisation Algorithm) to obtain the best allocation of software
components in terms of CPU utilization, cost and latency. Further, there are some recently
proposed studies related to other problem domains. For example, in Zhang et al. (2013) the
performance of several variants of NSGA-II were analysed for the priorisation of require-
ments, considering up to 5 objectives. In Assunção et al. (2014), the authors propose a
comparison between SPEA2, NSGA-II and PAES (Pareto Archived Evolution Strategy) to
deal with 2 and 4 objectives in the context of software testing. Only del Sagrado et al. (2015),
Durillo et al. (2011), and Luna et al. (2014) seem to consider a greater variety of meta-
heuristics, even though they are actually applied to bi-objective problems, like the selection
of requirements or the project scheduling problem.

Classical MOEAs still are the most used algorithms in SBSE for multi-objective prob-
lems, though some of these problems really seem to require more than 2 or 3 objectives
to be optimised (Sayyad and Ammar 2013). Many-objective approaches have received less
attention and their applicability has been only explored in a few proposals, mainly focusing
on one specific algorithm for a very certain task. In Sayyad et al. (2013) IBEA was cho-
sen to optimise 5 design characteristics of product lines. Kalboussi et al. (2013) presented
a preference-based evolutionary method to deal with 7 objectives of a testing problem,
whereas Mkaouer et al. (2014) has recently proposed an interesting solution to the software
refactoring, using NSGA-III to simultaneously optimise 15 objectives.

3 Software Architecture Discovery

3.1 Conceptual Framework

The ISO Std. 42010 (ISO 2011b) defines the architecture of a software system as “the
fundamental concepts or properties of a system in its environment embodied in its ele-
ments, relationships, and in the principles of its design and evolution”. A software architect
is in charge of conceiving a system that meets the expected functional requirements, as
well as the non-functional requirements like performance or maintainability, at a high

Empir Software Eng (2016) 21:2546–2600 2555

level of abstraction. A commonly used approach for developing the software architecture
specification is to follow a component-based design, which advocates for the construc-
tion of independent, interrelated software artefacts, mostly conceived in favour of reuse.
In a component-based architecture, a component represents a block of highly cohesive
functionality, whose interactions are specified by means of provided and required inter-
faces (Szyperski 2002). Connectors are links between provided and required interfaces,
so they tie a component that supplies some services to another component demanding
them.

The tasks related to the architectural design deal with aspects like the understanding,
reuse, construction, evolution, analysis and management of the software system (Garlan
2000). From the beginning, an architectural specification is not only required to provide an
abstract description of the system, but also to check its consistency and conformance to qual-
ity attributes. Nevertheless, the techniques currently used to evaluate software architectures
are mostly based on the expert’s opinion (Dobrica and Niemela 2002). Actually, the defini-
tion of design metrics at the architectural level is still a great challenge, where the ISO Std.
25000 (ISO 2011a) can play an important role as it can serve as a framework to provide a
precise guidance on how an architectural model should be assessed.

Ideally, the architecture specification of the system should be maintained throughout
the entire development process, evolving as the software does. Frequently, uncontrolled
changes in the requirements or the inclusion of a new functionality are directly reflected in
the most concrete artefacts, like source code, leading to out-of-date, incoherent, and use-
less software documentation. As a result, understanding the original architecture becomes
a complicated task (Ducasse and Pollet 2009). Although diverse methods have been pro-
posed to recover the architectural specification, most of them start with the source code,
meaning that the recovery process can only be conducted once the system implementation is
completed. If code is not available, the discovery of the original architecture could only be
done manually in accordance to the analysis models. As this process strongly relies on the
expertise of software engineers, providing semi-automatic approaches could serve to assist
them, especially in exploring different design alternatives in terms of the expected quality
attributes.

cl
as

se
s

re
la
tio

ns
hi
ps

Fig. 1 General outline of the XMI file

2556 Empir Software Eng (2016) 21:2546–2600

3.2 The Search Problem

In Ramı́rez et al. (2015), the discovery of software architectures is presented as a search
problem, where an analysis model represented in form of a class diagram (OMG 2010) saved
in XMI format provides the input information in terms of classes and their relationships
(see Fig. 1). In this case, the search problem is solved by a single-objective evolutionary
algorithm, which is able to generate one single candidate solution representing a high-level
architectural specification in terms of components, interfaces and connectors, and depicted
by a component diagram. The discovery process is guided by the following rules:

– A component is represented by a cohesive group of classes. The search algorithm
should be able to discover the groups of classes that best integrate the different func-
tionalities of the interacting system. Relationships between components are mapped
into interacting interfaces. Two constraints should be satisfied in this regard: any class
should belong to only one component, and the resulting architectural specification
should not contain any empty element.

– Once the classes are divided up among components, directed relationships between
pairs of classes, each belonging to a different component, would represent a candi-
date interface. The types of the relationships are those defined by UML 2: associations,
dependencies, aggregations, compositions and generalisations. Here, two exceptional
cases could cause the interface not to be created: either the navigability of the
relationship is unspecified, or the relationship represents a data abstraction mod-
elled by a generalisation. Two additional constraints should be also considered: any
component should define at least one interface, and mutually dependent compo-
nents, i.e. a pair of components each one providing services to the other, should
not be created.

– A connector is a link between a pair of required-provided interfaces belonging to
different components.

4 Optimisation Approach for the Discovery Process

According to Aleti et al. (2013), the proposed approach can be classified as an architecture
optimisation method, where a search-based algorithm is applied on a number of architec-
tural artefacts in order to get the best trade-off between certain quality attributes. More
specifically, our evolutionary model falls into the category of multi-objective approaches
(dimensionality category), making use of a high-level technique, i.e. metaheuristics, to find
approximate solutions (optimisation strategy). Similarly to other methods, constraint han-
dling techniques are applied, and UML 2 is used as a notation for the architectural specifica-
tion. What distinguishes our approach from other existing architecture optimisation methods
are those aspects related to the problem domain, i.e. quality attributes and decision variables
(degrees of freedom). The discovery of software architectures was recently proposed as a
search problem in Ramı́rez et al. (2015), being addressed from a single-objective perspective.

The architectural specification is not constructed from scratch during the search-based
discovery process. Instead of being derived from requirements, the identification of the
system functional blocks and their abstract specification are carried out from an earlier
analysis model. A similar approach is the decomposition process proposed by Lutz (2001),
where an evolutionary algorithm is used to find the best distribution of classes into mod-
ules. This proposal is founded on clustering, so the system structure is viewed as a graph

Empir Software Eng (2016) 21:2546–2600 2557

and, besides, valuable analysis information, such as the presence of abstract artefacts or
the existence of different types of relationships among the classes, is omitted during the
search. Nonetheless, the proposed procedure is not intended to precisely simulate what the
engineer would do to build the architecture, e.g. defining interacting interfaces. Similarly,
software modularisation (Praditwong et al. 2011) deals with the organisation of code into
packages and modules, working at a lower level of abstraction. Although the three opti-
misation approaches share the idea of searching the optimal organisation of some kind
of software artefacts in other units of construction, each problem defines its own objec-
tives and constraints, leading to several differences among them regarding their respective
fitness landscapes.

The elements that constitute the evolutionary algorithm addressing the discovery pro-
cess are introduced next. Firstly, the encoding and the initialisation are explained. Secondly,
the objective functions and the genetic operator, composed by five different mutation
procedures, are presented. Crossover is not applied because the evolutionary model pre-
sented here adopts the evolutionary programming paradigm.

4.1 Encoding and Initialisation

The individuals of the population represent design solutions in the form of a component-
based software architecture. A simple genotype/phenotype mapping constitutes an essential
element in favour of interpretability. Additionally, since no prior assumption of the archi-
tectural structure to be returned is made, a flexible encoding is also required in order to
be able to manage architectural solutions having different number of components. There-

Architecture

Components Connectors

Component1 Component2 Connector1

Classes
Provided
interfaces

Required
interfaces

Component3 Connector2

Classes
Provided
interfaces

Required
interfaces

Classes
Provided
interfaces

Required
interfaces

A B C_req_DC A_prov_E E F E_req_A G H D_prov_CD

Provided
interface

Required
interface

Provided
interface

Required
interface

E_req_A A_prov_E C_req_D D_prov_C

A_prov_E

E_req_A

D_prov_C

C_req_D

A

Fig. 2 The component diagram in (a) is mapped into the tree structure depicted in (b)

2558 Empir Software Eng (2016) 21:2546–2600

fore, a tree structure is used to encode each architectural model, allowing a comprehensible
decomposition of the involved software artefacts as established in the problem statement.
As depicted in Fig. 2, shaded nodes stand for mandatory elements, whereas the rest of nodes
vary from one individual to another, i.e. components and connectors and their internal com-
position, vary from one individual to another. Additional data about the input class diagram,
such as the original relationships between classes and its abstractness are kept by the algo-
rithm. Since this information does not vary from one individual to another, it is not explicitly
represented in the genotype.

The initialisation process randomly generates component-based architectures for a given
input analysis model. For each solution, a random number of components is chosen between
a minimum and a maximum value that is configurable by the software architect. All the
classes within the input class diagram are arbitrarily distributed among components. As a
constraint none of these components can be empty. Interfaces and connectors are also set
considering the existing relationships between classes belonging to different components.
The obtained individuals do not need to strictly satisfy all the constraints related to the
interaction between components, since they are not checked at this point in order to promote
a quicker and more flexible initialisation step. Unfeasible individuals should be turned into
feasible ones or be discarded as the evolution elapses, right after the application of the
mutation operator and the selection mechanisms.

4.2 Evaluation Objectives

Nine software quality metrics are mapped into their respective objective functions, which
serve to guide the evolutionary process. These metrics quantify diverse non-functional
requirements related to the maintainability of the software system, which stands out as one
of most important quality criteria for component-based software architectures. The software
product quality model specified by the ISO Std. 25000 (ISO 2011a) defines maintainability
as “the degree to which the software product can be modified”, where modifications “may
include corrections, improvements or adaptation of the software to changes in the environ-
ment, and in requirements and functional specifications”. This standard document defines
the sub-characteristics into which the maintainability can be decomposed to effectively mea-
sure a number of related design aspects. The specific maintainability terms applicable to the
nature of the addressed problem are the following:

– Modularity, which is defined as “the degree to which a system is composed of dis-
crete components such that a change to one component has minimal impact on other
components”.

– Reusability, which establishes “the degree to which an asset can be used in more than
one software system or in building other assets”.

– Analysability, which determines “the degree to which the parts of the software to be
modified can be identified”.

All these terms need to be translated into quantifiable metrics that will then be selec-
tively combined to be simultaneously optimised by the evolutionary algorithm. On the basis
of the ISO Std. 25000, a review of the literature was conducted to select those quality met-
rics that best suited an architectural specification and could be directly computed over the
architectural solutions. These metrics are explained next.

Intra-modular Coupling Density (icd) This metric was proposed by Gupta et al. (2012)
and establishes a trade-off between cohesion and coupling, as shown in (1). icd is defined

Empir Software Eng (2016) 21:2546–2600 2559

as the ratio between internal and external relations in the components. ciini represents the
number of interactions between classes inside the component i, whereas ciout

i is the number
of external relations, i.e. the number of candidate interfaces. Here, the ratio between ciini
and ciout

i is weighted by the fraction of classes taking part in these relationships. Finally,
icd is calculated for the overall architecture as the average of all the icdi values, all these
terms varying in [0,1].

icdi = #classestotal − #classesi

#classestotal

· ciini

ciini + ciout
i

icd = 1

n
·

n∑

i=1

icdi (1)

External Relations Penalty (erp) This metric is inspired by the Interface Violations met-
ric (Krogmann 2010). erp computes the number of existing relationships between classes
belonging to each possible pair of different components, i and j , that could not be defined
as candidates interfaces (see (2)). More precisely, these relationships are those associations
(as), aggregations (ag) and compositions (co) that do not explicitly specify their navigabil-
ity, as well as generalisations (ge). A weighted sum (wx) is calculated to emphasise those
relations that strongly harm the overall quality of the architectural solution at the software
engineer’s discretion.

erp =
n∑

i=1

n∑

j=i+1

(was · nasij + wag · nagij
+ wco · ncoij

+ wge · ngeij
) (2)

Instability (ins) The instability metric is intended to create highly independent compo-
nents, leading to more separated functionality blocks. Although the concept of instability
was originally defined by Martin (1994) to evaluate the stability of object-oriented designs,
it can be also considered at the architectural level. In this way, the overall instability of the
architecture is obtained as the average value of the instability of each single component
(insi) (see (3)). In order to calculate this metric, the terms aci and eci need to be first com-
puted. aci represents the afferent coupling of component i, i.e. the number of components
that require its services, whereas eci stands for the efferent coupling, i.e. the number of
external components that provide their services to component i (Sant’Anna et al. 2007).

insi = eci

eci + aci

ins = 1

n
·

n∑

i=1

insi (3)

Encapsulation (enc) This metric is inspired by the Data Access Metric proposed by
Bansiya and Davis (2002), which serves to evaluate the encapsulation of one class within an
object-oriented design. With the aim of adapting this concept to the architectural level, the
encapsulation of each component i, enci , is computed as the ratio of its hidden classes, i.e.
those that do not participate in any interaction with classes belonging to other components
in the architecture, and the total number of contained classes. The overall encapsulation is
calculated as the mean of the enci values (see (4)).

enci = #innerclasses

#totalclasses

enc = 1

n
·

n∑

i=1

enci (4)

Critical Size (cs) This metric, presented in Narasimhan and Hendradjaya (2007), intends
to minimise the number of large components. To this end, cs counts the number of critical

2560 Empir Software Eng (2016) 21:2546–2600

components with respect to their size (ccsize), this value being returned by the size() func-
tion and calculated as the percentage of classes comprised by the component in relation to
the entire model. A threshold value is required to determine if the corresponding component
would be critical or not (see (5)).

cci
size =

{
1 if size(i) > threshold
0 otherwise

cs =
n∑

i=1

cci
size (5)

Critical Link (cl) Similarly to cs, cl considers the number of critical components, cclink ,
with respect to the number of their interactions within the architecture (Narasimhan and
Hendradjaya 2007). As can be seen in (6), the links refer to the number of provided
interfaces and a threshold should be established.

cci
link =

{
1 if #provided interf acesi > threshold
0 otherwise

cl =
n∑

i=1

cci
link (6)

Groups/Components Ratio (gcr) The gcr metric, presented in (7), has been
adapted from the Component Packing Density (cpd) metric, defined by Narasimhan and
Hendradjaya (2007). cpd determines the ratio between the number of constituents, i.e. those
elements that compose the components, and the total number of components in the archi-
tecture. Here, the constituents are the groups of connected classes (#cgroups) inside each
component.

gcr = #cgroups

#components
(7)

Abstractness (abs) This measure (Krogmann 2010) is defined as the ratio of abstract
classes inside a component, absi (see (8)). A global value of the abstractness distribution
for a given architectural solution, abs, can be obtained by computing the mean value of
abstractness for each component.

absi = #abstract classesi

#classesi
abs = 1

n
·

n∑

i=1

absi (8)

Component Balance (cb) Reducing the presence of critical components is an important
factor in software design, though it could lead to an excessive number of tiny compo-
nents hampering the comprehension of the resulting system structure. cb is proposed in
Bouwers et al. (2011) to quantify the balance among components, taking into considera-
tion their respective sizes. It is based on two terms, the system breakdown (sb) and the
component size uniformity (csu), as shown in (9), where csu is defined as the Gini Coef-
ficient, i.e. a statistical measure of dispersion. The volume(c) function counts the number
of classes per component c, C being the set of components in the architecture. csu varies
in the range [0,1], the unity being its optimum value, meaning that all the components have
the same size. sb represents a linear function in the range [0,1], which benefits the prox-
imity to a number of components, μ, and penalises those architectures having just one or
too many components (ω). Since the problem definition determines the minimum and max-
imum number of components to be comprised by the candidate architectures, ω should be
set to this maximum value, and the theoretical minimum threshold, 1, should be replaced

Empir Software Eng (2016) 21:2546–2600 2561

Table 1 Main characteristics of objective functions

Metric Min/Max Quality attribute Range of values Design goals

icd max modularity [0, 1] Small components with high cohesion

erp min modularity [0, ∗] Large components with low coupling

ins min modularity [0, 1] Components with few interactions

enc max modularity [0, 1] Components with hidden classes

cs min modularity [0, n] Small or medium-sized components

cl min modularity [0, n] Components with few provided interfaces

gcr min reusability [1, ∗] Connected classes within each component

abs max reusability [0, 1] Components with abstract classes

cb max analisability [0, 1] Equal-sized components

by the minimum number of components. Similarly, the μ value will be equal to the average
value between these maximum and minimum values.

sb(n) =

⎧
⎪⎨

⎪⎩

n−1
μ−1 if n < μ

1 − n−μ
ω−μ

if μ < n < ω

0 if n ≥ ω

csu(C) = 1 − Gini({volume(c) : c ∈ C})
cb(S) = sb(|C|) · csu(C) (9)

Table 1 summarises the main characteristics of the 9 objective functions, including
whether they are to be minimised (min) or maximised (max), and a brief description of
the design goals being promoted. Each metric is related to maintainability characteristics
defined above, and the range of possible values is also provided. The symbol ∗ is used to
represent that the upper bound of erp and gcr is dependent on the features of the problem
instance, whilst n indicates the number of components within the architecture.

Table 2 shows the list of design goals being promoted (↑) or demoted (↓) by each metric.
The symbol − represents that the corresponding metric has no influence on that goal. As
can be seen, most of the trade-offs between metrics are related to the size of components
and the way in which components would preferably interact with each other. For example,
those metrics that look for decreasing the number of interactions between components, in
terms of both interfaces and external relationships, i.e. coupling, tend to demote the internal
component cohesion due to an excessive encapsulation of functionalities.

4.3 Mutation Operator

The execution of a crossover operator could produce a significant amount of unfeasible
solutions, requiring the implementation of repair methods to satisfy those constraints that
had been already checked during the initialisation process. It would be a time-consuming
procedure, without which unfeasible individuals could be generated even late in the search,
making the convergence to the feasible region of the search space considerably more diffi-
cult. Only a domain-specific mutation operator serves to explore the different architectural
solutions throughout the evolutionary search (Ramı́rez et al. 2015). A weighted roulette
is used to select one of the five proposed mutation procedures. More specifically, these
procedures simulate those architectural transformations that could be applied to a given
individual, i.e. the parent, to generate an offspring.

2562 Empir Software Eng (2016) 21:2546–2600

– Add a component. A new component is added to the architecture. Creating such a new
component requires extracting some classes from other components. More specifically,
if a component would contain several unconnected groups of related classes, some of
them could be randomly selected to create the new component. Hence, the ultimate aim
of this procedure is to improve the distribution of functionalities among components.

– Remove a component. This procedure implies that one component in the current archi-
tecture will be discarded. In this case, its inner artefacts are arbitrarily distributed among
the remaining components. A component having a great number of dependencies with
others is a preferable candidate to be removed.

– Merge two components. This procedure involves the construction of a new compo-
nent by taking two existing components from the current architecture. Since the aim of
this procedure is to attempt to concentrate functionalities, the first selected component
would be one with a large number of external dependencies. Then, a second component
is selected at random.

– Split a component. This procedure is designed with the aim of avoiding excessively
large components. One component is randomly selected and split into two components,
forcing an interaction between both of them to remain in the form of a new interface.
More precisely, an internal relationship is chosen at random to act as the candidate
interface. Next, each inner class is assigned to one component or another depending on
how it relates to the interface ending, i.e. classes providing and requiring the service
are separated.

– Move a class. This procedure executes the simple movement of one class from one
component to another. Notice that this procedure does not apply any change in the
structure of the solution, so the transformation is done completely at random.

The roulette is dynamically built for each parent, only considering those applicable pro-
cedures in each particular case. Thus, if the initial individual is a feasible solution, the
mutation procedure will always return a solution without duplicate classes or empty com-
ponents. The minimum and maximum number of components within the architecture is
also preserved. For example, the split a component operation cannot be executed on an
individual representing an architecture that already contains the maximum number of com-
ponents. The weights of the roulette can be configured by the software architect. Finally,
notice that the existing constraints related to interactions between components have to be
considered here. For example, if the obtained individual represents an unfeasible solution,
the parent is mutated again until a feasible solution is reached or a maximum number of

Table 2 Design goals and trade-offs between metrics

Design goal icd erp ins enc cs cl gcr abs cb

Small components ↑ ↓ ↑ ↓ − − ↓ − ↓
Large components ↓ ↑ ↓ ↑ ↓ − ↑ − ↓
High cohesion between classes ↑ ↓ − ↓ − − ↓ − −
Low coupling between components − ↑ − − − − − − −
Few interfaces per component ↓ − ↑ ↑ − ↑ − − −
High encapsulation − − ↑ ↑ − − ↑ − −
Distribution of abstract classes − − − − − − − ↑ −

Empir Software Eng (2016) 21:2546–2600 2563

Fig. 3 Example of the mutation operator

attempts is exceeded. In the latter situation, the unfeasible mutant individual could be con-
sidered as a valid offspring depending on a probabilistic criterion. In this sense, a dynamic
threshold is set at the first generation, and will be decreased along the evolution. If a ran-
domly generated number exceeds the current threshold, the unfeasible individual is added
to the offspring pool. On the contrary, the original parent takes his position in the set
of descendants.

As a way to illustrate how the mutation operator works, Fig. 3 shows the result of apply-
ing the remove component procedure over the solution presented Fig. 2. As can be observed,
the second component (Component2) within the original individual has been removed, and
its classes randomly reallocated. In this example, class E is moved to Component1, whilst
class F is reallocated to Component3. As a result, since classes A and E are now part
of the same component, the existing interaction between them becomes internal. No more
interfaces are created to link classes E and F , since the navigability of their composition is
unspecified.

5 Experimental Framework

All the algorithms and the experimental framework have been coded in Java. Additionally,
some public Java libraries have been used to facilitate the implementation. SDMetrics Open
Core1 provides support for parsing XMI files, allowing the extraction of information from
the analysis models created with the MagicDraw tool.2 Preprocessing tasks and internal data
structures have been implemented using the Datapro4j library.3 The evolutionary algorithms
have been written using JCLEC (Ventura et al. 2008). Experiments were run on a HPC
cluster of 8 compute nodes with Rocks cluster 6.1 x64 Linux distribution, where each node
comprises two Intel Xeon E5645 CPUs with 6 cores at 2.4 GHz and 24 GB DDR memory.

In this section, the comparison methodology is presented, including the performance
measures used to evaluate the evolutionary algorithms. The parametrisation and set-up, as
well as the problem instances used, are also introduced next.

1http://www.sdmetrics.com/OpenCore.html
2http://www.nomagic.com/
3http://www.uco.es/grupos/kdis/datapro4j

2564 Empir Software Eng (2016) 21:2546–2600

5.1 Methodology

To assess the validity of the experiments, every algorithm has been executed 30 times with
different random seeds. The 9 proposed design metrics have been combined in groups of
2, 4, 6, 8 and 9 objectives, which make a total of 256 combinations. After executing all
these combinations, it is possible to analyse how the selection of a particular subset of
metrics, including its cardinality, can affect both the evolutionary performance and the type
of obtained architectural solutions.

Regarding the comparison study from an evolutionary perspective, two quality indica-
tors, hypervolume (HV) and spacing (S) have been considered (Coello Coello et al. 2007).
HV calculates the hyper-area covered by the Pareto set, whereas S measures the spread
of the front. It should be noted that HV requires an objective space in the range [0,1], so
the normalisation approach proposed in Luna et al. (2014) is applied after executing the
algorithms. More specifically, a reference Pareto front (RPF) is built up considering all the
solutions found after executing the 8 algorithms for each problem instance. Then, the objec-
tive values are normalised taking as reference the worst value and the best value achieved
by any solution within the RPF.

Statistical tests (Arcuri and Briand 2011; Derrac et al. 2011) have served to compare the
performance of the algorithms under study. The Friedman test, a non-parametric test that
allows comparing multiple algorithms over different problem instances, is executed first. At
a specific level of significance, 1 − α, this test establishes the null hypothesis, H0, denoting
that all the algorithms perform equally well. If H0 is rejected, i.e. significant differences
are detected, a post-hoc procedure has to be carried out in order to properly determine
those statistical differences between the considered algorithms. Here, the Holm test is per-
formed when H0 cannot be accepted, a control algorithm being compared to the rest of
algorithms. Additionally, the Cliff’s Delta test has been executed to assess the magnitude
of the improvements using an effect size measurement (Arcuri and Briand 2011). This test
performs pairwise comparisons to determine whether such an improvement should be consid-
ered negligible, small, medium or large on the basis of specific thresholds (Romano et al.
2006).

Some other measures have been compiled as well in order to precisely state the dis-
cussion of results beyond the evolutionary performance. Hence, aspects like the execution
time, the size of the Pareto set, or the set of non-dominated solutions are also scrutinised
to properly analyse the behaviour of each algorithm concerning the software architect’s
expectations.

5.2 Parameter Set-up

Before entering into the details of the value assignment to specific parameters of each algo-
rithm, there are some related aspects to be addressed respecting constraint handling and
mating selection. On the one hand, notice that constraint handling techniques need to be
applied in different ways. A first scenario refers to the way invalid solutions are evaluated.
In the case of the algorithms SPEA2, MOEA/D, GrEA, IBEA and HypE, the worst possible
fitness value is assigned to every unfeasible individual. A constrained version of NSGA-II
was already presented in the original work by Deb et al. (2002), in which feasible solutions
were promoted according to a specific comparison method. The same approach has been
adopted for ε-MOEA, since this algorithm does not declare any fitness function. These two
mechanisms guarantee that unfeasible individuals will not prevail over feasible individuals
in any selection process.

Empir Software Eng (2016) 21:2546–2600 2565

Table 3 Parameter set-up

Common parameters

Population size (2, 4, 6, 8, 9 objectives) 100, 120, 126, 330, 495

Max. evaluations (2, 4, 6, 8, 9 objectives) 10,000, 15,000, 20,000, 66,000, 99,000

Min-max. components 2–8

Mutator weights wadd = 0.2, wremove = 0.3, wmerge = 0.2,

wsplit = 0.1, wmove = 0.2

erp weights was = 2, wag = 3, wco = 3, wge = 5

cs threshold 0.3

cl threshold 8

SPEA2 parameters

Parents selector Binary tournament

External population size 50

k-th neighbour 12

MOEA/D parameters

Neighbourhood size (τ) 8

Max. replacements (Nr) 2

H (2, 4, 6, 8, 9 objectives) 99, 7, 4, 4, 4

ε-MOEA parameters

ε values εicd = 0.05, εerp = 5.00, εins = 0.05, εenc = 0.05

εcs = 1.00, εcl = 1.00, εgcr = 0.10, εabs = 0.05,

εcb = 0.05

GrEA parameters

Number of divisions (div) 12

IBEA parameters

Scaling factor (k) 0.05

HypE parameters

Number of sampling points (M) 10,000

On the other hand, regarding the mating selection phase in the case of MOEA/D, it
usually takes two individuals from the neighbourhood of each member of the population
to act as parents and generates a unique descendant. However, given that only one mutator
operator is executed, just one neighbour is selected to generate the offspring.

The specific configuration parameters of the selected algorithms have been set up accord-
ing to their respective authors, whilst the domain-specific configuration is identical in all
cases. If required, some preliminary experiments have been performed to properly adapt
their parameters to the specific needs of the problem domain, e.g. the hypercube lengths in
ε-MOEA. The final parameter set-up is shown in Table 3. Notice that different values are
set for the population size and the maximum number of evaluations to deal with the grow-
ing complexity of the optimisation problem when increasing the number of objectives from
2 to 4, 6, 8 and 9. Regarding the population size, it should be noted that MOEA/D requires
a uniformly distributed set of weighted vectors, whose size is controlled by the number of
objectives and the parameter H . Therefore, the number of weighted vectors obtained for

2566 Empir Software Eng (2016) 21:2546–2600

Table 4 Problem instances and their characteristics

Problem #Classes
#Relationships

#Interfaces
As De Ag Co Ge

Aqualush 58 69 6 0 0 20 74

Borg 167 44 109 36 38 90 300

Datapro4j 59 3 4 3 2 49 12

ICal4j 190 36 4 3 11 161 70

Java2HTML 53 20 66 15 0 15 170

JSapar 46 7 33 21 9 19 80

JXLS 96 60 10 10 9 45 136

Logisim 253 113 19 46 25 137 248

Marvin 32 5 11 22 5 8 28

NekoHTML 47 6 17 15 18 17 46

each number of combined objectives has determined the population size for the rest of algo-
rithms. For the remaining parameters, they are related to the problem domain, including the
minimum and maximum number of components to be considered for the architecture, the
parameters required to calculate the objective functions (see Section 4.2) and the weight
values related to the mutation procedures (see Section 4.3).

5.3 Problem Instances

The experimental study has been carried out over 10 diverse problem instances, each one
representing a system design with different complexity in terms of both the number of
classes and the interoperability among them. Table 4 provides the complete list of their
respective characteristics. The number and types of relationships are enumerated in the
column #Relationships, where the different types are broken down in turn as prescribed
by UML 2: associations (As), dependencies (De), aggregations (Ag), compositions (Co)
and generalisations (Ge). The last column (#Interfaces) indicates the number of candi-
date interfaces, i.e. the number those relationships whose navigability has been explicitly
specified.

Most of these instances have been taken from actual real-world software systems work-
ing on diverse application domains. Only Aqualush4 is a benchmark used for educational
purposes. Some of the software specifications can be accessed from the Java Open Source
Code Project5, whereas Datapro4j, iCal4j6 and Logisim7 are available at their respective
websites.

4http://www.ifi.uzh.ch/rerg/research/aqualush.html
5http://www.java-source.net/
6http://www.sourceforge.net/projects/ical4j/
7http://www.sourceforge.net/projects/logisim/

Empir Software Eng (2016) 21:2546–2600 2567

6 Analysis of Results

In this section, we analyse the results from the perspective of the evolutionary performance.
More specifically, we focus on the scalability of the selected algorithms regarding the two
quality indicators mentioned in Section 5.1, hypervolume and spacing.

6.1 Analysis of 2- to 4-objective Problems

Table 5 shows the overall ranking obtained by the Friedman test for each selected algorithm
in terms of hypervolume. A value represents the arithmetic mean of the ranking positions
determined considering all the possible combinations for the given number of objectives.
Notice that the lowest values are the best. Their corresponding standard deviation is shown
accordingly. Similarly, Table 6 shows the summary of the results for the spacing indicator.
Complementary information about the results is reported in the Appendix.

Regarding the HV for 2-objective problems, NSGA-II, ε-MOEA and HypE achieve the
best ranking positions, obtaining significant differences with the rest of algorithms. On the
contrary, SPEA2 and MOEA/D show a better behaviour in terms of the spacing indicator.
IBEA and NSGA-III achieve good spacing values only for certain combinations of objec-
tives, which is reflected in a higher standard deviation. Notice that simultaneously having
good scores in terms of both hypervolume and spacing becomes a great challenge. Even
though a multi-objective evolutionary algorithm tries to find a compromise between the
convergence towards a set of non-dominated solutions and the spread of the resulting front,
its specific characteristics could encourage the promotion of one criterion at the expense of
the other. Specific many-objective approaches do not exhibit any superiority yet, obtaining
the best ranking positions for only a few problems.

As for the combinations of metrics, it can be noted that their respective optimisation
problems may imply several differences in the performance of the algorithms. Since the
software architect could be interested in different aspects of the same quality criteria, e.g.
several design metrics are related to modularity, the selection of the specific metrics is also
an important decision with respect to the expected architectural solutions. For those prob-
lems where erp, gcr , cs or cl are jointly optimised, all the algorithms have achieved similar
values in terms of both quality indicators. For example, the selection of erp and cl ends
in a tie between SPEA2, NSGA-II, MOEA/D and ε-MOEA. Moreover, there are no sta-
tistical differences when comparing these algorithms to GrEA and HypE, because all the
algorithms obtain either a unique solution or an equivalent Pareto set. In the former case,

Table 5 Mean and standard deviation of Friedman rankings for hypervolume

Algorithm 2 objectives 4 objectives 6 objectives 8 objectives 9 objectives

SPEA2 4.35 ± 0.78 4.66 ± 0.86 5.64 ± 0.29 6.33 ± 0.28 6.70 ± 0.00

NSGA-II 2.02 ± 0.59 1.39 ± 0.40 1.92 ± 0.54 2.66 ± 0.46 2.90 ± 0.00

MOEA/D 3.90 ± 0.81 4.41 ± 0.68 3.75 ± 0.47 3.48 ± 0.43 3.30 ± 0.00

ε-MOEA 3.88 ± 1.12 2.78 ± 1.15 1.51 ± 0.55 1.08 ± 0.09 1.00 ± 0.00

GrEA 4.86 ± 0.79 5.30 ± 0.75 5.80 ± 0.41 5.83 ± 0.11 5.50 ± 0.00

IBEA 7.21 ± 0.31 7.64 ± 0.15 7.76 ± 0.06 7.79 ± 0.05 7.90 ± 0.00

HypE 3.04 ± 0.58 3.20 ± 0.75 3.20 ± 0.55 2.82 ± 0.31 2.80 ± 0.00

NSGA-III 6.75 ± 0.49 6.62 ± 0.21 6.49 ± 0.16 6.01 ± 0.29 5.90 ± 0.00

2568 Empir Software Eng (2016) 21:2546–2600

Table 6 Mean and standard deviation of Friedman rankings for spacing

Algorithm 2 objectives 4 objectives 6 objectives 8 objectives 9 objectives

SPEA2 3.65 ± 1.25 2.09 ± 1.08 1.10 ± 0.17 1.37 ± 0.37 1.70 ± 0.00

NSGA-II 4.00 ± 0.82 4.59 ± 0.91 2.77 ± 0.85 1.97 ± 0.34 1.80 ± 0.00

MOEA/D 3.23 ± 1.10 3.16 ± 0.79 5.21 ± 0.50 5.69 ± 0.23 5.30 ± 0.00

ε-MOEA 5.58 ± 1.04 3.02 ± 1.49 3.41 ± 0.69 4.06 ± 0.37 4.60 ± 0.00

GrEA 5.37 ± 0.52 6.78 ± 0.45 7.29 ± 0.17 7.28 ± 0.14 6.60 ± 0.00

IBEA 5.73 ± 1.51 7.43 ± 0.42 7.60 ± 0.04 7.63 ± 0.07 7.80 ± 0.00

HypE 4.09 ± 0.72 4.91 ± 0.95 5.11 ± 0.82 4.88 ± 0.57 5.00 ± 0.00

NSGA-III 4.35 ± 1.45 4.02 ± 1.09 3.53 ± 0.51 3.13 ± 0.16 3.20 ± 0.00

every approach finds an optimal solution, since the objectives are not strongly opposed. In
the latter case, all the algorithms have some trouble in avoiding local optima. In constrast,
the combination of erp and cl metrics with icd, abs, cb or enc implies the formulation of
a more complex optimisation problem, where the dominance between solutions is harder
to achieve. Therefore, the resulting Pareto set will be comprised of more diverse solutions,
where both objectives are satisfied in different ways.

As the number of objectives increases up to four, differences between them become
more evident. It is worth noticing that SPEA2 and NSGA-II are still the best algorithms
regarding spacing and hypervolume, respectively, though their rankings for the other indi-
cator have increased. As can be seen in Tables 5 and 6, ε-MOEA and NSGA-III have
improved their overall rankings for both indicators, whereas the rest of algorithms do not
experience great changes or their performance even decreases, as in the case of IBEA
and GrEA.

MOEA/D and ε-MOEA obtain the best ranking for some specific combinations of objec-
tives. For example, MOEA/D has shown good spacing values when cs, cl or ins are
considered. Similarly, ε-MOEA seems to optimise certain objectives, e.g. icd, ins, abs or
cb, more accurately than NSGA-II in terms of HV . These 4 objectives promote the func-
tional distribution among components. On the contrary, if metrics like erp, gcr , enc and
cl are selected to define the search problem, the number of components within the archi-
tectural solution tends to be minimised as a way to reduce their interactions. In general,
ε-MOEA provides a better performance than NSGA-II when the optimisation problem is
more complex from a design perspective, as the latter tends to promote the discovery of an
excessively monolithic architecture.

Table 7 compiles the outcomes obtained by the different algorithms in terms of their
performance when a low number of objecives is considered to address the problem under
study.

6.2 Analysis of 6- to 9-objective Problems

When algorithms optimising 6 or more objectives are compared, the Friedman test returns
significant differences for a large number of combinations, many of them including at least
one objective that promotes a design goal that tends to be demoted by the rest of objectives.
Some initial tendencies observed for 4-objective optimisation problems are now clearly
brought out. To illustrate this point, Fig. 4 depicts the percentage of combinations for which
each algorithm reaches the best ranking for hypervolume and spacing, respectively. As can

Empir Software Eng (2016) 21:2546–2600 2569

Table 7 Summary of the evolutionary performance for 2- and 4-objective problems

Algorithm Main findings

SPEA2
• Ability to maintain a wide-spread Pareto front due to the use of density information

• Some difficulties to obtain competitive values for the hypervolume

NSGA-II

• Good scalability with respect to hypervolume

• Variable behaviour in terms of spacing, especially when increasing to 4 objectives

• The nondominated sorting approach has a strong influence on the evolution

MOEA/D
• Spacing values reflect effective exploration of multiple search directions using weight vectors

• Low ranking positions for both 2- and 4-objective problems in terms of HV

ε-MOEA

• Variable behaviour in terms of HV when optimising combinations of 2 metrics

• Better HV than other many-objective approaches like HypE or NSGA-III for 4 objectives

• ε-dominance contributes to enhance the diversity of the Pareto front

GrEA
• Poor performance regardless of the number and combination of metrics

• Similar to NSGA-II regarding S, since the sorting approach strongly promotes convergence

IBEA

• Ability to reach reasonably good spacing values for specific 2-objective combinations

• Poor performance when dealing with 4 objectives.

• ε-indicator is a non-discriminatory criterion to guide the search towards promising solutions

HypE

• Lower HV values than expected regardless of the number of objectives

• Good trade-off between HV and S for 2 objectives

• Excessive promotion of solutions contributing to HV at certain steps of the evolution

• Some regions of interest can remain unexplored by the optimisation process

NSGA-III
• Better performance than NSGA-II only in terms of S due to the use of reference points

• Overemphasis on promoting diversity leads to a low performance in HV ranking values

be noted, as the number of objectives increases, ε-MOEA emerges as the best algorithm
for HV , outperforming NSGA-II, and SPEA2 is the best alternative in terms of spacing,
especially when dealing with more than 6 objectives.

As can be seen from Tables 5 and 6, SPEA2, NSGA-II, GrEA and IBEA report worse
HV ranking values than those obtained for 2 and 4 objectives. On the contrary, MOEA/D,
ε-MOEA, HypE and NSGA-III have experienced an improvement regarding this indi-
cator, though ε-MOEA and HypE obtain competitive values when dealing with 8 and
9 objectives.

Additionally, the Cliff’s Delta test assesses that the pairwise comparisons between the
algorithms are statistically significant in most objective combinations 8. For the 9-objective
problem, a total of 56 test executions per quality indicator were required. In this case, dif-
ferences in the magnitude of the corresponding indicator have been catalogued as large in
49 and 48 out of the total number of executions made for HV and S, respectively. On the
one hand, the effect size obtained when comparing ε-MOEA in terms of HV against any
other algorithm is always greater than 0.7. On the other hand, regarding SPEA2, the test

8Tables 10 (HV) and 11 (S) in Appendix show the results obtained by the Cliffs Delta test for the 9-objective
combination. The full results in raw format for all the combinations are available at http://www.uco.es/grupos/
kdis/sbse/RRV15

2570 Empir Software Eng (2016) 21:2546–2600

Number of objectives

0

20

40

60

80

100

%
 fi

rs
t r

an
ki

ng
 p

os
iti

on
SPEA2
NSGA-II

MOEA/D GrEA
IBEA

HypE
NSGA-III

2 4 6 8 9

Number of objectives

0

20

40

60

80

100

%
fir

st
 r

an
ki

ng
 p

os
iti

on

SPEA2
NSGA-II

MOEA/D GrEA
IBEA

HypE
NSGA-III

2 4 6 8 9

Fig. 4 Percentage of first ranking positions in the Friedman test for hypervolume and spacing

reports an effect size greater than 0.6 for all its comparisons regarding S, except when facing
NSGA-II.

Concerning the performance of all the algorithms with more than 4 objectives, the num-
ber of objectives has a deeper impact than the set of selected metrics. As can be observed
from the experimental results, the ranking values obtained by each algorithm are very simi-
lar regardless of the metric subset being optimised. A progressively decrease of the standard
deviation is observed in Tables 4 and 5, whereas the number of different algorithms achiev-
ing the top ranking position is lower for 4 or 6 objectives than for 2 (see Fig. 4), even when
a larger number of objective combinations was generated. Notice that the specific subset
of metrics, as well as the need for a different number of objectives, relies on the software
architect’s judgement. A detailed analysis on the influence of these aspects is provided in
Section 7.2.

Some additional remarks can be pointed out with respect to the joint optimisation of 9
objectives. For instance, Fig. 5 shows an example of the Pareto front obtained by each algo-
rithm for a representative problem instance, Aqualush. Notice that the objective space is
normalised and all the objectives must be maximised. For the sake of readability, a maxi-
mum number of 50 solutions is depicted. The solutions have been randomly selected from
the set of all the solutions generated in different executions. Those solutions reaching the
global minimum and maximum value of each objective are also included in order to identify
the worst and best values obtained.

If we look at how lines are distributed, it can be seen that some algorithms tend to focus
their search on specific values of particular objectives, while others can reach a wider range
of trade-offs among them. More specifically, SPEA2 is unable to reach a proper trade-off
among all the metrics, icd, abs and cb usually being optimised worse than erp, gcr , enc and
cl. On the contrary, NSGA-II shows great ability to simultaneously deal with all the objec-
tives. In this case, a wide spectrum of solutions is returned, some of them being are able
to reach the best values for several objectives. Regarding MOEA/D, most of the obtained

Empir Software Eng (2016) 21:2546–2600 2571

Fig. 5 An example of the Pareto front obtained for the Aqualush problem instance

solutions lie on intermediate ranges, gcr , cs and cl being frequently promoted to the detri-
ment of icd and abs. This algorithm is able to obtain great diversity of solutions in terms
of erp, enc and cb. Focusing on ε-MOEA, it can reach competitive values for all the objec-
tives. Its ability to provide several alternatives for icd, enc and cb is noteworthy, whereas
good values are frequently reached for gcr and cl. GrEA and HypE behave similarly. Both
algorithms experience difficulties to optimise abs and cb, getting only low or medium
values. Besides, some solutions tend to concentrate on certain values of the design metrics,
generating very similar solutions. HypE converges disproportionally towards erp, gcr and
cl. Solutions returned by IBEA show very poor values for all the objectives. Even cb and cs

are usually neutralised in benefit of other metrics, causing the returned solutions to be com-
prised by components completely unbalanced in size. Finally, NSGA-III has had problems
to reach high values of icd and abs, although it is able to provide a wide range of values for
erp, gcr , cs and enc.

2572 Empir Software Eng (2016) 21:2546–2600

Table 8 Summary of the evolutionary performance for 6-, 8- and 9-objective problems

Algorithm Main findings

SPEA2
• Valuable diversity preservation when a larger number of objectives is optimised

• Unable to converge to the PF as well as other approaches can

NSGA-II

• Behaviour changes when dealing with 8 and 9 objectives

• Overtaken by ε-MOEA in terms of HV , but shows an improvement in S

• Crowding distance may have a deeper impact on individual survival than the sorting method

MOEA/D
• Exploration of an excessive number of directions without favouring any of them

• Not all the subproblems are useful to solve the global problem in a discontinuous space

ε-MOEA
• Best algorithm with respect to HV , but the observed S variability still remains

• The many-objective approach with the best trade-off between both quality indicators

GrEA
• Low ranking values for both quality indicators

• No evidence of improvement as the number of objectives increases

IBEA
• Low ranking values for both quality indicators, like GrEA

• Outperformed by all other algorithms

HypE
• Intermediate ranking values for both quality indicators

• Equivalent to the corresponding control algorithms for specific combinations

NSGA-III
• Only outperformed by SPEA2 and NSGA-II in terms of S

• Ranking positions are still low with respect to HV

Table 8 shows the most relevant aspects related to the behaviour of the different
algorithms when dealing with highly dimensional objective spaces.

7 Discussion of Results

Due to the particular nature of the problem, further discussion of the outcomes is still
required, not only from the evolutionary perspective, but also in terms of its applicability
in tool support and the software architect expectations. Therefore, there are other additional
aspects from the experimentation to be observed that can provide relevant information about
both the architectural specification and the decision support process. With this aim, the
number of non-dominated solutions, the execution time or the dependencies among met-
rics have been studied. These factors directly affect the number of solutions given to the
software architect or the sort of returned architectural solutions.

7.1 On Applicability in Tool Support

Having a wide variety of alternative solutions to choose from is not an ideal scenario
for the software architect, even more so if only a few of them could serve to meet his
expectations in terms of diversity. In such a case, the number of solutions could be use-
less to the expert, who would be unable to handle them all during the decision process.
This matter is likely to require some further external post-processing to select the most
representative solutions. Figure 6 shows the distribution of returned solutions per num-
ber of objectives. More precisely, the Y axis represents the mean number of solutions

Empir Software Eng (2016) 21:2546–2600 2573

Fig. 6 Distribution of the number of non-dominated solutions composing the Pareto set

found by each algorithm, i.e. the number of non-dominated solutions composing the Pareto
set, considering all the possible combinations of design metrics over all the problem
instances. As can be seen, the number of objectives has a clear impact on the number of
solutions returned. It can be noted that SPEA2 establishes a fixed size for the external
population, whereas MOEA/D and ε-MOEA do not constrain the size of their archive of
solutions. Since NSGA-II, GrEA, IBEA, HypE and NSGA-III do not have any external
population, the maximum number of solutions is given by the corresponding population
size (see Table 3).

If 2 or 4 objectives are considered, SPEA2 and NSGA-II usually obtain a number of
solutions close to the maximum allowed. These algorithms also present some variability in
the size of the Pareto set. NSGA-II even shows some difficulties to control such a variabil-
ity. Having to optimise 6 or more objectives, SPEA2 is unable to fill its external archive
with only non-dominated solutions, facing difficulties to find interesting architectures. Find-
ing a more representative set of solutions than the one provided by SPEA2 could benefit
the decision making process. NSGA-II always reaches the maximum limit allowed with
difficulties to reject equivalent solutions along the search process. MOEA/D provides an
excessive number of final solutions for any design problem. Besides, preserving the variety
of these solutions is not guaranteed since the maximum number of solutions associated to
each search direction is not restricted. The same behaviour could be expected for ε-MOEA,
but the use of the ε-dominance criteria to manage the addition of solutions into the archive
clearly serves to implicitly limit its size.

Depending on the combination of objectives, GrEA, IBEA, HypE and NSGA-III can gen-
erate as many solutions as the prefixed maximum. As the number of objectives increases,
IBEA and GrEA return a lower number of solutions. In contrast, HypE and NSGA-III tend
to get closer to their respective maximum limit. In this sense, many-objective approaches
provide a better control than NSGA-II and MOEA/D. Nevertheless, only SPEA2 permits
setting up the estimated number of solutions that should be returned after the search process.

2574 Empir Software Eng (2016) 21:2546–2600

Fig. 7 Average execution time of the evolutionary algorithms

Hence, it is a useful mechanism for the expert, who might be interested in strictly deter-
mining the number of solutions that he really wants to check. Notice that GrEA, SPEA2,
IBEA and ε-MOEA might finish the search without generating any architectural solutions
that fulfil the constraints (see Fig. 6). These algorithms have some difficulties in dealing
with invalid solutions when optimising the most complex problem instances and certain
combinations of objectives. Setting a larger number of iterations would be a first attempt to
address this situation. The ability to handle constraints is a relevant factor with respect to its
generic applicability to the decision support process.

Another important factor that may affect the usability of search-based approaches is the
execution time. Figure 7 shows the scalability of the average execution time of each algo-
rithm in relation to the number of objectives. It can be observed that dealing with many
design metrics influences SPEA2, GrEA, ε-MOEA and HypE. The density estimator based
on clustering proposed by SPEA2, the computation of distance metrics in GrEA, and the
hypervolume estimation required by HypE are operations that clearly affect the performance
of these algorithms. Besides, SPEA2, GrEA and ε-MOEA present some difficulties when
removing invalid solutions because they have to execute a large number of attempts dur-
ing the mutation phase, especially when dealing with the most complex problem instances.
Since this kind of instances tends to comprise more interconnected classes, identifying
independent components becomes a harder work. In this sense, software engineers should
consider if getting high quality solutions could make up for the amount of time spent on
the process. On the one hand, ε-MOEA seems to be a better choice than HypE or NSGA-II
if the architect is mostly interested in high quality solutions. On the other hand, NSGA-II
might provide good enough solutions for most of the objective combinations, its execu-
tion time being steady and suitable. It is worth mentioning that the computational cost of
NSGA-III has proven to be quite similar to NSGA-II, concluding that its execution time has
not been significantly influenced by the adjustments proposed to deal with many-objective
optimisation.

Empir Software Eng (2016) 21:2546–2600 2575

7.2 On the Influence of Metrics

Analysing whether two metrics, i.e. objectives, are highly competitive is an important fac-
tor to properly face the multi-objective optimisation, since it might determine much of the
complexity of problem to be solved. Regarding the problem under study, this could lead
to situations in which architects might presume beforehand that some specific metrics are
closely related, mostly because they apparently arrange the architectural design in a similar
way.

Table 9 presents the range of objective values of the final solutions considering all the
bi-objective problems. The symbol � indicates that the metric values should be maximised,
whereas � stands for minimisation. A unique reference PF has been constructed per problem
instance, which is composed of all the solutions that are still not dominated by any other
found after 30 executions of all the algorithms for a given problem instance. Then, the
minimum and maximum bounds have been calculated in order to determine the extent of
each metric range. A value xi,j represents the range of values achieved by final solutions
when a measure j is optimised jointly with the measure i. For example, looking at the joint
optimisation of icd and erp (x2,1), it can be observed that icd varies in the range [0.0, 0.7]
when combined with erp, whereas the range of values obtained would vary from 0.4 to 0.8
if optimised together with the metric ins (x3,1). Consequently, ins is less opposite to icd

than erp, since higher values of icd can be achieved even when ins is highly optimised.
Notice that combinations like icd − erp, cb − gcr or enc − abs have a wide range

of values for both measures. Therefore, when a solution reaches a near-optimal value for
one measure, the obtained value for the other measure is very poor. In contrast, there are
other combinations in which one measure has been highly optimised regardless of the other
measure being considered, such as when cl is chosen. The type of problem instance and the
possibility of creating architectural solutions with different number of components allow
not exceeding the configured critical link threshold. In such a case, a search process should
be capable of finding solutions that reach good values for both objectives at the same time,
making the MOP resolution slightly simpler. This would also explain why some algorithms
are tied (see Section 6.1).

The choice of design metrics also guides the search for certain types of architectural spec-
ifications. For example, a complex scenario is developed regarding the modularity criteria,
where a trade-off between coupling and cohesion would be expected. In this sense, metrics
like icd or ins imply searching for solutions comprising of more components as a way to

Table 9 Range of absolute objective values for non-dominated solutions considering all the combinations
of 2 measures

icd� erp� ins� enc� cs� cl� gcr� abs� cb�

icd� − [0.0,178.0] [0.1,0.6] [0.9,1.0] [0.0,0.2] [0.0,0.0] [1.0,1.4] [0.1,0.9] [0.3,1.0]

erp� [0.0,0.7] − [0.1,0.5] [0.5,1.0] [0.0,0.3] [0.0,0.0] [1.0,1.7] [0.1,0.9] [0.1,1.0]

ins� [0.4,0.8] [0.0,84.0] − [0.7,1.0] [0.0,0.1] [0.0,0.0] [1.0,8.3] [0.3,0.9] [0.1,1.0]

enc� [0.5,0.7] [0.0,161.0] [0.1,0.5] − [0.0,1.0] [0.0,0.0] [1.0,4.0] [0.1,0.9] [0.0,1.0]

cs� [0.3,0.8] [0.0,258.0] [0.1,0.2] [0.6,1.0] − [0.0,0.0] [1.0,7.4] [0.5,0.9] [0.1,1.0]

cl� [0.6,0.8] [0.0,0.0] [0.1,0.2] [0.9,1.0] [0.0,0.1] − [1.0,1.2] [0.8,0.9] [0.6,1.0]

gcr� [0.3,0.7] [0.0,6.0] [0.1,0.6] [0.5,1.0] [0.0,0.2] [0.0,0.0] − [0.3,0.9] [0.0,1.0]

abs� [0.0,0.7] [0.0,34.0] [0.1,0.7] [0.2,1.0] [0.0,0.2] [0.0,0.0] [1.0,3.70] − [0.1,1.0]

cb� [0.2,0.7] [0.0,560.0] [0.1,0.5] [0.4,1.0] [0.0,0.2] [0.0,1.0] [1.0,22.0] [0.1,0.9] −

2576 Empir Software Eng (2016) 21:2546–2600

improve their cohesion. If the analysability is considered, then the architectures obtained
would be composed of smaller components, each providing a well defined set of services.
On the contrary, erp or enc look for a low coupling, so the solution structure is characterised
by the creation of architectures with only two or three large components. Here, minimising
the interactions among software artefacts would benefit the overall security and perfor-
mance of the resulting system, although an excessive encapsulation of functionalities could
harm its reusability and analysability, as observed when abs or cb were considered. Metrics
like cs or cb counteract this effect and propitiate the generation of solutions comprised of a
larger number of components.

The trade-off among these design criteria becomes a great challenge when 8 or 9 objec-
tives have to be simultaneously optimised. In this case, low and medium values have been
obtained for icd, especially if SPEA2, GrEA, IBEA and NSGA-III are executed. Similarly,
cb and abs are difficult to optimise. IBEA can only provide solutions comprising com-
ponents with unbalanced sizes even when cs is considered. Focusing on abs, it is worth
mentioning that only NSGA-II, ε-MOEA and HypE reach values good enough for all the
problem instances. The cs measure is usually cancelled out due to the presence of others
like erp, gcr or enc. In this sense, the optimisation of these metrics seems to be harder,
which makes the evolutionary process oriented towards them. As a result, these architectural
solutions sometimes contain at least one large component. It should be noted that including
erp, gcr and abs within the set of objectives leads to more variable outcomes over the dif-
ferent problem instances. In fact, these metrics are based on specific analysis information
extracted from the original design, such as the number of abstract classes or the number and
types of interrelationships. Finally, similar results are obtained for ins and enc in all the
problem instances, meaning that these metrics are less conflicting.

To illustrate how the combination of metrics can influence the quality of the architec-
tural description from the architectural perspective, the solutions returned by NSGA-II for
the Datapro4j problem instance are scrutinised and discussed. Figure 8a depicts the original
system architecture, which is comprised of 4 components (A1, . . . , A4) whose functionali-
ties will be referred here from F1 to F4. Notice that, according to the problem statement,
the functionality of a component is represented as a group of highly interconnected classes,
whose relationships are originally specified in the input class diagram. If cs and cb are con-
sidered together, one of the most interesting solutions returned by the algorithm is formed by
5 components (B1, . . . , B5) with similar sizes (see Fig. 8b). The evaluation mechanism clas-
sifies all the components as noncritical in terms of their sizes, and both objectives are highly
optimised. However, the set of classes inside each component does not represent a com-
prehensive functionality, but a combination of unrelated classes. The reason for this is that
the optimisation process is directed towards the optimal size balance without considering

Fig. 8 Returned solutions by NSGA-II for Datapro4j problem instance

Empir Software Eng (2016) 21:2546–2600 2577

whether the classes allocated in the same component are related. As a result, functionali-
ties are distributed among different components, decreasing their cohesion and increasing
the overall coupling. On the contrary, when icd and erp are the considered metrics, the
algorithm found one solution with 3 components very similar to the original proposal (see
Fig. 8c). Only the third component, C3, comprised the classes related to F2 and F3, being
catalogued as critical according to the cs metric. Finally, the joint optimisation of the 4 met-
rics leads to the discovery of solutions very close or even equal to the original architecture.
Considering icd and erp as objective functions has served to properly identify the different
functionalities, while cs and cb have encouraged the creation of two medium-sized compo-
nents, one that contains the classes associated with F2 and another specifying F3. It should
be noted that other problem instances could require different metrics, or even a greater
number of objectives, in order to discover the most appropriate system architecture to the
engineer. Nevertheless, in the cases in which the software architect is not confident enough
with the intended architecture, considering the execution of different combinations of met-
rics could be appropriate. In short, the selection of metrics made by the architect is a key
factor to determine the structure of the returned architectural solutions, whereas the achieved
level of optimisation for the selected objectives is more related to the used algorithm.

7.3 On the Selection of the Evolutionary Algorithm

The selection of the evolutionary approach is not a trivial task for the user, not least if he
needs to be aware of the impact that the diverse characteristics of each algorithm may have
on searching for the expected architectonical solutions. SPEA2 shows a low performance
in its search for high quality solutions, even though its diversity preservation technique has
shown to be a very effective mechanism to provide a great variety of architectural solutions.
On the other hand, NSGA-II provides a valuable scalability with respect to all the considered
optimisation problems. Besides, regarding the diversity of solutions, this algorithm behaves
more variably. Nevertheless, its scalable execution time and the absence of parameters are
appealing features to select this algorithm as a generic choice.

The decomposition approach proposed by MOEA/D is an interesting characteristic
to promote the diversity of solutions, but it works better with fewer than 6 objectives.
Besides, the exploration of many search directions could lead to an excessive number
of returned solutions, their diversity not always being guaranteed. These circumstances,
along with the observed difficulties in generating high quality solutions, imply that the
expert faces a complex task when looking for the final solution among all the alterna-
tives given by the algorithm. Similarly, NSGA-III looks for the diversity of solutions,
performing better than MOEA/D in highly dimensional objective spaces. In addition, this
many-objective approach is capable of keeping most of the beneficial characteristics of its
predecessor.

Concerning the rest of algorithms and considering the different families, it can be noted
that GrEA is overtaken by ε-MOEA, whereas HypE shows a better behaviour than IBEA.
One observed weakness of GrEA is that it suffers from an excessive convergence and also
has some difficulty in removing invalid solutions during the search process. As a result,
this algorithm seems to be unable to discover any competitive software architecture for the
most complex systems. Something similar happens when ε-MOEA is executed over certain
combinations of measures. Then, the algorithm could be more sensible to the selection of
the ε values, whose configuration might be a laborious task for the expert. Nevertheless,
ε-MOEA provides the best trade-off between convergence and diversity of solutions for a
large number of metrics.

2578 Empir Software Eng (2016) 21:2546–2600

In general, IBEA is unable to reach a reasonable trade-off between the set of metrics,
whose cardinality has an impact on its behaviour respecting the diversity of solutions. On
the contrary, HypE, whose performance improves as the number of objectives increases, is
able to find non-dominated solutions for the totality of the considered problems, showing
an appropriate explorative capability. The only drawback of HypE, which is also observed
in ε-MOEA, is its highly computational cost, especially if more than 6 metrics participate
in the optimisation problem.

A better knowledge about the specific behaviour of each algorithm can determine its
applicability to a particular design scenario. Even so, some general guidelines for the selec-
tion of the evolutionary approach are inferred from this study. In case the architect is
requested to consider a specific set of metrics, the results in Section 6 would allow him to
identify the best algorithm for that specific combination. Additionally, if a general choice is
preferred, NSGA-II and ε-MOEA have demonstrated to have the best performance in gen-
eral terms, so the final decision should be made considering other additional factors like the
total number of metrics to be optimised or time requirements.

8 Threats to Validity

In order to precisely designate the design concepts and terms that lay the foundation for the
proposed approach, the ISO Std. 25000 has been followed as a reference to correctly define
the non-functional requirements that guide the search process. Additionally, the OMG stan-
dard UML 2 has served to provide a rigorous notation for the specification of the underlying
design models at all the abstraction levels, as well as to ensure the semantic validity of qual-
ity metrics. Using a standard proposal like UML 2 brings the optimisation approach closer
to the everyday realm of the software architect.

Internal validity refers to those aspects of the experimentation that cannot ensure the
causality between the hypothesis and the obtained results. In SBSE, these aspects are related
to the algorithm’s set-up and its parametrisation. The use of default parameter values could
produce bias on the results, since the original algorithms were usually tested over real opti-
misation problems, even though the nature of our problem is quite different. Here, the
guidelines provided by their corresponding authors have been followed to configure the
algorithms. Nevertheless, some preliminary experiments were performed to check their suit-
ability. If required, some modifications to the original proposal implementations were made
to adapt them to our specific combinatorial problem, e.g. the required constraint handling
techniques were included in all the algorithms. These changes can affect the performance
of the algorithms, but they are necessary to deal with the defined search problem and would
affect all the algorithms in a similar way. The experimentation has been designed to avoid
any bias due to the intrinsic randomness of the evolutionary approaches. So, every algo-
rithm has been executed 30 times. Additionally, a hardware platform specifically dedicated
to experimentation purposes has served to assure that all the algorithms have been executed
under the same conditions, meaning that their execution time is also comparable. Addi-
tionally, well-known quality indicators like hypervolume and spacing have been used to
evaluate the evolutionary performance of the algorithms. Non-parametric statistical tests at
a significance level of 95 % were executed to draw precise conclusions in the light of the
comparative results of the algorithms under study.

External validity is related with the generalisation of the experimental results. On the
one hand, a set of real-world software systems has been considered as problem instances,
covering different sizes and complexities. In this paper, the evolutionary search has been
performed without any prior knowledge about the original design. It is worth mentioning
that any additional analysis information would help to obtain more accurate outcomes from

Empir Software Eng (2016) 21:2546–2600 2579

the discovery process. On the other hand, the application of this work to other industrial
domains might imply adapting the proposed approach to their specific requirements. The
selected design metrics are closely related to maintainability, which is clearly an important
characteristic in the design of component-based software architectures. Nevertheless, notice
that addressing different design tasks based on other architectural models (e.g. service-
oriented architectures, grid-based platforms, etc.) would probably require the evaluation of
specific quality criteria.

9 Concluding Remarks

This paper presents a comparative study on the performance of different multi- and many-
objective evolutionary algorithms for software architecture discovery, an abstract problem
that demands diverse decisions to be made according to a number of requirements. The
proposed experimental framework explores the ability of these algorithms to simultaneously
deal with different metrics related to maintainability at the architectural level, and put forth
some ideas about how they should selected and combined by the software architect. Existing
dependencies among metrics have shown to be an important factor that could subsequently
impact on both the complexity of the optimisation problem to be solved and the type of
the architectural solutions returned by the search process. On the one hand, metrics like
icd, ins, erp or gcr are more related to the allocation of classes within components on the
basis of their relationships. On the other hand, aspects like avoiding critical components or
balancing their sizes might be considered as secondary goals, since they are not capable of
identifying the system functionalities.

The results obtained have shown that many-objective evolutionary algorithms provide an
interesting alternative to deal with such a complex combinatorial problem. On the one hand,
NSGA-II is the only multi-objective approach that achieves competitive results for some
objective combinations with respect to many-objective approaches like ε-MOEA and HypE.
Nevertheless, these algorithms provide a greater performance in terms of the expected trade-
off between convergence and diversity when highly dimensional objective spaces need to be
considered, as it is often the case of software design optimisation. On the other hand, the set
of metrics selected to guide the search becomes a less influential factor on the performance
of the algorithms as the number of objectives increases.

An in-depth analysis of the strengths of each algorithm has been presented and exten-
sively discussed. The number of returned solutions or the execution time required to perform
the search constitute complementary and valuable aspects to be considered in order to take
a justified decision about the selection of a specific algorithm. Additionally, the guidelines
provided in this study are essential to take a step further in the automatic recommenda-
tion of the evolutionary approach that best fits into a particular architectural problem. As a
future work, hyper-heuristic approaches based on the information extracted from this analy-
sis will serve as a basis for the development of decision support tools for software engineers.
Finally, many-objective evolutionary optimisation is an open field of research, which makes
it interesting to continue exploring some emerging approaches (He et al. 2014; Wang et al.
2014).

Acknowledgments Work supported by the Spanish Ministry of Science and Technology, project TIN2011-
22408, the Spanish Ministry of Economy and Competitiveness, project TIN2014-55252-P, and FEDER
funds. This research was also supported by the Spanish Ministry of Education under the FPU program
(FPU13/01466).

2580 Empir Software Eng (2016) 21:2546–2600

Table 10 Results of the Cliff’s Delta test for hypervolume (n=negligible, s=small, m=medium, l=large)
(α = 0.05)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 − −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) 0.90 (l) −1.00 (l) −0.54 (l)

NSGA-II 0.90 (l) − 0.14 (n) −0.88 (l) 0.84 (l) 0.90 (l) −0.06 (n) 0.90 (l)

MOEA/D 0.90 (l) −0.14 (n) − −0.88 (l) 0.78 (l) 0.90 (l) −0.20 (s) 0.90 (l)

ε-MOEA 0.90 (l) 0.88 (l) 0.88 (l) − 0.90 (l) 0.90 (l) 0.88 (l) 0.90 (l)

GrEA 0.60 (l) −0.90 (l) −0.84 (l) −1.00 (l) − 0.60 (l) −0.96 (l) 0.60 (s)

IBEA −1.00 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) − −1.00 (l) −1.00 (l)

HypE 0.90 (l) 0.06 (n) −0.20 (s) −0.88 (l) 0.88 (l) 0.90 (l) − 0.90 (l)

NSGA-III 0.54 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) 0.900 (l) −1.00 (l) −

Appendix

Tables 10 and 11 present the results of the Cliff’s Delta test for hypervolume (HV) and
spacing (S), respectively. The value of a cell, xi,j , represents the effect size and its inter-
pretation when comparing the algorithm i against the algorithm j for the 9-objective
optimisation problem in terms of the specific quality indicator. Table 12 shows the results
of the Friedman and the Holm tests for all possible combinations of 2 objectives. Tables 13,
14, 15, 16 report the results for the 4-objective problems, whereas the 6-objective prob-
lems are shown from Table 17, 18, 19. In addition, Table 19 contains the results obtained
from 8-objective and 9-objective problems. For each of them, the best rankings for the
two quality indicators, HV and S, are shown in bold typeface, and their cells are shaded
in gray colour when significant differences exist. The critical value, according to the F-
Distribution with 6 and 54 degrees of freedom, i.e. the p-value, is 2.2720. Since the
Holm test is performed if H0 is rejected, Tables 12–19 show these ranking values in italic
typeface when the corresponding algorithm lies below its critical threshold, i.e. its per-
formance according to the column-specific indicator is worse than that provided by the
best algorithm.

Table 11 Results of the Cliff’s Delta test for spacing (n=negligible, s=small, m=medium, l=large) (α =
0.05)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 − 0.32 (s) 0.89 (l) 0.87 (l) 0.87 (l) 0.90 (l) 0.85 (l) 0.68 (l)

NSGA-II −0.32 (s) − 0.90 (l) 0.90 (l) 0.88 (l) 0.90 (l) 0.87 (l) 0.88 (l)

MOEA/D −0.98 (l) −1.00 (l) − −0.36 (m) 0.64 (l) 0.90 (l) −0.10 (n) −0.88 (l)

ε-MOEA −0.96 (l) −1.00 (l) 0.35 (m) − 0.78 (l) 0.90 (l) 0.26 (s) −0.82 (l)

GrEA −0.94 (l) −0.96 (l) −0.64 (l) −0.78 (l) − 0.58 (l) −0.76 (l) −0.82 (l)

IBEA −1.00 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.58 (l) − −1.00 (l) −1.00 (l)

HypE −0.92 (l) −0.94 (l) 0.10 (n) −0.26 (s) 0.75 (l) 0.90 (l) − −0.64 (l)

NSGA-III −0.68 (l) −0.96 (l) 0.79 (l) 0.82 (l) 0.81 (l) 0.90 (l) 0.64 (l) −

Empir Software Eng (2016) 21:2546–2600 2581

Ta
bl

e
12

A
ve

ra
ge

ra
nk

in
gs

fo
r

2-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
te

st
(α

=
0.

05
)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p

2.
80

3.
20

1.
30

4.
40

5.
35

2.
20

3.
35

3.
80

4.
70

5.
80

7.
75

7.
50

4.
10

4.
90

6.
65

4.
20

ic
d-
gc
r

4.
00

2.
00

1.
60

4.
20

5.
20

2.
80

3.
50

6.
10

3.
80

5.
80

7.
60

7.
10

3.
60

3.
50

6.
70

4.
50

ic
d-
cs

5.
10

3.
65

2.
45

2.
60

3.
85

2.
50

4.
70

7.
20

3.
85

5.
05

7.
10

5.
30

2.
05

4.
00

6.
90

5.
70

ic
d-
cl

5.
45

5.
20

2.
30

5.
20

3.
90

4.
60

2.
50

5.
20

3.
90

5.
20

7.
05

2.
60

3.
35

5.
20

7.
55

2.
80

ic
d-
in
s

5.
15

3.
10

2.
90

3.
70

4.
95

3.
00

1.
90

6.
90

4.
25

5.
00

6.
60

3.
10

2.
50

4.
20

7.
75

7.
00

ic
d-
en
c

5.
60

2.
40

1.
70

4.
30

3.
80

1.
90

2.
80

7.
25

4.
20

5.
55

7.
20

7.
10

3.
30

3.
30

7.
40

4.
20

ic
d-
ab
s

2.
70

3.
20

1.
10

5.
20

4.
80

2.
30

5.
30

3.
95

4.
70

6.
30

7.
25

7.
55

2.
80

4.
60

7.
35

2.
90

ic
d-
cb

3.
90

1.
70

2.
30

3.
80

4.
70

1.
80

5.
80

7.
30

3.
50

5.
90

7.
10

4.
10

1.
60

4.
20

7.
10

7.
20

er
p-
gc
r

3.
75

5.
20

2.
75

5.
80

4.
05

4.
60

2.
90

5.
90

5.
30

5.
30

7.
30

2.
30

3.
25

5.
40

6.
70

1.
50

er
p-
cs

4.
00

2.
80

1.
70

4.
15

4.
40

3.
60

4.
20

6.
75

6.
25

5.
45

7.
40

5.
55

2.
25

4.
20

5.
80

3.
50

er
p-
cl

3.
20

4.
80

3.
20

4.
80

3.
20

4.
80

3.
20

4.
80

5.
60

4.
80

7.
55

4.
35

3.
20

4.
80

6.
85

2.
85

er
p-
in
s

3.
70

2.
20

2.
25

4.
45

4.
45

3.
85

2.
85

5.
65

5.
10

4.
85

7.
65

5.
90

3.
25

4.
25

6.
75

4.
85

er
p-
en
c

3.
60

2.
50

1.
35

3.
50

3.
80

2.
60

3.
80

6.
20

6.
20

6.
10

7.
35

6.
15

3.
60

4.
75

6.
30

4.
20

er
p-
ab
s

3.
60

4.
90

1.
60

3.
30

4.
40

4.
25

3.
15

4.
80

5.
90

4.
60

7.
60

6.
00

3.
25

3.
65

6.
50

4.
50

er
p-
cb

4.
20

2.
70

1.
50

3.
90

4.
60

2.
20

4.
40

4.
20

3.
85

5.
55

7.
45

7.
35

3.
20

4.
20

6.
80

5.
90

gc
r-
cs

4.
20

2.
95

1.
80

4.
25

3.
95

3.
35

3.
85

6.
05

6.
20

5.
25

6.
80

4.
85

2.
45

3.
65

6.
75

5.
65

gc
r-
cl

3.
70

4.
90

3.
20

4.
90

3.
20

4.
90

3.
20

4.
90

5.
50

4.
90

7.
15

3.
80

3.
20

4.
90

6.
85

2.
80

gc
r-
in
s

4.
70

1.
90

2.
40

4.
20

4.
80

3.
70

2.
80

5.
75

4.
20

5.
85

7.
70

6.
55

2.
80

4.
35

6.
60

3.
70

gc
r-
en
c

4.
60

3.
60

1.
30

3.
90

3.
95

3.
80

3.
95

4.
40

5.
70

6.
50

7.
00

6.
40

3.
50

3.
20

6.
00

4.
20

gc
r-
ab
s

4.
95

5.
00

2.
20

3.
00

4.
70

3.
50

2.
95

5.
20

4.
40

4.
85

7.
40

6.
00

3.
00

4.
45

6.
40

4.
00

gc
r-
cb

4.
70

2.
60

2.
25

4.
10

3.
35

3.
70

3.
90

3.
40

4.
05

5.
35

7.
25

7.
05

3.
20

2.
70

7.
30

7.
10

cs
-c
l

3.
50

4.
85

2.
55

4.
85

3.
15

4.
15

4.
70

4.
85

5.
05

4.
85

7.
05

4.
40

3.
45

4.
85

6.
55

3.
20

cs
-i
ns

4.
45

3.
90

1.
65

4.
40

3.
60

4.
05

5.
75

6.
00

5.
95

5.
70

6.
65

5.
90

2.
05

3.
50

5.
90

2.
55

2582 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
12

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-e
nc

4.
80

3.
30

1.
70

3.
60

3.
60

2.
05

5.
10

6.
75

5.
35

5.
10

6.
95

6.
50

2.
80

4.
00

5.
70

4.
70

cs
-a
bs

4.
35

5.
10

1.
80

3.
10

4.
10

1.
70

5.
25

7.
25

4.
30

4.
75

7.
40

6.
90

2.
00

3.
10

6.
80

4.
10

cs
-c
b

5.
05

5.
30

2.
05

3.
15

2.
80

3.
25

5.
50

5.
30

4.
55

5.
30

6.
70

5.
30

2.
85

3.
45

6.
50

4.
95

cl
-i
ns

3.
55

4.
75

2.
60

5.
25

2.
55

4.
80

5.
10

5.
25

5.
15

4.
85

7.
40

2.
65

2.
60

4.
70

7.
05

3.
75

cl
-e
nc

6.
05

5.
05

2.
55

5.
05

2.
40

5.
05

5.
55

5.
05

4.
70

5.
05

6.
35

4.
25

2.
60

5.
05

5.
80

1.
45

cl
-a
bs

5.
25

5.
15

1.
70

4.
15

4.
65

5.
15

2.
70

5.
15

3.
85

4.
45

7.
35

5.
15

3.
40

4.
35

7.
10

2.
45

cl
-c
b

4.
75

5.
80

2.
60

2.
75

3.
40

2.
35

3.
45

5.
80

4.
70

5.
15

7.
10

5.
80

3.
30

3.
90

6.
70

4.
45

in
s-
en
c

4.
50

2.
50

2.
45

2.
70

3.
75

2.
50

3.
20

6.
25

5.
20

5.
95

7.
15

6.
70

2.
70

3.
30

7.
05

6.
10

in
s-
ab
s

4.
80

2.
80

2.
70

3.
40

5.
20

1.
40

1.
30

5.
75

4.
20

5.
30

7.
00

7.
35

3.
40

4.
00

7.
40

6.
00

in
s-
cb

3.
40

2.
20

1.
75

3.
40

3.
75

2.
30

3.
70

5.
35

6.
10

6.
30

7.
35

7.
45

3.
10

3.
30

6.
85

5.
70

en
c-
ab
s

4.
45

1.
90

1.
10

3.
10

2.
30

3.
70

4.
80

5.
85

5.
10

5.
30

7.
20

7.
35

4.
20

3.
80

6.
85

5.
00

en
c-
cb

5.
30

5.
20

1.
40

2.
80

2.
80

1.
40

4.
90

6.
85

4.
35

5.
10

7.
20

6.
60

3.
60

2.
40

6.
45

5.
65

ab
s-
cb

4.
80

3.
00

1.
10

4.
70

2.
90

2.
40

3.
60

3.
80

5.
25

6.
30

7.
40

7.
45

3.
80

5.
10

7.
15

3.
25

cl
-c
b

4.
75

5.
80

2.
60

2.
75

3.
40

2.
35

3.
45

5.
80

4.
70

5.
15

7.
10

5.
80

3.
30

3.
90

6.
70

4.
45

in
s-
en
c

4.
50

2.
50

2.
45

2.
70

3.
75

2.
50

3.
20

6.
25

5.
20

5.
95

7.
15

6.
70

2.
70

3.
30

7.
05

6.
10

in
s-
ab
s

4.
80

2.
80

2.
70

3.
40

5.
20

1.
40

1.
30

5.
75

4.
20

5.
30

7.
00

7.
35

3.
40

4.
00

7.
40

6.
00

in
s-
cb

3.
40

2.
20

1.
75

3.
40

3.
75

2.
30

3.
70

5.
35

6.
10

6.
30

7.
35

7.
45

3.
10

3.
30

6.
85

5.
70

en
c-
ab
s

4.
45

1.
90

1.
10

3.
10

2.
30

3.
70

4.
80

5.
85

5.
10

5.
30

7.
20

7.
35

4.
20

3.
80

6.
85

5.
00

en
c-
cb

5.
30

5.
20

1.
40

2.
80

2.
80

1.
40

4.
90

6.
85

4.
35

5.
10

7.
20

6.
60

3.
60

2.
40

6.
45

5.
65

ab
s-
cb

4.
80

3.
00

1.
10

4.
70

2.
90

2.
40

3.
60

3.
80

5.
25

6.
30

7.
40

7.
45

3.
80

5.
10

7.
15

3.
25

Empir Software Eng (2016) 21:2546–2600 2583

Ta
bl

e
13

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
gc
r-
cs

2.
10

3.
00

1.
00

6.
00

4.
20

3.
40

4.
00

2.
40

5.
75

6.
30

7.
75

7.
40

4.
60

5.
00

6.
60

2.
50

ic
d-
er
p-
gc
r-
cl

2.
40

2.
90

1.
40

5.
60

4.
80

3.
20

3.
50

3.
10

5.
75

6.
70

7.
65

7.
30

3.
90

4.
70

6.
60

2.
50

ic
d-
er
p-
gc
r-
in
s

2.
90

2.
10

1.
30

5.
80

4.
50

2.
70

2.
00

2.
40

6.
20

6.
90

7.
60

7.
30

4.
90

4.
70

6.
60

4.
10

ic
d-
er
p-
gc
r-
en
c

3.
20

2.
90

1.
10

5.
80

4.
10

2.
80

2.
30

1.
50

6.
40

7.
10

7.
60

7.
50

4.
70

4.
60

6.
60

3.
80

ic
d-
er
p-
gc
r-
ab
s

3.
70

1.
30

1.
10

5.
20

4.
10

3.
00

1.
90

2.
70

6.
70

7.
20

7.
60

7.
60

4.
30

4.
20

6.
60

4.
80

ic
d-
er
p-
gc
r-
cb

4.
40

1.
90

1.
10

5.
20

4.
80

3.
00

1.
90

1.
90

5.
10

6.
80

7.
80

7.
60

4.
30

5.
00

6.
60

4.
60

ic
d-
er
p-
cs
-c
l

2.
40

2.
70

1.
20

5.
70

4.
20

2.
50

5.
30

4.
65

5.
50

6.
45

7.
70

7.
20

3.
10

3.
80

6.
60

3.
00

ic
d-
er
p-
cs
-i
ns

3.
60

2.
20

1.
00

5.
10

5.
10

2.
50

2.
80

1.
90

5.
00

7.
20

7.
70

7.
60

4.
20

5.
20

6.
60

4.
30

ic
d-
er
p-
cs
-e
nc

5.
40

1.
40

1.
00

4.
70

2.
70

4.
30

4.
40

2.
15

5.
10

6.
85

7.
70

7.
50

3.
10

5.
30

6.
60

3.
80

ic
d-
er
p-
cs
-a
bs

5.
60

1.
00

1.
10

3.
60

4.
10

3.
80

1.
90

2.
20

5.
70

7.
20

7.
50

7.
50

3.
40

5.
60

6.
70

5.
10

ic
d-
er
p-
cs
-c
b

5.
30

1.
20

1.
60

5.
00

4.
90

3.
30

1.
90

2.
10

4.
45

6.
70

7.
75

7.
60

3.
40

6.
10

6.
70

4.
00

ic
d-
er
p-
cl
-i
ns

3.
35

2.
60

1.
50

5.
60

5.
10

3.
50

2.
45

1.
80

5.
20

6.
10

7.
75

7.
80

4.
00

4.
00

6.
65

4.
60

ic
d-
er
p-
cl
-e
nc

3.
50

2.
60

1.
00

6.
10

4.
30

3.
10

3.
00

2.
30

6.
35

7.
10

7.
65

7.
40

3.
60

4.
80

6.
60

2.
60

ic
d-
er
p-
cl
-a
bs

4.
00

1.
30

1.
00

5.
30

4.
60

3.
70

2.
00

1.
80

6.
45

7.
40

7.
75

7.
60

3.
60

4.
20

6.
60

4.
70

ic
d-
er
p-
cl
-c
b

5.
20

1.
70

1.
30

5.
20

4.
90

2.
90

2.
20

2.
00

5.
15

6.
80

7.
70

7.
70

2.
80

5.
20

6.
75

4.
50

ic
d-
er
p-
in
s-
en
c

3.
90

2.
00

1.
20

5.
10

4.
30

3.
60

1.
90

1.
30

6.
05

7.
05

7.
65

7.
65

4.
40

5.
20

6.
60

4.
10

ic
d-
er
p-
in
s-
ab
s

4.
20

1.
00

1.
50

3.
30

4.
70

3.
70

1.
50

2.
50

6.
25

6.
95

7.
65

7.
65

3.
60

5.
50

6.
60

5.
40

ic
d-
er
p-
in
s-
cb

5.
00

1.
20

1.
60

4.
30

5.
10

3.
60

1.
60

1.
80

4.
90

6.
75

7.
75

7.
75

3.
40

5.
90

6.
65

4.
70

ic
d-
er
p-
en
c-
ab
s

4.
40

1.
10

1.
40

4.
00

3.
70

3.
40

1.
60

3.
00

6.
60

7.
15

7.
80

7.
65

3.
90

4.
60

6.
60

5.
10

ic
d-
er
p-
en
c-
cb

5.
60

1.
00

1.
30

3.
80

4.
40

4.
00

1.
70

2.
00

5.
30

7.
20

7.
80

7.
60

3.
30

5.
60

6.
60

4.
80

ic
d-
er
p-
ab
s-
cb

5.
70

1.
00

1.
60

2.
80

4.
60

4.
10

1.
40

2.
50

5.
40

7.
30

7.
80

7.
60

3.
00

5.
60

6.
50

5.
10

ic
d-
gc
r-
cs
-c
l

3.
50

3.
10

1.
40

4.
50

5.
00

2.
30

4.
90

6.
00

3.
75

6.
00

7.
65

7.
40

3.
00

4.
00

6.
80

2.
70

2584 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
13

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
gc
r-
cs
-i
ns

3.
90

2.
10

1.
40

4.
60

5.
20

3.
20

3.
40

1.
60

4.
40

7.
10

7.
70

7.
60

3.
40

5.
60

6.
60

4.
20

ic
d-
gc
r-
cs
-e
nc

5.
00

1.
50

1.
30

4.
80

3.
90

3.
90

4.
50

1.
60

4.
55

7.
20

7.
75

7.
60

2.
40

5.
30

6.
60

4.
10

ic
d-
gc
r-
cs
-a
bs

5.
60

1.
10

1.
00

3.
90

4.
50

3.
10

2.
00

2.
10

5.
35

7.
20

7.
75

7.
60

3.
20

6.
10

6.
60

4.
90

ic
d-
gc
r-
cs
-c
b

5.
40

1.
20

2.
20

4.
90

4.
80

3.
60

2.
70

2.
50

4.
05

6.
35

7.
65

7.
65

2.
30

4.
50

6.
90

5.
30

ic
d-
gc
r-
cl
-i
ns

4.
20

2.
10

1.
70

5.
40

5.
10

2.
80

2.
60

1.
90

4.
00

6.
60

7.
60

7.
60

4.
10

4.
90

6.
70

4.
70

ic
d-
gc
r-
cl
-e
nc

4.
50

2.
30

1.
10

6.
20

4.
30

3.
80

2.
80

1.
80

5.
10

7.
30

7.
60

7.
40

4.
00

4.
40

6.
60

2.
80

ic
d-
gc
r-
cl
-a
bs

4.
10

1.
50

1.
00

5.
60

5.
00

3.
20

2.
00

2.
40

6.
45

7.
30

7.
65

7.
60

3.
20

3.
40

6.
60

5.
00

ic
d-
gc
r-
cl
-c
b

4.
70

1.
90

1.
40

5.
00

5.
40

3.
00

2.
50

1.
50

4.
00

6.
80

7.
55

7.
60

3.
40

4.
50

7.
05

5.
70

ic
d-
gc
r-
in
s-
en
c

5.
00

1.
30

1.
20

5.
00

4.
60

3.
80

2.
00

1.
80

5.
20

7.
30

7.
60

7.
40

3.
80

5.
20

6.
60

4.
20

ic
d-
gc
r-
in
s-
ab
s

4.
50

1.
10

1.
60

3.
50

5.
30

3.
40

1.
40

2.
50

5.
90

7.
40

7.
60

7.
60

3.
10

5.
60

6.
60

4.
90

Empir Software Eng (2016) 21:2546–2600 2585

Ta
bl

e
14

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
gc
r-
in
s-
cb

4.
80

1.
20

1.
50

4.
60

5.
40

3.
50

2.
20

2.
00

4.
65

6.
90

7.
75

7.
60

3.
00

5.
80

6.
70

4.
40

ic
d-
gc
r-
en
c-
ab
s

5.
00

1.
00

1.
60

4.
10

3.
80

3.
50

1.
40

3.
30

6.
65

7.
20

7.
65

7.
60

3.
30

4.
10

6.
60

5.
20

ic
d-
gc
r-
en
c-
cb

5.
60

1.
20

1.
20

4.
90

4.
60

3.
30

2.
70

1.
90

4.
90

7.
10

7.
80

7.
60

2.
60

5.
40

6.
60

4.
60

ic
d-
gc
r-
ab
s-
cb

5.
60

1.
10

1.
60

3.
30

4.
50

3.
50

1.
40

2.
30

5.
40

7.
30

7.
80

7.
60

3.
10

5.
60

6.
60

5.
30

ic
d-
cs
-c
l-
in
s

5.
00

3.
50

2.
30

4.
60

5.
20

1.
40

2.
70

6.
40

3.
60

6.
15

7.
60

7.
25

2.
60

4.
10

7.
00

2.
60

ic
d-
cs
-c
l-
en
c

5.
2

1.
80

1.
80

4.
40

4.
00

1.
90

4.
50

6.
95

3.
80

6.
50

7.
40

7.
05

2.
40

4.
00

6.
90

3.
40

ic
d-
cs
-c
l-
ab
s

4.
40

3.
00

1.
00

5.
90

5.
60

3.
10

3.
60

1.
50

4.
90

7.
30

7.
55

7.
20

2.
00

5.
40

6.
95

2.
60

ic
d-
cs
-c
l-
cb

4.
80

2.
90

2.
00

4.
60

5.
40

1.
50

2.
70

5.
70

3.
90

6.
50

7.
60

7.
10

2.
60

4.
10

7.
00

3.
60

ic
d-
cs
-i
ns
-e
nc

5.
50

1.
70

2.
20

5.
20

4.
50

3.
10

3.
20

2.
10

4.
45

7.
10

7.
45

7.
60

1.
90

4.
80

6.
80

4.
40

ic
d-
cs
-i
ns
-a
bs

5.
00

1.
60

1.
60

4.
70

5.
20

4.
20

1.
50

2.
10

5.
25

6.
75

7.
50

7.
45

2.
90

6.
70

7.
05

2.
50

ic
d-
cs
-i
ns
-c
b

4.
10

3.
10

2.
60

5.
30

5.
20

2.
30

4.
75

4.
20

4.
05

6.
90

7.
45

6.
70

1.
20

4.
60

6.
65

2.
90

ic
d-
cs
-e
nc
-a
bs

5.
60

1.
00

1.
30

3.
60

4.
10

4.
30

2.
40

2.
00

5.
90

7.
10

7.
70

7.
40

2.
30

6.
50

6.
70

4.
10

ic
d-
cs
-e
nc
-c
b

5.
20

1.
70

2.
40

5.
40

4.
90

3.
10

2.
80

2.
10

4.
35

7.
15

7.
75

7.
65

1.
90

4.
50

6.
70

4.
40

ic
d-
cs
-a
bs
-c
b

5.
60

1.
40

1.
10

4.
50

4.
50

4.
50

2.
20

2.
30

5.
35

6.
85

7.
50

7.
75

2.
70

6.
40

7.
05

2.
30

ic
d-
cl
-i
ns
-e
nc

5.
50

1.
90

2.
00

5.
50

4.
50

2.
40

2.
50

3.
30

3.
95

7.
20

7.
60

7.
70

3.
20

4.
60

6.
75

3.
40

ic
d-
cl
-i
ns
-a
bs

4.
30

2.
20

1.
60

6.
00

5.
40

3.
50

1.
40

1.
90

5.
30

7.
40

7.
65

7.
60

3.
50

4.
50

6.
85

2.
90

ic
d-
cl
-i
ns
-c
b

4.
40

3.
20

2.
70

5.
40

5.
60

1.
70

2.
20

2.
00

3.
75

6.
75

7.
65

7.
45

2.
80

4.
70

6.
90

4.
80

ic
d-
cl
-e
nc
-a
bs

4.
50

1.
70

1.
30

5.
80

4.
20

3.
60

1.
70

2.
20

6.
40

7.
40

7.
55

7.
50

3.
40

4.
40

6.
95

3.
40

ic
d-
cl
-e
nc
-c
b

4.
90

2.
70

2.
00

5.
80

5.
10

2.
20

2.
60

2.
10

4.
40

6.
95

7.
75

7.
65

2.
60

5.
00

6.
65

3.
60

ic
d-
cl
-a
bs
-c
b

5.
40

1.
60

1.
30

4.
90

4.
70

3.
80

2.
10

2.
00

5.
30

7.
25

7.
40

7.
65

2.
60

5.
60

7.
20

3.
20

ic
d-
in
s-
en
c-
ab
s

5.
10

1.
20

1.
80

3.
90

4.
60

3.
50

1.
20

2.
40

5.
85

7.
15

7.
70

7.
65

3.
00

6.
20

6.
75

4.
00

ic
d-
in
s-
en
c-
cb

5.
40

1.
70

2.
50

5.
00

4.
80

2.
90

2.
20

1.
60

4.
85

7.
30

7.
75

7.
60

1.
90

4.
80

6.
60

5.
10

2586 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
14

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
in
s-
ab
s-
cb

5.
60

1.
10

2.
00

3.
70

4.
60

4.
10

1.
20

2.
20

5.
35

6.
70

7.
45

7.
70

2.
80

6.
60

7.
00

3.
90

ic
d-
en
c-
ab
s-
cb

5.
60

1.
20

2.
30

3.
60

4.
40

3.
80

1.
60

2.
10

5.
55

7.
10

7.
70

7.
40

2.
10

6.
30

6.
75

4.
50

er
p-
gc
r-
cs
-c
l

3.
15

4.
35

1.
70

4.
35

4.
60

2.
75

4.
55

7.
20

5.
05

5.
25

7.
65

5.
15

2.
80

4.
25

6.
50

2.
70

er
p-
gc
r-
cs
-i
ns

4.
25

2.
40

1.
45

5.
30

4.
85

3.
60

3.
50

4.
10

5.
65

6.
40

7.
55

6.
50

2.
45

4.
40

6.
30

3.
30

er
p-
gc
r-
cs
-e
nc

4.
10

2.
00

1.
00

5.
50

3.
90

3.
60

4.
80

4.
10

6.
30

6.
80

7.
30

7.
00

2.
50

4.
10

6.
10

2.
90

er
p-
gc
r-
cs
-a
bs

3.
50

2.
10

1.
00

5.
00

4.
20

2.
20

3.
50

5.
30

5.
95

6.
30

7.
65

7.
20

3.
70

3.
10

6.
50

4.
80

er
p-
gc
r-
cs
-c
b

3.
70

2.
30

1.
20

5.
10

4.
60

2.
10

2.
80

4.
00

4.
60

6.
60

7.
80

7.
50

4.
70

5.
60

6.
60

2.
80

er
p-
gc
r-
cl
-i
ns

4.
15

4.
40

2.
25

4.
75

3.
20

1.
70

2.
75

4.
85

5.
60

6.
25

7.
60

6.
20

3.
85

4.
25

6.
60

3.
60

er
p-
gc
r-
cl
-e
nc

5.
35

6.
55

1.
10

4.
80

3.
30

1.
80

5.
65

5.
50

5.
25

5.
95

7.
10

5.
80

2.
25

3.
80

6.
00

1.
80

er
p-
gc
r-
cl
-a
bs

4.
10

4.
75

1.
35

2.
70

4.
00

2.
80

3.
05

5.
80

6.
05

5.
70

7.
55

6.
20

3.
40

3.
55

6.
50

4.
50

er
p-
gc
r-
cl
-c
b

3.
40

3.
00

1.
10

4.
90

5.
30

2.
90

3.
50

2.
70

5.
60

6.
80

7.
80

7.
40

2.
70

5.
40

6.
60

2.
90

Empir Software Eng (2016) 21:2546–2600 2587

Ta
bl

e
15

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
gc
r-
in
s-
en
c

3.
50

2.
40

1.
20

5.
90

4.
00

3.
80

2.
00

2.
70

6.
60

6.
30

7.
60

7.
50

4.
50

3.
90

6.
60

3.
50

er
p-
gc
r-
in
s-
ab
s

3.
40

1.
90

1.
90

4.
90

4.
40

2.
20

1.
30

4.
50

6.
30

5.
70

7.
60

7.
60

4.
50

2.
80

6.
60

6.
40

er
p-
gc
r-
in
s-
cb

4.
20

1.
60

1.
10

5.
20

4.
20

3.
10

2.
30

2.
40

5.
70

6.
45

7.
80

7.
65

4.
10

6.
10

6.
60

3.
50

er
p-
gc
r-
en
c-
ab
s

4.
50

3.
00

1.
00

4.
60

2.
90

3.
00

3.
70

3.
50

6.
30

6.
60

7.
40

7.
00

3.
80

4.
00

6.
40

4.
30

er
p-
gc
r-
en
c-
cb

4.
10

1.
20

1.
00

5.
30

4.
00

3.
60

2.
40

1.
90

6.
60

6.
70

7.
80

7.
60

3.
50

5.
90

6.
60

3.
80

er
p-
gc
r-
ab
s-
cb

4.
60

1.
10

1.
10

4.
40

4.
70

3.
20

2.
10

2.
50

5.
80

7.
20

7.
80

7.
60

3.
30

5.
10

6.
60

4.
90

er
p-
cs
-c
l-
in
s

2.
85

3.
40

1.
55

5.
10

4.
10

1.
60

4.
25

6.
00

5.
50

5.
85

7.
60

6.
85

3.
55

4.
20

6.
60

3.
00

er
p-
cs
-c
l-
en
c

5.
35

6.
55

1.
10

4.
80

3.
30

1.
80

5.
65

5.
50

5.
25

5.
95

7.
10

5.
80

2.
25

3.
80

6.
00

1.
80

er
p-
cs
-c
l-
ab
s

3.
40

2.
10

1.
00

4.
60

4.
50

2.
10

4.
90

5.
15

5.
35

6.
15

7.
55

7.
30

2.
80

3.
50

6.
50

5.
10

er
p-
cs
-c
l-
cb

4.
70

2.
60

1.
50

5.
10

4.
70

1.
60

3.
80

4.
30

3.
90

6.
80

7.
80

7.
70

3.
00

5.
10

6.
60

2.
80

er
p-
cs
-i
ns
-e
nc

4.
95

1.
60

1.
10

4.
70

4.
75

3.
90

3.
15

2.
00

5.
85

6.
90

7.
30

7.
60

2.
60

5.
40

6.
30

3.
90

er
p-
cs
-i
ns
-a
bs

4.
80

1.
50

1.
10

4.
30

4.
40

2.
50

2.
10

3.
30

5.
20

7.
10

7.
60

7.
60

4.
20

4.
00

6.
60

5.
70

er
p-
cs
-i
ns
-c
b

5.
50

1.
70

1.
40

5.
10

4.
60

3.
20

2.
00

2.
20

4.
70

6.
70

7.
80

7.
70

3.
40

6.
50

6.
60

2.
90

er
p-
cs
-e
nc
-a
bs

5.
40

1.
00

1.
00

3.
00

2.
60

3.
90

4.
00

3.
70

5.
90

6.
40

7.
60

7.
40

3.
00

5.
80

6.
50

4.
80

er
p-
cs
-e
nc
-c
b

5.
40

1.
30

1.
00

3.
90

4.
00

4.
00

3.
60

2.
60

4.
60

7.
10

7.
80

7.
60

3.
10

6.
30

6.
50

3.
20

er
p-
cs
-a
bs
-c
b

5.
30

1.
30

1.
10

3.
10

4.
50

3.
50

2.
50

2.
30

5.
50

7.
15

7.
80

7.
65

2.
70

6.
10

6.
60

4.
90

er
p-
cl
-i
ns
-e
nc

3.
60

2.
80

1.
10

6.
00

3.
60

3.
30

2.
50

1.
20

6.
35

7.
15

7.
65

7.
55

4.
60

4.
00

6.
60

4.
00

er
p-
cl
-i
ns
-a
bs

3.
70

2.
20

2.
00

4.
10

4.
40

2.
40

1.
50

4.
20

5.
65

6.
90

7.
60

7.
60

4.
50

2.
20

6.
65

6.
40

er
p-
cl
-i
ns
-c
b

4.
90

1.
60

1.
30

5.
20

4.
90

3.
10

2.
20

1.
70

5.
50

6.
60

7.
70

7.
80

2.
80

5.
00

6.
70

5.
00

er
p-
cl
-e
nc
-a
bs

4.
60

3.
20

1.
00

4.
40

2.
80

2.
90

4.
75

4.
00

5.
95

6.
50

7.
60

7.
10

2.
90

3.
60

6.
40

4.
30

er
p-
cl
-e
nc
-c
b

5.
10

1.
10

1.
00

5.
10

4.
20

3.
20

2.
90

2.
40

5.
95

7.
00

7.
75

7.
60

2.
50

4.
70

6.
60

4.
90

er
p-
cl
-a
bs
-c
b

4.
90

1.
20

1.
10

4.
50

4.
80

2.
80

2.
60

2.
40

5.
90

6.
95

7.
80

7.
65

2.
30

4.
80

6.
60

5.
70

er
p-
in
s-
en
c-
ab
s

4.
60

1.
30

1.
50

3.
20

3.
80

3.
40

1.
50

3.
00

6.
35

7.
10

7.
75

7.
60

3.
90

5.
40

6.
60

5.
00

2588 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
15

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
in
s-
en
c-
cb

5.
60

1.
10

1.
50

3.
60

4.
40

4.
30

1.
50

2.
10

5.
10

7.
10

7.
80

7.
60

3.
50

5.
70

6.
60

4.
50

er
p-
in
s-
ab
s-
cb

5.
60

1.
00

1.
60

4.
40

3.
70

1.
50

2.
60

5.
30

7.
30

7.
80

7.
60

3.
20

5.
70

6.
60

4.
80

er
p-
en
c-
ab
s-
cb

5.
30

1.
00

1.
50

2.
80

4.
10

4.
40

2.
40

2.
90

5.
90

6.
70

7.
75

7.
60

2.
40

5.
20

6.
65

5.
40

gc
r-
cs
-c
l-
in
s

2.
75

2.
90

1.
65

5.
55

4.
75

1.
70

4.
70

5.
85

4.
45

5.
95

7.
75

7.
25

3.
35

4.
20

6.
60

2.
60

gc
r-
cs
-c
l-
en
c

4.
95

4.
60

1.
00

4.
60

2.
90

2.
60

6.
85

6.
90

4.
90

6.
00

7.
00

6.
30

2.
70

3.
40

5.
70

1.
60

gc
r-
cs
-c
l-
ab
s

4.
30

3.
25

1.
15

4.
40

5.
10

1.
30

4.
00

5.
90

4.
85

6.
65

7.
65

7.
10

2.
35

3.
10

6.
60

4.
30

gc
r-
cs
-c
l-
cb

4.
90

2.
10

1.
50

5.
00

5.
00

2.
50

3.
50

3.
50

4.
15

5.
95

7.
60

7.
65

2.
50

4.
70

6.
85

4.
60

gc
r-
cs
-i
ns
-e
nc

5.
20

1.
70

1.
00

4.
50

4.
80

4.
70

3.
70

1.
40

4.
85

6.
80

7.
55

7.
60

2.
60

5.
90

6.
30

3.
40

gc
r-
cs
-i
ns
-a
bs

4.
70

1.
30

1.
30

4.
50

5.
20

2.
40

2.
30

3.
00

5.
05

6.
90

7.
75

7.
60

3.
10

4.
50

6.
60

5.
80

gc
r-
cs
-i
ns
-c
b

5.
40

1.
70

1.
20

5.
00

4.
60

4.
30

2.
40

2.
10

4.
60

6.
70

7.
80

7.
80

3.
40

6.
20

6.
60

2.
20

gc
r-
cs
-c
l-
in
s

2.
75

2.
90

1.
65

5.
55

4.
75

1.
70

4.
70

5.
85

4.
45

5.
95

7.
75

7.
25

3.
35

4.
20

6.
60

2.
60

gc
r-
cs
-c
l-
en
c

4.
95

4.
60

1.
00

4.
60

2.
90

2.
60

6.
85

6.
90

4.
90

6.
00

7.
00

6.
30

2.
70

3.
40

5.
70

1.
60

gc
r-
cs
-c
l-
ab
s

4.
30

3.
25

1.
15

4.
40

5.
10

1.
30

4.
00

5.
90

4.
85

6.
65

7.
65

7.
10

2.
35

3.
10

6.
60

4.
30

gc
r-
cs
-c
l-
cb

4.
90

2.
10

1.
50

5.
00

5.
00

2.
50

3.
50

3.
50

4.
15

5.
95

7.
60

7.
65

2.
50

4.
70

6.
85

4.
60

gc
r-
cs
-i
ns
-e
nc

5.
20

1.
70

1.
00

4.
50

4.
80

4.
70

3.
70

1.
40

4.
85

6.
80

7.
55

7.
60

2.
60

5.
90

6.
30

3.
40

gc
r-
cs
-i
ns
-a
bs

4.
70

1.
30

1.
30

4.
50

5.
20

2.
40

2.
30

3.
00

5.
05

6.
90

7.
75

7.
60

3.
10

4.
50

6.
60

5.
80

gc
r-
cs
-i
ns
-c
b

5.
40

1.
70

1.
20

5.
00

4.
60

4.
30

2.
40

2.
10

4.
60

6.
70

7.
80

7.
80

3.
40

6.
20

6.
60

2.
20

3.
30

Empir Software Eng (2016) 21:2546–2600 2589

Ta
bl

e
16

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
te

st
(α

=
0.

05
)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

gc
r-
cs
-e
nc
-a
bs

5.
75

3.
05

1.
00

2.
40

2.
80

4.
00

3.
65

3.
35

5.
80

7.
00

7.
50

7.
30

3.
10

5.
20

6.
40

3.
70

gc
r-
cs
-e
nc
-c
b

5.
50

1.
50

1.
20

4.
10

4.
40

4.
00

3.
90

3.
85

4.
25

6.
85

7.
75

7.
50

2.
60

4.
90

6.
40

3.
30

gc
r-
cs
-a
bs
-c
b

5.
20

1.
30

1.
00

2.
90

4.
00

3.
90

2.
60

2.
20

5.
40

7.
30

7.
70

7.
60

3.
30

5.
90

6.
80

4.
90

gc
r-
cl
-i
ns
-e
nc

4.
50

2.
20

1.
00

6.
20

3.
10

4.
00

2.
40

1.
60

6.
00

6.
70

7.
60

7.
60

4.
80

4.
70

6.
60

3.
00

gc
r-
cl
-i
ns
-a
bs

4.
30

2.
40

2.
00

4.
20

4.
80

2.
60

1.
20

3.
00

5.
75

6.
85

7.
65

7.
65

3.
70

3.
10

6.
60

6.
20

gc
r-
cl
-i
ns
-c
b

4.
30

2.
40

1.
50

5.
70

5.
10

4.
00

2.
70

1.
30

4.
60

6.
90

7.
80

7.
80

3.
40

5.
20

6.
60

2.
70

gc
r-
cl
-e
nc
-a
bs

5.
60

3.
50

1.
00

4.
90

2.
70

3.
80

4.
10

2.
90

6.
10

6.
20

7.
20

7.
20

3.
10

3.
10

6.
20

4.
40

gc
r-
cl
-e
nc
-c
b

5.
10

2.
40

1.
10

5.
00

4.
60

3.
40

3.
20

4.
10

4.
30

6.
90

7.
80

7.
60

3.
30

3.
80

6.
60

2.
80

gc
r-
cl
-a
bs
-c
b

4.
60

1.
70

1.
00

4.
00

5.
20

2.
60

3.
00

2.
60

5.
55

7.
00

7.
75

7.
50

2.
20

5.
00

6.
70

5.
60

gc
r-
in
s-
en
c-
ab
s

5.
20

1.
10

1.
70

2.
90

3.
70

3.
70

1.
30

2.
80

6.
40

7.
20

7.
60

7.
60

3.
50

6.
10

6.
60

4.
60

gc
r-
in
s-
en
c-
cb

5.
80

1.
10

1.
20

3.
90

4.
60

4.
10

2.
20

2.
10

4.
80

7.
10

7.
80

7.
60

3.
20

6.
30

6.
40

3.
80

gc
r-
in
s-
ab
s-
cb

5.
60

1.
10

1.
30

3.
30

4.
40

3.
50

1.
80

2.
40

5.
40

7.
70

6.
95

7.
70

3.
00

6.
00

6.
80

5.
10

gc
r-
en
c-
ab
s-
cb

5.
50

1.
75

1.
10

2.
50

3.
90

4.
20

3.
25

3.
25

5.
60

7.
20

7.
75

7.
40

2.
40

5.
50

6.
50

4.
20

cs
-c
l-
in
s-
en
c

5.
20

1.
80

1.
70

5.
30

4.
10

2.
90

3.
00

3.
05

4.
30

6.
40

7.
60

7.
45

3.
50

4.
60

6.
60

4.
50

cs
-c
l-
in
s-
ab
s

3.
40

3.
90

1.
40

4.
80

5.
60

1.
30

3.
50

5.
25

4.
80

5.
85

7.
70

7.
60

2.
80

4.
50

6.
80

2.
80

cs
-c
l-
in
s-
cb

3.
20

2.
20

1.
70

4.
50

4.
90

2.
60

1.
50

3.
30

5.
60

7.
00

7.
60

7.
60

4.
60

3.
80

6.
90

5.
00

cs
-c
l-
en
c-
ab
s

5.
60

5.
00

1.
00

3.
60

2.
60

2.
50

4.
60

5.
95

5.
00

5.
95

7.
30

6.
90

3.
90

4.
30

6.
00

1.
80

cs
-c
l-
en
c-
cb

4.
50

4.
65

1.
50

4.
40

4.
70

1.
80

4.
00

7.
15

4.
30

5.
75

7.
60

7.
15

3.
20

2.
90

6.
20

2.
20

cs
-c
l-
ab
s-
cb

5.
00

3.
40

1.
00

4.
30

4.
40

2.
40

3.
85

4.
30

5.
25

6.
60

7.
60

7.
70

2.
10

5.
30

6.
80

2.
00

cs
-i
ns
-e
nc
-a
bs

5.
60

1.
30

1.
70

3.
10

4.
00

4.
30

1.
60

1.
90

6.
00

6.
75

7.
70

7.
75

2.
80

6.
50

6.
60

4.
40

cs
-i
ns
-e
nc
-c
b

5.
60

1.
90

1.
50

5.
10

4.
20

3.
50

2.
30

1.
40

4.
70

6.
80

7.
80

7.
80

3.
30

5.
60

6.
60

3.
90

cs
-i
ns
-a
bs
-c
b

5.
50

1.
60

1.
20

4.
50

4.
60

4.
40

1.
90

2.
70

5.
45

7.
00

7.
75

7.
80

2.
90

6.
20

6.
70

1.
80

2590 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
16

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-e
nc
-a
bs
-c
b

5.
50

1.
50

1.
00

2.
20

3.
40

3.
70

4.
50

5.
05

5.
25

6.
50

7.
75

7.
55

2.
10

6.
10

6.
50

3.
40

cl
-i
ns
-e
nc
-a
bs

3.
80

1.
70

1.
60

4.
90

3.
40

3.
40

1.
40

1.
50

6.
20

7.
45

7.
75

6.
85

5.
20

5.
20

6.
65

5.
00

cl
-i
ns
-e
nc
-c
b

4.
40

2.
20

1.
40

4.
80

5.
10

3.
30

1.
80

1.
20

5.
00

6.
85

7.
65

7.
75

3.
90

4.
20

6.
75

5.
70

cl
-i
ns
-a
bs
-c
b

5.
50

1.
90

1.
10

4.
70

4.
60

3.
20

2.
30

1.
30

5.
30

7.
00

7.
65

7.
80

2.
70

5.
60

2.
70

4.
50

cl
-e
nc
-a
bs
-c
b

5.
20

1.
70

1.
00

3.
00

3.
40

2.
90

4.
00

5.
85

5.
10

6.
75

7.
65

7.
30

3.
20

4.
60

6.
45

3.
90

in
s-
en
c-
ab
s-
cb

5.
60

1.
20

1.
80

3.
10

4.
40

4.
20

1.
40

2.
00

5.
60

6.
45

7.
80

7.
75

2.
80

6.
40

6.
60

4.
90

Empir Software Eng (2016) 21:2546–2600 2591

Ta
bl

e
17

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s

4.
50

1.
70

1.
00

5.
00

4.
20

3.
50

2.
10

2.
50

6.
15

7.
30

7.
75

7.
60

3.
70

5.
40

6.
60

3.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
en
c

5.
60

1.
30

1.
00

4.
90

3.
60

4.
70

3.
30

2.
20

5.
85

7.
30

7.
75

7.
50

2.
30

5.
10

6.
60

3.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
ab
s

5.
60

1.
00

1.
60

3.
20

3.
60

5.
10

1.
40

3.
10

6.
00

7.
40

7.
80

7.
60

3.
40

4.
60

6.
60

4.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
cb

5.
50

1.
10

1.
40

4.
50

4.
60

4.
40

1.
70

2.
40

5.
40

7.
40

7.
80

7.
60

3.
00

5.
70

6.
60

2.
90

ic
d-
er
p-
gc
r-
cs
-i
ns
-e
nc

5.
50

1.
10

1.
80

3.
00

3.
60

5.
30

1.
50

3.
10

5.
50

7.
10

7.
70

7.
60

3.
80

5.
00

6.
60

3.
80

ic
d-
er
p-
gc
r-
cs
-i
ns
-a
bs

5.
60

1.
00

2.
10

2.
20

3.
50

5.
00

1.
10

3.
30

5.
90

7.
20

7.
80

7.
60

3.
40

6.
10

6.
60

3.
60

ic
d-
er
p-
gc
r-
cs
-i
ns
-c
b

5.
80

1.
10

1.
70

3.
10

3.
70

5.
00

1.
40

3.
20

5.
25

7.
10

7.
75

7.
50

3.
90

6.
00

6.
50

3.
00

ic
d-
er
p-
gc
r-
cs
-e
nc
-a
bs

5.
60

1.
00

2.
80

2.
30

3.
20

5.
10

1.
00

3.
80

6.
10

7.
40

7.
70

7.
60

3.
00

5.
10

6.
60

3.
70

ic
d-
er
p-
gc
r-
cs
-e
nc
-c
b

5.
90

1.
00

1.
70

2.
80

3.
80

5.
20

1.
70

3.
20

5.
40

7.
20

7.
80

7.
60

3.
40

5.
30

6.
30

3.
70

ic
d-
er
p-
gc
r-
cs
-a
bs
-c
b

6.
10

1.
00

2.
10

2.
00

4.
10

5.
20

1.
30

3.
40

5.
70

7.
10

7.
80

7.
60

2.
80

5.
90

6.
10

3.
80

ic
d-
er
p-
gc
r-
cl
-i
ns
-e
nc

4.
20

1.
70

1.
30

5.
10

3.
90

4.
40

1.
70

2.
80

6.
60

7.
40

7.
60

7.
60

4.
10

4.
20

6.
60

2.
80

ic
d-
er
p-
gc
r-
cl
-i
ns
-a
bs

4.
80

1.
00

1.
70

3.
30

3.
80

5.
00

1.
30

4.
30

6.
70

7.
40

7.
60

7.
60

3.
50

3.
20

6.
60

4.
20

ic
d-
er
p-
gc
r-
cl
-i
ns
-c
b

5.
50

1.
10

1.
60

4.
00

4.
10

4.
90

1.
50

3.
10

5.
80

7.
40

7.
80

7.
60

3.
10

5.
40

6.
60

2.
50

ic
d-
er
p-
gc
r-
cl
-e
nc
-a
bs

5.
40

1.
00

2.
00

3.
30

3.
40

4.
70

1.
10

4.
90

6.
40

7.
40

7.
60

7.
60

3.
50

3.
30

6.
60

3.
80

ic
d-
er
p-
gc
r-
cl
-e
nc
-c
b

5.
60

1.
00

1.
50

4.
20

4.
00

4.
80

1.
60

3.
10

5.
80

7.
30

7.
80

7.
60

3.
10

5.
30

6.
60

2.
70

ic
d-
er
p-
gc
r-
cl
-a
bs
-c
b

5.
90

1.
00

1.
70

2.
40

4.
20

5.
20

1.
30

3.
50

5.
75

7.
40

7.
75

7.
60

3.
00

5.
10

6.
40

3.
80

ic
d-
er
p-
gc
r-
in
s-
en
c-
ab
s

5.
50

1.
00

2.
60

2.
20

3.
00

4.
00

1.
00

4.
80

6.
25

7.
30

7.
65

7.
60

3.
40

5.
30

6.
60

3.
80

ic
d-
er
p-
gc
r-
in
s-
en
c-
cb

5.
90

1.
10

1.
90

2.
50

3.
80

5.
10

1.
30

4.
10

5.
70

7.
10

7.
80

7.
60

3.
30

5.
00

6.
30

3.
50

ic
d-
er
p-
gc
r-
in
s-
ab
s-
cb

5.
80

1.
40

2.
40

2.
00

3.
80

4.
80

1.
10

3.
60

5.
80

7.
20

7.
80

7.
60

2.
90

5.
70

6.
40

3.
70

ic
d-
er
p-
gc
r-
en
c-
ab
s-
cb

6.
00

1.
00

2.
50

2.
00

4.
00

5.
00

1.
10

4.
20

6.
00

7.
20

7.
80

7.
60

2.
40

5.
50

6.
20

3.
50

ic
d-
er
p-
cs
-c
l-
in
s-
en
c

5.
60

1.
00

1.
50

3.
70

3.
90

5.
70

1.
70

2.
20

5.
20

7.
40

7.
70

7.
60

3.
80

4.
70

6.
60

3.
70

ic
d-
er
p-
cs
-c
l-
in
s-
ab
s

5.
60

1.
00

2.
10

2.
30

3.
70

5.
60

1.
10

2.
90

6.
05

7.
40

7.
65

7.
60

3.
20

4.
60

6.
60

4.
60

2592 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
17

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
cs
-c
l-
in
s-
cb

5.
60

1.
10

1.
70

3.
20

4.
60

5.
10

1.
70

3.
00

4.
90

7.
40

7.
80

7.
60

3.
20

5.
20

6.
50

3.
40

ic
d-
er
p-
cs
-c
l-
en
c-
ab
s

5.
60

1.
00

2.
00

2.
40

3.
00

6.
00

1.
20

3.
90

6.
10

7.
40

7.
70

7.
60

3.
80

3.
70

6.
60

4.
00

ic
d-
er
p-
cs
-c
l-
en
c-
cb

5.
80

1.
00

1.
50

3.
60

4.
40

5.
40

1.
60

2.
70

5.
10

7.
40

7.
80

7.
60

3.
40

5.
30

6.
40

3.
00

ic
d-
er
p-
cs
-c
l-
ab
s-
cb

5.
90

1.
00

1.
80

2.
20

4.
20

5.
40

1.
40

3.
20

5.
80

7.
40

7.
80

7.
60

2.
80

5.
20

6.
30

4.
00

ic
d-
er
p-
cs
-i
ns
-e
nc
-a
bs

5.
60

1.
00

3.
40

2.
00

2.
90

5.
10

1.
00

3.
80

6.
10

7.
40

7.
70

7.
60

2.
70

5.
70

6.
60

3.
40

ic
d-
er
p-
cs
-i
ns
-e
nc
-c
b

5.
90

1.
00

2.
00

2.
40

4.
30

5.
00

1.
30

3.
20

5.
20

7.
00

7.
80

7.
60

3.
20

6.
30

6.
30

3.
50

ic
d-
er
p-
cs
-i
ns
-a
bs
-c
b

6.
10

1.
00

2.
70

2.
10

4.
10

4.
90

1.
10

3.
40

5.
90

7.
10

7.
80

7.
60

2.
20

6.
30

6.
10

3.
60

ic
d-
er
p-
cs
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
60

2.
00

4.
00

5.
20

1.
20

3.
90

6.
00

7.
10

7.
80

7.
60

2.
20

5.
90

6.
00

3.
30

Empir Software Eng (2016) 21:2546–2600 2593

Ta
bl

e
18

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
cl
-i
ns
-e
nc
-a
bs

5.
50

1.
00

2.
00

2.
50

3.
30

5.
50

1.
10

4.
30

6.
15

7.
40

7.
75

7.
60

3.
60

3.
20

6.
60

4.
50

ic
d-
er
p-
cl
-i
ns
-e
nc
-c
b

5.
60

1.
00

1.
60

2.
50

4.
30

5.
40

1.
40

2.
90

5.
20

7.
40

7.
80

7.
60

3.
50

5.
20

6.
60

4.
00

ic
d-
er
p-
cl
-i
ns
-a
bs
-c
b

5.
60

1.
00

2.
00

2.
00

4.
00

5.
80

1.
00

3.
50

6.
00

7.
40

7.
80

7.
60

3.
00

4.
40

6.
60

4.
30

ic
d-
er
p-
cl
-e
nc
-a
bs
-c
b

5.
80

1.
10

1.
90

1.
90

3.
60

5.
80

1.
10

4.
40

6.
00

7.
40

7.
80

7.
60

3.
40

4.
00

6.
40

3.
80

ic
d-
er
p-
in
s-
en
c-
ab
s-
cb

6.
00

1.
00

2.
90

2.
00

3.
80

4.
90

1.
00

4.
10

6.
00

7.
20

7.
80

7.
60

2.
30

6.
10

6.
20

3.
10

ic
d-
gc
r-
cs
-c
l-
in
s-
en
c

5.
60

1.
40

1.
10

3.
60

4.
10

5.
10

2.
40

2.
30

4.
95

7.
40

7.
75

7.
60

3.
50

5.
00

6.
60

3.
60

ic
d-
gc
r-
cs
-c
l-
in
s-
ab
s

5.
60

1.
10

1.
80

2.
60

4.
20

5.
20

1.
20

3.
30

5.
65

7.
40

7.
75

7.
60

3.
20

4.
70

6.
60

4.
10

ic
d-
gc
r-
cs
-c
l-
in
s-
cb

5.
60

1.
00

1.
60

3.
50

4.
60

5.
10

1.
80

2.
80

5.
00

7.
30

7.
80

7.
70

3.
00

5.
30

6.
60

3.
30

ic
d-
gc
r-
cs
-c
l-
en
c-
ab
s

5.
60

1.
00

2.
10

2.
40

3.
30

5.
70

1.
00

4.
20

6.
10

7.
40

7.
70

7.
60

3.
60

3.
90

6.
60

3.
80

ic
d-
gc
r-
cs
-c
l-
en
c-
cb

5.
60

1.
00

1.
20

4.
20

4.
40

5.
00

2.
20

2.
30

4.
80

7.
30

7.
80

7.
60

3.
40

5.
00

6.
60

3.
60

ic
d-
gc
r-
cs
-c
l-
ab
s-
cb

5.
60

1.
00

1.
70

2.
50

4.
30

5.
40

1.
60

3.
40

5.
70

7.
40

7.
80

7.
60

2.
70

4.
80

6.
60

3.
90

ic
d-
gc
r-
cs
-i
ns
-e
nc
-a
bs

5.
60

1.
00

3.
20

2.
00

3.
40

4.
90

1.
00

3.
60

6.
10

7.
30

7.
70

7.
50

2.
40

6.
20

6.
60

3.
50

ic
d-
gc
r-
cs
-i
ns
-e
nc
-c
b

5.
60

1.
00

2.
30

2.
60

4.
40

4.
90

2.
10

2.
70

5.
10

6.
90

7.
80

7.
60

2.
10

6.
10

6.
60

4.
20

ic
d-
gc
r-
cs
-i
ns
-a
bs
-c
b

5.
70

1.
00

2.
60

2.
30

4.
10

4.
90

1.
10

3.
30

5.
90

7.
10

7.
80

7.
60

2.
30

6.
30

6.
50

3.
50

ic
d-
gc
r-
cs
-e
nc
-a
bs
-c
b

5.
80

1.
20

2.
50

1.
80

4.
00

4.
90

1.
80

3.
60

6.
00

7.
10

7.
80

7.
60

1.
70

6.
30

6.
40

3.
50

ic
d-
gc
r-
cl
-i
ns
-e
nc
-a
bs

5.
60

1.
10

2.
00

2.
20

3.
40

5.
20

1.
10

4.
90

6.
15

7.
40

7.
65

7.
60

3.
50

3.
20

6.
60

4.
40

ic
d-
gc
r-
cl
-i
ns
-e
nc
-c
b

5.
60

1.
00

1.
50

3.
20

4.
20

5.
40

1.
60

3.
00

5.
00

7.
40

7.
80

7.
60

3.
70

5.
00

6.
60

3.
40

ic
d-
gc
r-
cl
-i
ns
-a
bs
-c
b

5.
60

1.
00

1.
80

2.
20

4.
10

5.
60

1.
20

3.
30

5.
80

7.
40

7.
80

7.
60

3.
10

4.
60

6.
60

4.
30

ic
d-
gc
r-
cl
-e
nc
-a
bs
-c
b

5.
70

1.
00

1.
60

2.
20

3.
70

5.
70

1.
40

4.
40

6.
00

7.
40

7.
80

7.
60

3.
30

4.
00

6.
50

3.
70

ic
d-
gc
r-
in
s-
en
c-
ab
s-
cb

5.
70

1.
00

3.
10

2.
00

3.
90

4.
70

1.
40

3.
80

6.
00

7.
00

7.
80

7.
60

1.
60

6.
40

6.
50

3.
50

ic
d-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
10

2.
00

2.
70

3.
60

5.
90

1.
00

3.
20

6.
05

7.
40

7.
75

7.
60

3.
40

4.
20

6.
60

3.
90

ic
d-
cs
-c
l-
in
s-
en
c-
cb

5.
60

1.
80

2.
20

4.
30

4.
60

3.
90

1.
90

1.
20

4.
80

7.
40

7.
80

7.
60

2.
50

5.
70

6.
60

4.
10

ic
d-
cs
-c
l-
in
s-
ab
s-
cb

5.
60

1.
20

2.
30

2.
60

4.
20

5.
50

1.
10

3.
20

5.
55

7.
30

7.
75

7.
70

2.
80

5.
50

6.
70

3.
00

2594 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
18

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
cs
-c
l-
en
c-
ab
s-
cb

5.
60

1.
00

1.
90

2.
70

4.
00

5.
60

1.
30

2.
60

5.
90

7.
40

7.
80

7.
60

2.
90

5.
00

6.
60

4.
10

ic
d-
cs
-i
ns
-e
nc
-a
bs
-c
b

5.
60

1.
00

3.
10

2.
00

4.
00

4.
70

1.
30

3.
20

5.
90

6.
90

7.
80

7.
40

1.
70

6.
70

6.
60

4.
10

ic
d-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
60

1.
40

2.
00

1.
80

3.
90

5.
90

1.
00

3.
40

5.
80

7.
40

7.
75

7.
60

3.
30

4.
60

6.
65

3.
90

er
p-
gc
r-
cs
-c
l-
in
s-
en
c

5.
50

1.
30

1.
10

4.
50

3.
20

5.
50

2.
20

2.
60

6.
15

7.
30

7.
65

7.
60

3.
60

4.
90

6.
60

2.
30

er
p-
gc
r-
cs
-c
l-
in
s-
ab
s

5.
50

1.
00

1.
30

4.
80

3.
70

3.
80

1.
90

3.
60

6.
00

7.
30

7.
80

7.
60

3.
20

3.
90

6.
60

4.
00

er
p-
gc
r-
cs
-c
l-
in
s-
cb

5.
50

1.
60

1.
60

4.
00

4.
20

5.
10

1.
70

2.
80

5.
80

7.
35

7.
80

7.
65

2.
80

5.
50

6.
60

2.
00

er
p-
gc
r-
cs
-c
l-
en
c-
ab
s

5.
30

1.
00

1.
00

3.
30

2.
60

5.
90

3.
60

3.
70

6.
25

7.
10

7.
55

7.
50

3.
20

4.
20

6.
50

3.
30

er
p-
gc
r-
cs
-c
l-
en
c-
cb

5.
60

1.
30

1.
00

2.
40

3.
80

5.
10

3.
00

3.
40

5.
80

7.
40

7.
80

7.
60

2.
50

5.
00

6.
50

2.
40

Empir Software Eng (2016) 21:2546–2600 2595

Ta
bl

e
19

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
,8

-
an

d
9-

ob
je

ct
iv

e
pr

ob
le

m
s

ob
ta

in
ed

fr
om

th
e

Fr
ie

dm
an

Te
st

(α
=

0.
05

)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
gc
r-
cs
-c
l-
ab
s-
cb

5.
50

1.
30

1.
30

2.
70

4.
10

5.
10

2.
80

2.
20

5.
50

7.
40

7.
80

7.
60

2.
40

5.
50

6.
60

4.
20

er
p-
gc
r-
cs
-i
ns
-e
nc
-a
bs

5.
70

1.
00

2.
60

2.
10

2.
80

5.
10

1.
00

3.
70

6.
05

7.
40

7.
65

7.
60

3.
70

5.
60

6.
50

3.
50

er
p-
gc
r-
cs
-i
ns
-e
nc
-c
b

6.
10

1.
10

1.
90

2.
80

3.
30

5.
10

1.
50

3.
40

5.
50

7.
20

7.
80

7.
60

3.
80

5.
80

6.
10

3.
00

er
p-
gc
r-
cs
-i
ns
-a
bs
-c
b

5.
80

1.
00

2.
00

2.
30

3.
50

5.
10

1.
40

3.
20

5.
60

7.
30

7.
80

7.
60

3.
50

5.
80

6.
40

3.
70

er
p-
gc
r-
cs
-e
nc
-a
bs
-c
b

5.
70

1.
10

1.
50

2.
20

3.
00

5.
20

2.
70

3.
20

5.
90

7.
10

7.
80

7.
60

2.
90

5.
90

6.
50

3.
70

er
p-
gc
r-
cl
-i
ns
-e
nc
-a
bs

5.
10

1.
00

2.
00

3.
30

3.
20

5.
10

1.
00

5.
10

6.
70

6.
30

7.
60

7.
60

3.
80

4.
00

6.
60

3.
60

er
p-
gc
r-
cl
-i
ns
-e
nc
-c
b

5.
70

1.
10

1.
60

3.
60

3.
80

5.
40

1.
50

3.
20

5.
80

7.
40

7.
80

7.
60

3.
30

5.
30

6.
50

2.
40

er
p-
gc
r-
cl
-i
ns
-a
bs
-c
b

5.
70

1.
10

1.
60

2.
60

4.
10

5.
50

1.
60

3.
30

5.
90

7.
30

7.
80

7.
60

2.
80

5.
40

6.
50

3.
20

er
p-
gc
r-
cl
-e
nc
-a
bs
-c
b

5.
50

1.
00

1.
30

2.
30

3.
50

5.
90

2.
20

3.
60

6.
10

7.
40

7.
80

7.
60

3.
00

4.
80

6.
60

3.
40

er
p-
gc
r-
in
s-
en
c-
ab
s-
cb

6.
10

1.
10

2.
30

1.
90

3.
60

5.
30

1.
10

4.
00

6.
00

7.
30

7.
80

7.
60

3.
00

5.
50

6.
10

3.
30

er
p-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
00

2.
20

2.
30

2.
90

6.
00

1.
00

4.
40

6.
15

7.
40

7.
65

7.
60

3.
90

3.
90

6.
60

3.
40

er
p-
cs
-c
l-
in
s-
en
c-
cb

5.
90

1.
10

1.
60

3.
10

4.
10

5.
50

1.
40

3.
00

5.
20

7.
35

7.
80

7.
65

3.
70

5.
40

6.
30

2.
90

er
p-
cs
-c
l-
in
s-
ab
s-
cb

5.
70

1.
10

1.
80

2.
40

4.
10

5.
50

1.
70

3.
20

5.
80

7.
40

7.
80

7.
60

2.
60

5.
00

6.
50

3.
80

er
p-
cs
-c
l-
en
c-
ab
s-
cb

5.
60

1.
10

1.
30

2.
00

3.
00

5.
90

2.
50

3.
70

6.
00

7.
40

7.
80

7.
60

3.
20

4.
90

6.
60

3.
40

er
p-
cs
-i
ns
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
80

2.
00

3.
30

5.
10

1.
10

3.
90

6.
00

7.
10

7.
80

7.
60

2.
80

6.
20

6.
00

3.
10

er
p-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
70

1.
10

2.
10

1.
90

3.
10

6.
00

1.
00

4.
30

6.
00

7.
40

7.
80

7.
60

3.
80

4.
30

6.
50

3.
40

gc
r-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
00

2.
10

2.
30

2.
80

5.
80

1.
10

4.
30

6.
15

7.
40

7.
65

7.
60

4.
00

3.
80

6.
60

3.
80

gc
r-
cs
-c
l-
in
s-
en
c-
cb

5.
80

1.
10

1.
60

3.
20

3.
90

5.
70

1.
60

2.
70

5.
10

7.
30

7.
80

7.
60

3.
80

5.
30

6.
40

3.
10

gc
r-
cs
-c
l-
in
s-
ab
s-
cb

5.
90

1.
00

2.
60

2.
00

3.
60

4.
90

1.
20

3.
80

6.
00

7.
20

7.
80

7.
60

2.
60

6.
20

6.
30

3.
30

gc
r-
cs
-c
l-
en
c-
ab
s-
cb

5.
70

1.
10

1.
30

2.
30

3.
20

5.
80

2.
40

3.
20

6.
00

7.
40

7.
80

7.
60

3.
10

4.
60

6.
50

4.
00

gc
r-
cs
-i
ns
-e
nc
-a
bs
-c
b

5.
90

1.
00

2.
60

2.
00

3.
60

4.
90

1.
20

3.
80

6.
00

7.
20

7.
80

7.
60

2.
60

6.
20

6.
30

3.
30

gc
r-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
70

1.
00

1.
80

2.
00

3.
30

6.
00

1.
20

4.
30

6.
00

7.
40

7.
80

7.
60

3.
70

4.
30

6.
50

3.
40

2596 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
19

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-c
l-
in
s-
en
c-
ab
s-
cb

5.
70

1.
30

2.
10

2.
40

3.
50

5.
60

1.
20

3.
10

5.
80

7.
40

7.
80

7.
60

3.
40

5.
30

6.
50

3.
30

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s

5.
80

1.
00

3.
20

2.
20

2.
80

5.
80

1.
00

4.
90

5.
80

7.
30

7.
80

7.
70

3.
00

3.
90

6.
60

3.
20

ic
d-
er
p-
gc
r-
cs
-c
s-
in
s-
en
c-
cb

6.
00

1.
00

1.
90

2.
80

4.
20

5.
60

1.
30

3.
50

5.
65

7.
40

7.
75

7.
60

2.
90

5.
20

6.
30

2.
90

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
ab
s-
cb

6.
30

1.
30

2.
40

1.
90

3.
80

5.
70

1.
10

3.
80

5.
75

7.
10

7.
85

7.
70

2.
70

5.
20

6.
10

3.
30

ic
d-
er
p-
gc
r-
cs
-c
l-
en
c-
ab
s-
cb

6.
50

1.
80

2.
20

1.
80

3.
90

5.
70

1.
10

3.
90

5.
95

7.
40

7.
75

7.
60

2.
80

4.
80

5.
80

3.
00

ic
d-
er
p-
gc
r-
cs
-i
ns
-e
nc
-a
bs
-c
b

6.
60

2.
00

3.
40

1.
60

3.
50

5.
10

1.
10

3.
80

5.
90

7.
00

7.
70

7.
50

2.
00

6.
10

5.
80

2.
90

ic
d-
er
p-
gc
r-
cl
-i
ns
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
40

2.
00

3.
60

5.
70

1.
00

4.
30

5.
75

7.
30

7.
85

7.
70

3.
00

4.
80

6.
20

3.
20

ic
d-
er
p-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
60

1.
10

2.
80

1.
90

3.
20

6.
00

1.
00

4.
20

5.
95

7.
40

7.
75

7.
60

3.
00

4.
60

5.
70

3.
20

ic
d-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
30

1.
30

2.
60

1.
90

3.
40

5.
80

1.
10

4.
10

6.
00

7.
40

7.
80

7.
60

2.
90

4.
50

5.
90

3.
40

er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
70

1.
80

3.
00

1.
60

2.
90

5.
80

1.
00

4.
00

5.
75

7.
20

7.
85

7.
70

3.
10

4.
80

5.
70

3.
10

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
70

1.
70

2.
90

1.
80

3.
30

5.
30

1.
00

4.
60

5.
50

6.
60

7.
90

7.
80

2.
80

5.
00

5.
90

3.
20

Empir Software Eng (2016) 21:2546–2600 2597

References

Adra S, Fleming P (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans
Evol Comput 15(2):183–195

Aleti A, Buhnova B, Grunske L, Koziolek A, Meedeniya I (2013) Software architecture optimization
methods: a systematic literature review. IEEE Trans Softw Eng 39(5):658–683

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In: Proceedings of the 33rd international conference on software engineering
(ICSE’11), pp 1–10. IEEE

Assunção WKG, Colanzi TE, Vergilio SR, Pozo A (2014) A multi-objective optimization approach for the
integration and test order problem. Inf Sci 267:119–139

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol
Comput 19(1):45–76

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment. IEEE Trans
Softw Eng 28(1):4–17

Bosch J, Molin P (1999) Software architecture design: evaluation and transformation. In: Proceedings of
IEEE conference and workshop on engineering of computer-based systems (ECBS’99), pp 4–10

Boussaı̈d I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117
Bouwers E, Correia J, van Deursen A, Visser J (2011) Quantifying the analyzability of software architectures.

In: Proceedings of the 9th working IEEE/IFIP conference on software architecture (WICSA’11), pp 83–
92

Bowman M, Briand LC, Labiche Y (2010) Solving the class responsibility assignment problem
in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans Softw Eng 36
(6):817–837

Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-
objective problems, 2nd edn. Springer

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based

nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans Evol Comput
18(4):577–601

Deb K, Mohan M, Mishra S (2003) Towards a quick computation of well-spread pareto-optimal solutions.
In: Evolutionary multi-criterion optimization of LNCS, vol 2632. Springer, pp 222–236

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans Evol Comput 6(2):182–197

del Sagrado J, del Águila IM, Orellana FJ (2015) Multi-objective ant colony optimization for requirements
selection. Empir Softw Eng 20(3):577–610

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput
1(1):3–18

Dobrica L, Niemela E (2002) A survey on software architecture analysis methods. IEEE Trans Softw Eng
28(7):638–653

Ducasse S, Pollet D (2009) Software architecture reconstruction: a process-oriented taxonomy. IEEE Trans
Softw Eng 35(4):573–591

Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A study of the bi-objective next release problem.
Empir Softw Eng 16(1):29–60

Garlan D (2000) Software architecture: a roadmap. In: Proceedings of the 22th international conference of
software engineering (ICSE’00), pp 91–101

Grunske L (2006) Identifying ”Good” architectural design alternatives with multi-objective optimization
strategies. In: Proceedings of the 28th international conference on software engineering (ICSE’06),
pp 849–852

Gupta P, Verma S, Mehlawat M (2012) Optimization model of COTS selection based on cohesion and cou-
pling for modular software systems under multiple applications environment. In: Computational science
and its applications (ICCSA) of LNCS, vol 7335. Springer, pp 87–102

Hadka D, Reed P (2013) Borg: an auto-adaptive many-objective evolutionary computing framework. Evol
Comput 21(2):231–259

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: trends, techniques and
applications. ACM Comput Surv 45(1):11:1–61

He Z, Yen G, Zhang J (2014) Fuzzy-based Pareto optimality for many-objective evolutionary algorithms.
IEEE Trans Evol Comput 18(2):269–285

2598 Empir Software Eng (2016) 21:2546–2600

ISO (2011a) ISO/IEC 25010:2011(E). Software product Quality Requirements and Evaluation (SQuaRE) -
System and software quality models. ISO

ISO (2011b) ISO/IEC/IEEE FDIS 42010/D9. Systems and software engineering - Architecture description
Kalboussi S, Bechikh S, Kessentini M, Ben Said L (2013) Preference-based many-objective evolutionary

testing generates harder test cases for autonomous agents. In: Proceedings of 5th symposium on search
based software engineering (SSBSE’13), pp 245–250

Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Evo-
lutionary multi-criterion optimization of lecture notes in computer science, vol 2632. Springer, Berlin,
pp 376–390

Koziolek A, Ardagna D, Mirandola R (2013) Hybrid multi-attribute QoS optimization in component based
software systems. J Syst Softw 86(10):2542–2558

Krogmann K (2010) Reconstruction of software component architectures and behaviour models using static
and dynamic analysis. KIT Scientific Publishing

Li R, Etemaadi R, Emmerich MTM, Chaudron MRV (2011) An evolutionary multiobjective optimization
approach to component-based software architecture design. In: Proceedings of the IEEE congress on
evolutionary computation (CEC’11), pp 432–439

Luna F, González-Álvarez DL, Chicano F, Vega-Rodrı́guez MA (2014) The software project schedul-
ing problem: A scalability analysis of multi-objective metaheuristics. Appl Soft Comput 15:
136–148

Lutz R (2001) Evolving good hierarchical decompositions of complex systems. J Syst Archit 47(7):613–634
Martin R (1994) OO design quality metrics - An analysis of dependencies. In: Object-Oriented programming

systems, languages and applications (OOPSLA), pp 1–8
Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) High dimensional search-based

software engineering: finding tradeoffs among 15 objectives for automating software refactoring
using NSGA-III. In: Proceedings of the 16th annual genetic and evolutionary computation conference
(GECCO’14), pp 1263–1270

Narasimhan VL, Hendradjaya B (2007) Some theoretical considerations for a suite of metrics for the
integration of software components. Inf Sci 177(3):844–864

OMG (2010) Unified modeling language 2.4 superstructure specification. OMG. formal/2010-11-14, http://
www.omg.org/spec/UML/2.4/

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2013) The use of development history in software refac-
toring using a multi-objective evolutionary algorithm. In: Proceedings of the 15th annual genetic and
evolutionary computation conference (GECCO’13), pp 1461–1468

Praditwong K, Harman M, Yao X (2011) Software module clustering as a multi-objective search problem.
IEEE Trans Softw Eng 37(2):264–282

Praditwong K, Yao X (2007) How well do multi-objective evolutionary algorithms scale to large problems.
In: Proceedings of the IEEE congress on evolutionary computation (CEC’07), pp 3959–3966

Purshouse R, Fleming P (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans
Evol Comput 11(6):770–784

Räihä O (2010) A survey on search-based software design. Comput Sci Rev 4(4):203–249
Räihä O, Koskimies K, Makinen E (2011) Generating software architecture spectrum with multi-objective

genetic algorithms. In: Proceedings of the 3th world congress on nature and biologically inspired
computing (NaBIC’11), pp 29–36

Ramı́rez A, Romero JR, Ventura S (2014) On the performance of multiple objective evolutionary algo-
rithms for software architecture discovery. In: Proceedings of the 16th annual genetic and evolutionary
computation conference (GECCO’14), pp 1287–1294

Ramı́rez A, Romero JR, Ventura S (2015) An approach for the evolutionary discovery of software
architectures. Inf Sci 305:234–255

Romano J, Kromrey JD, Coraggio J, Showronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’s d for evaluating group differences on the nsse and other surveys?
In: Annual meeting of the Florida association of institutional research

Sant’Anna C, Figueiredo E, Garcia A, Lucena CJ (2007) On the modularity of software architectures:
a concern-driven measurement framework. In: Software architecture of LNCS, vol 4758. Springer,
pp 207–224

Sayyad A, Ammar H (2013) Pareto-optimal search-based software engineering (POSBSE): a literature
survey. In: 2nd inter. workshop on realizing artificial intelligence synergies in software engineering
(RAISE), pp 21–27

Sayyad AS, Menzies T, Ammar H (2013) On the value of user preferences in search-based software engi-
neering: a case study in software product lines. In: Proceedings of the 35th international conference on
software engineering (ICSE’13), pp 492–501

Empir Software Eng (2016) 21:2546–2600 2599

Schutze O, Lara A, Coello Coello CA (2011) On the influence of the number of objectives on the hardness
of a multiobjective optimization problem. IEEE Trans Evol Comput 15(4):444–455

Szyperski C (2002) Component software: beyond object-oriented programming, 2nd edn. Addison-Wesley,
Boston

Ventura S, Romero C, Zafra A, Delgado JA, Hervás C (2008) JCLEC: a Java framework for evolutionary
computation. Soft Comput 12(4):381–392

von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-
objective problems. Comput Optim Appl 58(3):707–756

Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective
optimization. In: Evolutionary multi-criterion optimization of LNCS, vol 4403. Springer, pp 742–756

Wang H, Jiao L, Yao X (2014) An improved two-archive algorithm for many-objective optimization. IEEE
Trans Evol Comput. To appear

Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization.
IEEE Trans Evol Comput 17(5):721–736

Yao X (2013) Some recent work on multi-objective approaches to search-based software engineering. In:
Proceedings of the 5th symposium on search based software engineering (SSBSE), pp 4–15

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE
Trans Evol Comput 11(6):712–731

Zhang Y, Harman M, Lim SL (2013) Empirical evaluation of search based requirements interaction
management. Inf Softw Technol 55(1):126–152

Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms:
a survey of the state of the art. Swarm Evol Comput 1(1):32–49

Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Parallel problem solving
from nature - PPSN VIII of LNCS, vol 3242. Springer, pp 832–842

Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Meta-
heuristics for multiobjective optimisation of lecture notes in economics and mathematical systems,
vol 535. Springer, Berlin, pp 3–37

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm.
In: Proceedings of the conference on evolutionary methods for design, optimisation and control with
applications to industrial problems, pp 95–100

Aurora Ramı́rez was born in Córdoba, Spain, in 1989. She received a M.Sc. degree in Computer Science
from the University of Córdoba, Spain, in 2012. Since 2012, she has been with the Knowledge Discovery
and Intelligent Systems Research Laboratory of the University of Córdoba, where she is currently working
towards obtaining a Ph.D., and performing research tasks. Her research interests include the application of
evolutionary computation on search-based software engineering and data mining.

2600 Empir Software Eng (2016) 21:2546–2600

José Raúl Romero received his Ph.D. in Computer Science from the University of Málaga, Spain, in 2007.
He has worked as an IT consultant for important business consulting and technology companies for several
years. He is currently an Associate Professor at the Department of Computer Science of the University of
Córdoba, Spain. His current research interests include the industrial use of intelligent systems, search-based
software engineering, the use of bio-inspired algorithms for data mining, and model-driven software devel-
opment and its applications. He has published more than 80 papers in journals and scientific conferences. Dr.
Romero is a member of the ACM, and the Spanish Technical Normalization Committee AEN/CTN 71/SC7
of AENOR. He can also be reached at http://www.jrromero.net.

Sebastián Ventura is currently an Associate Professor in the Department of Computer Science and Numeri-
cal Analysis at the University of Cordoba, where he heads the Knowledge Discovery and Intelligent Systems
Research Laboratory. He received his B.Sc. and Ph.D. degrees in Sciences from the University of Cordoba,
Spain, in 1989 and 1996, respectively. He has published more than 150 papers in journals and scientific con-
ferences, and he has edited three books and several special issues in international journals. He has also been
engaged in 12 research projects (being the coordinator of four of them) supported by the Spanish and Andalu-
sian governments and the European Union. His main research interests are in the fields of machine learning,
data mining, computational intelligence and their applications. Dr. Ventura is a senior member of the IEEE
Computer, the IEEE Computational Intelligence and the IEEE Systems, Man and Cybernetics Societies, as
well as the Association of Computing Machinery (ACM).

6.3. Interactive optimisation of architectures

6.3. Interactive multi-objective optimisation of software

architectures

Title Interactive multi-objective evolutionary optimization

of software architectures

Authors A. Ramı́rez, J.R. Romero, S. Ventura

Journal Information Sciences

Volume 463-464

Pages 92-109

Year 2018

Editorial Elsevier

DOI 10.1016/j.ins.2018.06.034

IF (JCR 2017) 4.305

Category Computer Science, Information Systems

Position 12/149 (Q1)

183

https://doi.org/10.1016/j.ins.2018.06.034

Information Sciences 463–464 (2018) 92–109

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Interactive multi-objective evolutionary optimization of

software architectures

Aurora Ramírez, José Raúl Romero

∗, Sebastián Ventura

Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba 14071, Spain

a r t i c l e i n f o

Article history:

Received 5 July 2017

Revised 27 March 2018

Accepted 12 June 2018

Available online 14 June 2018

Keywords:

Search-based software design

Interactive evolutionary computation

Multi-objective optimization

Software architecture discovery

a b s t r a c t

While working on a software specification, designers usually need to evaluate different ar-

chitectural alternatives to be sure that quality criteria are met. Even when these quality

aspects could be expressed in terms of multiple software metrics, other qualitative factors

cannot be numerically measured, but they are extracted from the engineers know-how

and prior experiences. In fact, detecting not only strong but also weak points in the differ-

ent solutions seems to fit better with the way humans make their decisions. Putting the

human in the loop brings new challenges to the search-based software engineering field,

especially for those human-centered activities within the early analysis phase. This paper

explores how the interactive evolutionary computation can serve as a basis for integrating

the humans judgment into the search process. An interactive approach is proposed to dis-

cover software architectures, in which both quantitative and qualitative criteria are applied

to guide a multi-objective evolutionary algorithm. The obtained feedback is incorporated

into the fitness function using architectural preferences allowing the algorithm to discern

between promising and poor solutions. Experimentation with real users has revealed that

the proposed interaction mechanism can effectively guide the search towards those regions

of the search space that are of real interest to the expert.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Making decisions is an intrinsic aspect of any software design task, since engineers have to choose the best design alter-

native among all the possibilities on the basis of both functional and non-functional requirements. During the architectural

analysis, abstract artifacts need to be precisely identified and specified in order to efficiently guide the development, evo-

lution and deployment of the overall system. Considering such an early stage, architectural decisions become even more

challenging due to the lack of knowledge about the system but, at the same time, they are crucial to fulfill the many quality

criteria imposed [12] .

Artificial intelligence techniques and, more specifically, metaheuristics, can support software engineers in their decision

processes by providing them with effective methods to explore a great deal of software designs, each one determined by

a different trade-off among the required quality aspects. Such a scenario can be viewed as one of the goals of the search-

based software engineering (SBSE) field [14] , in which optimization techniques are applied to the resolution of software

engineering (SE) tasks conveniently reformulated as search problems. However, solving human-centered activities in a fully

∗ Corresponding author.

E-mail addresses: aramirez@uco.es (A. Ramírez), jrromero@uco.es (J.R. Romero), sventura@uco.es (S. Ventura).

https://doi.org/10.1016/j.ins.2018.06.034

0020-0255/© 2018 Elsevier Inc. All rights reserved.

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 93

automated way seems to be unrealistic, especially for those related to the analysis phase. Certainly, trying to capture the

richness of human knowledge only by means of software metrics still represents an unresolved matter to the SE community

[32] . Hence, most of the evaluation methods proposed at the architectural level strongly rely on the expert’s judgment [10] ,

making extremely difficult to precisely formulate a quantitative fitness function.

Given the relevance of the software architect for the design process, search-based approaches should benefit from his/her

knowledge and expertise in order to address the optimization problem in the same way s/he would do it. Interactive op-

timization [21] constitutes a compelling paradigm here. It allows the human to actively participate in such a way that the

expert’s opinion can influence both the problem formulation and the search process, allowing the adaptation of the interac-

tion mechanism to the specific requirements of the application domain.

Due to the many various aspects involved with architectural analysis, related optimization problems often require the

definition of multiple conflicting objectives. In this sense, the integration of interactive approaches into multi-objective evo-

lutionary algorithms (MOEAs) [7] needs further considerations. Since a MOEA requires the presence of a decision maker

(DM) in order to choose the final solution among the set of alternatives returned, a logical step would be to allow the DM

to dynamically express his/her preferences during the search process [23] .

Even when maintaining a multi-objective perspective for architectural optimization is clearly necessary, conceiving an

interaction mechanism only founded on expressing opinions about the objective space seems to be insufficient. In addition,

comparing several architectural models becomes a hard task due to the information overload. However, engineers would feel

more confident when they strictly evaluate qualitative aspects of the automatically generated architectural solutions [31] .

This approach permits them to extend the scope of the feedback provided to the algorithm, as well as to adapt the sort

of requested opinion as the search elapses. For instance, delivering both positive and negative judgments, which perfectly

matches with the human way of acting, can assist the algorithm to discern between interesting and poor solutions with

respect to the expert’s understanding.

In this context, this paper proposes an interactive evolutionary approach to address the so-called discovery of

component-based software architectures [28] . In this problem several software metrics based on maintainability are con-

sidered for the evaluation of structural aspects of the components and interfaces that constitute the early software speci-

fication. Nevertheless, assessing the adequacy of these highly-abstract software artifacts should also rely on the engineer’s

feedback. With these factors in mind, the following two research questions (RQ) were stated:

RQ1: How can the qualitative judgment of the engineer be integrated into the evolutionary discovery of software architectures?

The proposed interactive approach should consider the multi-objective nature of the optimization problem and define an

appropriate evaluation mechanism, in which both qualitative and quantitative evaluation criteria could be put together.

RQ2: Does putting the human in the loop involve a significant improvement compared with not considering him/her along

the optimization process? The interactive system should strike a balance between the evolutionary performance, measured

by usual quality indicators, and the practical incentive for the software engineer in terms of a reasonable number of high-

quality solutions satisfying his/her preferences. Such an analysis requires conducting an empirical study with a substantial

number of participants, where aspects like usefulness and intuitiveness should be also evaluated.

A main contribution of this work is the combination of qualitative and quantitative evaluation criteria. On the one hand,

an interactive system manages design decisions entered by the engineer to either intensify the search towards specific

regions of the search space or, on the contrary, escape from those that do not meet his/her expectations. More specifically,

each design decision is mapped into a function, named architectural preference , that reinforces the fitness value of solutions

satisfying the corresponding qualitative characteristic. On the other hand, the quantitative evaluation in terms of software

metrics is kept as a means for achieving promising candidate solutions from a multi-objective perspective. Additionally, it

serves to control the inherent uncertainty that arise when dealing with human reasoning, such as fatigue and inconsistency

[25] . Reports obtained from real user experiences show that the interactive algorithm here presented is able to adapt the

search as new design decisions are made.

The rest of the paper is structured as follows. Section 2 briefly introduces software architecture optimization methods,

as well as the concepts and terminology related to the interactive evolutionary computation (IEC) and its application to

SBSE. Section 3 describes the optimization problem under study, while the interactive evolutionary approach for discovering

software architectures is detailed in Section 4 . Next, Section 5 presents the empirical method and experimental framework.

Experiments assessing both the evolutionary performance and the applicability of the approach are presented in Section 6 .

Finally, threats to validity are discussed in Section 7 , and Section 8 concludes.

2. Background

This section explains the basis of how search techniques have been previously applied to address architectural design

problems, describing some non-interactive optimization approaches. However, interactive optimization systems propose a

completely different perspective to face optimization problems, involving the human in the search process. This fact clearly

influences their design and implementation, briefly discussed in this section too. Next, some related work focused on the

use of interactive approaches in SBSE is introduced.

94 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

2.1. Software architecture optimization

During early analysis, the conception of a software architecture satisfying both the functional and non-functional require-

ments constitutes an important activity. Apart from describing the abstract structure of the system, an architecture exposes

the design principles that should guide its subsequent development and evolution [13] . Similarly, architectural models rep-

resent essential artifacts when addressing other activities of the software life cycle, such as resource allocation during de-

ployment or reconstruction as part of maintenance and migration [11] . Carrying out these tasks as optimization problems is

the idea behind the application of software architecture optimization methods [1] .

Optimization methods like metaheuristics can be used to arrange elements of an architectural specification or semi-

automatically derive new models. This is done according to predefined quality attributes and other existing constraints. The

advantage of applying these methods lies on their high capacity to explore a wide set of design alternatives, only requir-

ing minor adaptation in order to properly manage the problem-specific decision variables. Nevertheless, the abstract and

cross-cutting nature of software architectures need to be thoroughly observed to satisfactorily support the decision-making

process [12] , in which it may influence other factors like human intuition, conflicting goals or the uncertainty inherent to

this early stage.

Software architecture optimization has recently emerged as an upward trend in SBSE, providing the necessary support to

software engineers when dealing with complex design scenarios. Recent advances reveal that multi-objective evolutionary

algorithms can be effectively applied to enhance architectural artifacts at different stages of the design process. For instance,

NSGA-II has served to assist engineers in the production of architectural documentation [9] . A hybrid approach considering

analytical optimization and a variant of NSGA-II was also presented to cope with the selection and allocation of software

components during deployment [16] . Similarly, reconfiguration after deployment was defined as a 5-objective optimization

problem to be solved by a specific genetic algorithm [38] .

2.2. Interactive optimization

Interactive optimization encompasses all those search methods in which a human explicitly takes part in the search [21] .

The need for involving the human within the process can be motivated by many different factors, such as the inability to

capture complex features around the problem formulation or the lack of an appropriate quantitative fitness function. This

latter issue constitutes a major concern when attempting to solve creative tasks by means of evolutionary computation

(EC), so it is not surprising that initial effort s were mostly focused on leaving the responsibility for evaluating candidate

solutions to humans [36] . In these cases, showing a subset of the population and then interpolating the fitness for the rest

of individuals is a common strategy to reduce the cognitive burden.

When addressing multi-objective problems (MOPs), DMs are expected to establish the desired trade-off among objectives

either at the beginning of, during or after the search. To this end, several methods has been proposed, including the nego-

tiation of the importance of each objective and the definition of reference points [23] . The gathered information would be

used to redirect the search towards certain regions of the Pareto front (PF) or even to learn from the DM’s preferences [5] .

Although these mechanisms have been already integrated into some existing MOEAs, other algorithms specifically conceived

to deal with MOPs from an interactive perspective can be also found in the literature. A representative approach is iTDEA

(interactive territory defining evolutionary algorithm) [15] , which progressively delimits preferred regions of the PF around

the most interesting solutions. More specifically, some solutions are presented to the DM at certain moments of the search

process in order to choose the best. According to the feedback obtained, iTDEA updates the size of the territory associated

to similar solutions, which determines the permitted distance between the individuals stored in an external archive.

Notice that interactive multi-objective optimization usually restricts the human’s decisions to the objective space. How-

ever, humans may feel uncertainty about their own opinion when the definition of the objective functions is not easily

understandable. Therefore, contributing with opinions on qualitative criteria would fit better in those cases where the in-

terest lies on aspects of the solution to be evaluated from the expert’s point of view. This approach is considered in [6] ,

where subjective criteria are considered to define an objective function that is computed together with another function

determined by quantitative criteria. In each iteration, the expert rates each solution using a 0–9 scale and can perform ad-

ditional actions such as altering solutions. Other ways of integrating qualitative information are based on fuzzy modeling of

user’s preferences and rule-based systems [36] .

2.3. Interactive approaches in SBSE

Software engineering seems to represent a natural scenario for interactive optimization, since most of its activities are

traditionally carried out by human beings. In fact, real experiences reported by recent works confirm the suitability of

these kind of methods [18,34] , showing the interest of the SE community in the development of decision support systems

under the SBSE paradigm. A recent review of the state-of-the-art [27] also highlights that evaluation mechanisms based

on qualitative preferences, whether they have been freely expressed by the expert or selected from a set of options, are

preferred over the direct assignment of fitness values.

Software engineers’ abilities and know-how are specially important when tackling analysis and design tasks. Therefore, it

makes sense that the majority of the interactive approaches proposed in SBSE belong to the so-called search-based software

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 95

design subfield [26] . For instance, interactive conceptual object-oriented design has been successfully addressed using both

EC [33] and ant colony optimization (ACO) [34] . Here, the authors examine the influence of aesthetic criteria, defined in

terms of elegance metrics, when class diagrams are derived from use cases. This work was then extended to allow the

designer to freeze parts of the solution, demonstrating the effectiveness of ACO to obtain high-quality solutions after a

small number of iterations.

Architecture synthesis [37] and software refactoring [24] are other examples of design problems addressed using inter-

active approaches. On the one hand, the interaction mechanism employed in [37] allows the architect to freeze classes and

design patterns in order to compose the low-level architecture of a software system. Using class diagrams to represent the

solutions, they are only evaluated in terms of quantitative software metrics. On the other hand, a multi-objective approach

is used in [24] with the aim of improving code quality. Firstly, NSGA-II is responsible for approximating the whole PF. Then,

an interactive mechanism assists the engineer in identifying the most interesting refactoring sequences, as they represent

the input information required by a local search procedure.

3. Problem fundamentals

This section describes in detail the search problem for the evolutionary discovery of software architectures. Adopted

from our previous work [28] , where an initial non-interactive evolutionary solution was proposed, the encoding of candidate

solutions and the metrics for their quantitative evaluation are also explained.

3.1. The search problem

Understanding the original architecture of a system as it evolves becomes a complex task if the corresponding analysis

information is not properly generated and maintained. There are also situations in which the software engineer just needs

to specify software artifacts at a higher level of abstraction as an important step prior to the addition of new functionality

or the migration of the system. Software components represent abstract units of construction providing well-defined ser-

vices that can be accessed through their interfaces [35] . Promoting reusability is the ultimate goal of organizing the system

structure this way.

In this context, the discovery of component-based software architectures consists in identifying the high-level structure

of a software system, in terms of its components and interfaces, from a previous analysis model represented by a UML 2

class diagram [28] . More specifically, the discovery process can be defined according to the following rules:

• A component is derived from a cohesive group of classes, all of them working together in order to implement its behav-

ior.
• Directed relationships among classes belonging to different com ponents serve to identify interfaces, since they represent

the provision or need of functionalities. Public methods within classes are used to determine the interface operations.

When two or more classes are involved in an interaction between a pair of components, all their public methods would

specify a unique interface. Notice that the previous model described in [28] established that each pair of related classes

represents a candidate interface. In contrast, the approach here presented has been improved to increase flexibility in

such a way that, if the same class is required by other components, its public methods are properly separated following

reusability criteria.
• A connector represents the linking between different components in terms of their matching interfaces. As a consequence

of how interfaces are now derived, a connector could link a provided interface to several required interfaces.

Following these rules, the search algorithm is able to explore the decision space looking for the optimal allocation of

classes and their relationships into components and interfaces. Even so, the abilities and know-how of the software engineer

play a key role when envisioning the main functionalities of large software systems and their mutual interactions. Thus, the

discovery of software architectures is still a human-centered and iterative task.

3.2. Encoding and initialization

Each candidate solution represents a complete component-based software architecture, whose phenotypic expression

corresponds to its representation as a UML 2 component diagram. As for the search, each solution is encoded using a tree

structure, whose hierarchical composition perfectly reflects how an artifact, e.g. a component, is comprised of elements of a

lower level, e.g. classes and interfaces.

All the encoded solutions should satisfy a number of constraints in order to represent feasible architectural models, as

defined next:

• Each class must be only located into one component. Components cannot be empty.
• Components should define at least one interface, either required or provided.
• A pair of components could not provide services to each other, so that they would be mutually dependent.

The population is initialized by arbitrarily distributing classes from the input diagram into a random number of com-

ponents within the range set by the software engineer. The process controls that classes are not replicated and no empty

96 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

Table 1

Software metrics to evaluate component-based architectures.

ICD = 1 /n · ∑ n
i =1 ((# cl t − # cl i) / # cl t) ·

(
CI in

i
/ (CI in

i
+ CI out

i
)
)

ERP =

∑ n
i =1

∑ n
j= i +1 (w as · # as i j + w ag · # ag i j + w co · # co i j + w ge · # ge i j)

GCR = # cgroups/n

component is returned. However, constraints regarding inadmissible interactions among components are not checked. These

unfeasible individuals will be penalized in terms of their fitness value, making them progressively disappear.

3.3. Software metrics for quantitative evaluation

Dealing with several quality attributes like modularity or reusability in the same design is a usual situation for the

architect. Hence, the discovery of software architectures can be addressed from a multi-objective perspective, where quality

metrics measuring such attributes need to be simultaneously optimized. Table 1 shows the three metrics, i.e. objectives,

used in this work:

• Intra-modular Coupling Density (ICD) looks for a trade-off between coupling and cohesion. For each component i it calcu-

lates the ratio between internal (CI in
i

) and external (CI out
i

) relations, also considering the number of inner classes (# cl i).

cl t stands for the total number of classes in the full model, and n is the number of components. This metric has to be

maximized, and varies in the range [0,1].
• External Relations Penalty (ERP) counts the number of relationships between classes of different com ponents, i and j , that

cannot be declared with a well-defined interface. This situation mostly occurs when the navigability of associations (as),

aggregations (ag) or compositions (co) is not explicitly defined in the source analysis model. Generalization relationships

(ge) between classes located in different com ponents, e.g. representing a data abstraction, may also turn into external

dependencies. The software architect can specify how detrimental a dependency caused by each kind of relationship is

for the resulting architecture in terms of their respective weights (w x). ERP should be minimized, 0 being the optimum.
• Groups/Components Ratio (GCR) defines the ratio between the number of groups of interconnected classes (# cgroups) and

the number of components in the entire architecture (n). A well-defined component is expected to contain a unique

group of classes, so the optimal value is 1. This metric should be minimized.

4. Interactive model for the evolutionary discovery of software architectures

As stated in RQ1 , considering the feedback from the software engineer into the discovery of software architectures would

permit adding new valuable qualitative information to the search process. With this aim, this section provides an overview

of the proposed IEC model. Then, a more detailed description of its essential elements is presented, including the solu-

tion evaluation method based on both quantitative and qualitative criteria, the mechanisms enabling the management and

transformation of solutions, and how human interaction is conducted.

4.1. Overview of the approach

Fig. 1 shows the proposed evolutionary model (henceforth named iMOEA), which is composed of two main elements:

the algorithm conducting the automatic search of architectural models, and the interaction module that coordinates the

communication between the algorithm and the software engineer. More specifically, the multi-objective evolutionary algo-

rithm here proposed is based on a steady-state scheme, and makes use of a sophisticated diversity preservation technique

similar to hyperboxes. Both aspects are relevant according to our previous findings [30] , since they provided a more appro-

priate convergence and a control mechanism to reduce the archive size, respectively. In addition, the algorithm defines a

specific evaluation method that combines quantitative (software metrics) and qualitative (architectural preferences) criteria.

The resulting fitness function is then used as one criterion to compare solutions along the search process.

Firstly, the algorithm initializes the population according to the procedure detailed in Section 3.2 . Notice that, at that

time, solutions can be evaluated by only meeting quantitative criteria, i.e. the software metrics serving as objectives (see

Section 3.3). An initial archive is also created from the set of non-dominated solutions. Then, the evolutionary search follows

the usual execution flow: parent selection, genetic operators, replacement and archive update. The search continues until a

stopping condition is met.

At certain moments of the evolution, the algorithm momentarily stops the search to obtain feedback from the software

engineer. During the interaction, the algorithm selects a subset of the population to be evaluated in terms of qualitative

criteria. Architectural preferences are then defined in such a way that the algorithm will be able to numerically determine

to what extent each candidate solution satisfies these criteria. The engineer can also perform additional actions , such as

freezing some specific elements of the architectural model under evaluation or even stopping the search. Notice that his/her

choice might influence the course of the evolution in steps like the generation of offspring. After the first interaction, the

evaluation phase begins to consider both quantitative and qualitative criteria, incorporating the expert’s perspective in the

optimization process.

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 97

Fig. 1. Proposed interactive evolutionary model.

4.2. Fitness function: putting together human decisions and software metrics

The lack of consistency and the cognitive burden, which are inherent in any interactive system, become even more critical

when dealing with software architectures due to the presence of highly abstract artifacts. All this, combined with the huge

amount of solutions that an algorithm can generate in one single execution, implies that relying only on the engineer’s

judgment to assess the quality of the solutions would be impractical. Thus, an effective evaluation mechanism requires

striking the right balance between objective and subjective criteria. Software design metrics have proven to be effective in

identifying the overall functional blocks of the architecture [28] . As the design progresses and a more fine-tuned design is

required, the participation of the expert becomes more relevant. Therefore, a reward/penalization approach [27] is adopted

to capture the engineer’s expectations. Given that both qualitative and quantitative assessments should be combined and

computed, the feedback provided by the expert should be then mapped into numerical preference functions. With this

aim, Eq. (1) defines the fitness function of a solution s as a weighted sum of two terms, f obj and f sub . Weights w obj and

w sub are considered in order to let the engineer control the relative importance of the objective and subjective evaluation,

respectively. This function varies in the range [0,1] and should be minimized. Next, each component of the fitness function

is explained in detail.

f itness (s) = w ob j · f ob j (s) + w sub · f sub (s) (1)

4.2.1. Objective evaluation: software metrics

The objective component, f obj , requires the definition of a set of software metrics, each one representing a conflicting

objective. Without limiting the generality, f obj considers that all of them should be minimized and vary in the range [0,1].

Consequently ERP and GCR have been scaled accordingly. Their theoretical upper limit will depend on the number of rela-

tionships and the number of classes contained by the source analysis model, respectively. In addition, ICD values need to be

inverted.

Given that obtaining a weighted sum of the objective values would target the search towards a unique point in the PF, a

different kind of aggregation function is required here in order to transform the metric information into a single value. With

this aim, f obj uses the maximin function [4] . For a given set of objectives k ∈ [1, K] this function returns a value in the range

[−1,1], reporting on both the dominance and the diversity of a solution with respect to a reference set Z , e.g. the whole

population. On the one hand, the sign of the result serves to distinguish between non-dominated (< 0), weakly-dominated

(= 0) and dominated solutions (> 0). On the other hand, the specific value gives an idea of the proximity between non-

dominated solutions, values close to -1 being preferred. For a dominated solution, the result represents its distance to the PF,

values close to 0 meaning proximity. Both properties serve to precisely qualify a candidate solution from a multi-objective

perspective and, at the same time, the obtained values can be easily interpreted. Eq. (2) shows the formulation of the

maximin function, properly adapted to return a value in the range [0,1], as required by Eq. (1) . f s
k

represents the value of the

objective k for the solution under evaluation (s), whereas f z
k

represents the same value but for a solution, z , belonging to

the reference set (Z). Notice that the maximin function inspects all the search directions in order to find which one allows

98 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

the solution s to be far from being dominated.

f ob j (s) = (1 + max z � = s (min k (f s k − f z k))) / 2 ∀ z ∈ Z (2)

4.2.2. Subjective evaluation: architectural preferences

To quantify the subjective component, f sub , the algorithm makes use of the set of design decisions compiled after each in-

teraction. Taking a candidate solution as a reference, the engineer might highlight a qualitative aspect that he/she considers

relevant to appear in a final solution, or focus his/her attention on features to be avoided. Notice that qualitative criteria

will mostly be focused on phenotypic aspects of a solution, e.g. whether a software component is meaningful. Once the

association between the design decision and the architectural preference has been established, the algorithm is responsible

for promoting the solutions that satisfy positive preferences and, at the same time, penalizing those presenting undesirable

characteristics according to the negative preferences. To do this, pref p in Eq. (3) measures to what extent an arbitrary solu-

tion s satisfies the architectural preference p . The returning value, i.e. the degree of achievement , lies in the range [0,1] and

should be maximized, regardless of whether the engineer’s opinion is positive or negative. In addition, each preference has

an associated weight, w p , which represents the engineer’s confidence in his/her decision. This can be expressed using the

Likert-type scale, though the corresponding weight should be scaled in order to ensure that the result remains in the range

[0,1]. Here, weights are relative to a unique interaction, so the specific value is computed according to the confidence levels

associated to all the evaluations made in the same interaction.

f sub (s) = 1 − 1 /P ·
P ∑

p=1

(w p · pre f p (s)) (3)

At different interactions, the expert will express his/her opinion on either the specific composition of the solutions under

evaluation or the values of the returned software metrics. The following list compiles the preference alternatives available

for the engineer:

1. No preference . The expert skips providing any opinion.

2. Best component . For a given solution, the engineer selects the best component, c + , according to its structure. A preference

function pref bc will determine to which extent there are other individuals having a similar component (see Eq. (4)). For

each component c of a solution, the function cl () extracts its classes, so that the resulting set is compared with the set

of classes contained in c + . With this aim, the Jaccard index J is calculated (see Eq. (5)). Given a pair of sets, A and B , this

similarity measure calculates the ratio between the number of common elements and the number of different elements.

Finally, the maximum similarity value among the n components comprising the architectural solution is returned as the

degree of achievement of this preference.

pre f bc = max { J(cl(c) , cl(c +)) } ∀ c ∈ [1 , n] (4)

J(A, B) = | A ∩ B | / | A ∪ B | (5)

3. Worst component . In contrast to the previous preference, this preference allows the engineer to express a negative opinion

on an observed component c −. Here, the corresponding preference function pref wc penalizes those solutions having a

component similar to c − (see Eq. (6)).

pre f wc = max { 1 − J(cl(c) , cl(c −)) } ∀ c ∈ [1 , n] (6)

4. Best provided interface . The expert may identify an interface p + of interest for the service interaction specification, even

when the component providing it is not properly formed yet. Similar to pref bc , the preference function defined by

Eq. (7) computes the Jaccard index, in this case being used to compare sets of interface operations. The function op (i)

serves to extract the operations from an interface i , while in (c) compiles the interfaces provided by a component c .

pre f bi = max { J(op(in (c)) , op(p +)) } ∀ c ∈ [1 , n] (7)

5. Worst provided interface . Similar to pref wc , it focuses on interfaces instead of components. Eq. (8) shows the expression

that calculates the preference function pref wi , p − being the rejected interface.

pre f wi = max { 1 − J(op(in (c)) , op(p −)) } ∀ c ∈ [1 , n] (8)

6. Number of components . The engineer may be interested in leading the search for solutions with a preferred number of

components n + . In this case, pref nc calculates the difference between this number and the current number of components

of the given solution, n . In Eq. (9) , n min and n max are the limits initially set by the engineer to the size of the architecture.

An evolutionary consequence, which remains transparent to the expert, is the obvious reduction of the search space.

pre f nc =

{
(n − n min) / (n

+ − n min) if n < n

+

1 − ((n − n

+) / (n max − n)) if n ≥ n

+ (9)

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 99

Fig. 2. An illustrative example of ASF values.

7. Metric in a range . This preference helps the engineer to determine the expected values—or range of values—of a given

metric m (see Table 1 in Section 3.3). Having set a maximum (m max) and a minimum (m min) value for m , the preference

pref mr penalizes any solution s with a metric value m

s outside this interval. On the contrary, values close to the midrange

(m mid) are rewarded, as shown in Eq. (10) .

m mid = (m max − m min) / 2 (10)

pre f mr =

⎧ ⎨

⎩

0 if m

s < m min

1 − (m

s − m mid) /m mid if m

s ∈ [m min , m max]

0 if m

s > m max

8. Aspiration levels . This preference allows the engineer to set the target values for all the metrics. From the evolutionary

perspective, aspiration levels [23] are appropriate to guide the search towards solutions whose objective values are close

to the DM expectations. Achievement scalarizing functions (ASFs) [22] are usually applied to determine to what extent

a solution s satisfies the aspiration levels represented in the form of a reference point z ∗. The ASF here selected, shown

in Eq. (11) , computes a weighted distance in each search direction k so that the overall preference pref al promotes those

solutions with a small ASF value. Notice that solutions having better objective values, f s
k
, than z ∗ obtain the maximum

degree of achievement for this preference k . Assuming equal weights, w k , Fig. 2 illustrates both cases. The ASF value for

s 1 would be determined by the distance in axis F 1 . ASF is lower than 0 for s 2 as it has better objective values than z ∗.

Both the reference point and the weights are provided by the software engineer.

ASF = max { w k · (f s
k

− z ∗
k
) } (11)

pre f al =

{
1 if ASF ≤ 0

1 − ASF if ASF > 0

4.3. Selection, mutation and replacement strategies

Focusing on the selection mechanism, two parents are selected using binary tournament, one from the population and

another from the archive. Since the competition is based on their fitness values, both quantitative and qualitative criteria

influence the selection process.

Then, the algorithm applies the mutation operator in order to produce two offspring. The mutation operator simulates

five different architectural transformations: adding a component (a); removing a component (r); merging two components

(m); splitting a component (s); and moving a class (c) [28] . For each individual, the mutator executes a probabilistic roulette

with these operations ensuring that any architectural output will be comprised of an allowed number of components, ac-

cording to the aforementioned thresholds. After selecting an operation and applying it, any mutant not satisfying all the

constraints is discarded, and the original solution mutated once again. This process is performed for a maximum of 10 at-

tempts. If the mutator still fails to find a feasible individual, the initial solution is returned. In addition, the operator should

be aware of the fact that individuals can contain frozen parts that should not be modified. On the other hand, crossover is

not considered because it would hardly generate feasible solutions [28] .

Finally, the replacement strategy causes a competition among offspring and current individuals, promoting the survival

of those solutions having better fitness values. Solutions discarded by the engineer are progressively removed from the

100 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

population in order to keep the population size constant. Additionally, if three or more solutions are marked to be removed,

two of them would be eliminated in the current generation, while the others will be conveniently penalized in order to

ensure their removal in future generations.

4.4. Archive update mechanism

Algorithm 1 describes the procedure to update the archive, which is partially based on the definition of territories pro-

Algorithm 1 Update archive.

Require: population , archi v e
1: archi v e ′ ← archi v e
2: for all ind ∈ population do

3: if ind / ∈ archi v e ′ then

4: accept ← false

5: d ominated ← solutionsDominatedBy(ind)

6: r ← preferredRegion(ind)

7: t ← territorySize(r)

8: s ← closerSolution(archi v e ′ , ind)

9: d ← distance(s, ind)

10: if ind was selected by the user then

11: accept ← true

12: if d < t then

13: reduceTerritorySize(r, t − d)

14: end if

15: else

16: if ind is non-dominated then

17: if d > t then

18: accept ← true

19: else

20: n ← numberOverlappingTerritories(ind)

21: if n == 1 AND f sub (ind) > f sub (s) then

22: accept ← true

23: archi v e ′ ← (archi v e ′ ∩ ¬ s)

24: end if

25: end if

26: end if

27: end if

28: end if

29: if accept then

30: archi v e ′ ← (archi v e ′ ∩ ¬ dominated ∪ ind)

31: end if

32: end for

33: return archi v e ′

posed by iTDEA [15] . However, there are some aspects of the original procedure that have been conveniently adapted in

order to apply the proposed fitness function when determining which solutions should be kept in the archive after each

generation. Firstly, the method checks that the individual was not added beforehand (line 3). Secondly, it extracts the set

of dominated solutions (line 5). Then, the method proceeds like iTDEA (lines 6–9). More specifically, a preferred region for

the given individual (r) is determined according to a set of weights associated to each objective function [15] . After finding

the archive member s closer to the individual (line 8), the rectilinear distance between them is calculated (line 9). At this

point, the decision about whether ind should replace s is not only based on that distance, but also on how much each one

satisfies the engineer’s preferences. It is a key difference with respect to iTDEA, which would simply discard ind if it lies on

the territory associated to s . The complete acceptance criteria are defined as follows:

• A solution of interest to the engineer is always accepted, regardless of whether it is dominated or not (line 11). In

addition, they cannot be removed in subsequent generations. The territory size of the associated region is conveniently

reduced when the solution lies on the territory of another solution (lines 12–14).
• Replacing one non-dominated solution with another belonging to the same region will be permitted if it implies improv-

ing f sub (lines 19–26). It should be noted that if the solution overlaps with the territory of two or more archive members

(line 20), the action will not be performed in order to avoid discarding an excessive number of solutions.

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 101

• Dominated solutions are only removed when the individual whose acceptance is being checked is finally added (lines

31–33), as suggested in [15] .

After each interaction, the algorithm reduces the territory size for the region allocating the best solution in terms of f sub ,

allowing a higher density of solutions around.

4.5. Interaction mechanism

There are two relevant factors that may affect users’ fatigue and their loss of interest: the frequency of interaction and

the mechanism of selection of solutions. To prevent fatigue, the engineer is able to set the desired number of interaction

steps. Then, how these interactions are distributed along the search is automatically determined according to Koksalan and

Karahan [15] . Given a maximum number of generations, g, g /3 generations are executed before the first interaction in order

to approximate the PF, while g /6 iterations are performed by the algorithm after the last interaction to ensure that human

decisions are properly propagated. Between these two points, the user will be able to take action at regular intervals.

A clustering approach is applied in order to select the most representative solutions of the overall population. Notice that

it is also important to provide software engineers with information regarding the improvements resulting from their deci-

sions. Therefore, if m solutions are required to be displayed to the expert, a kMeans++ algorithm [3] selects m − 1 solutions,

looking for diversity with respect to their objective values. The remaining solution is the one with the highest f sub value.

Engineers are also allowed to perform additional actions. Firstly, the most promising solutions can be directly saved to the

archive, not only implying that they will be returned at the end of the search process, but also that they could be selected

as parents more frequently. Secondly, solutions not satisfying the engineer’s expectations could be identified for removal in

the replacement phase. Finally, parts of an individual genotype could be frozen as a way to facilitate their appearance in

other solutions.

5. Experimental framework

The IEC model has been coded in Java using JCLEC-MOEA [29] . In addition, some supporting libraries have been used

to process data, 1 extract analysis information from XMI files 2 and implement the clustering procedure. 3 These algorithm

executions aimed at assessing the performance of the evolutionary search were run on an Ubuntu 16.4 computer with 8

cores Intel Core i7 2.67-GHz and 7.79-GB RAM.

The rest of this section explains the empirical methodology conducted to properly respond to research questions RQ1

and RQ2 . The parameter set-up and problem instances are detailed next.

5.1. Methodology

The performance of a new MOEA is usually assessed in terms of quality indicators. Nevertheless, interactive approaches

also imply putting the human in the loop in order to perform their evaluation. Both ways are complementary, though the

latter requires conducting some particular experimentation and analysis.

Firstly, as posed in RQ2 , the performance of the multi-objective evolutionary approach has to be proved before the hu-

man getting involved. With this aim, a parameter study is required to analyze the behavior of the algorithm regarding

the returned number of solutions and the expected trade-off between their quality and diversity. These properties will be

evaluated using two quality indicators, hypervolume (HV) and spacing (S) [7] . In addition, the evolutionary performance is

compared against the well-known NSGA-II algorithm [8] . In both cases, algorithms will be executed 30 times with different

random seeds over all the available problem instances.

The significance of the outcomes [2] is assessed by applying non-parametric statistical tests. More specifically, the

Wilcoxon Signed-Rank test will be executed to perform pairwise comparisons, while the Aligned Friedman test will be

used when the experiment involves more than two algorithms. An effect size measurement is also considered to assess the

performance gain, the Cliff’s Delta test being selected to this end. For all experiments, the null hypothesis, H 0 , establishes

that the corresponding algorithms perform equally well at a specific level of significance, 1- α.

Once the non-interactive algorithm (hereinafter referred to as bMOEA, base MOEA) is properly analyzed and tuned, the

interactive approach (iMOEA) will be empirically assessed through the participation of 9 people. All the participants are

either students or professionals in the field of computer science, with previous background in software development for

a period of 2–17 years. More specifically, the experiment is conducted by 1 undergraduate student, 2 master students, 4

software engineers (postgraduates) and 2 academics (PhDs), who face a specific real-world problem instance named Dat-

apro4j (see further details in Section 5.2). This software system has been selected as case study because its analysis model

could be understandable by the engineer for the time required to conclude the experiment. Additionally, about 33% of the

participants already had some previous development experience with Datapro4j in one form or another.

1 http://www.uco.es/grupos/kdis/datapro4j .
2 http://www.sdmetrics.com/OpenCore.html .
3 http://commons.apache.org/proper/commons-math/ .

102 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

Table 2

Required parameters and their values.

Parameter Value

Population size 150

Maximum number of evaluations 24,0 0 0

Minimum number of components 2

Maximum number of components 6

ERP metric weights (w as , w ag , w co , w ge) 1, 2, 3, 5

Mutation weights (w a , w r , w m , w s , w c) 0.2, 0.1, 0.1, 0.3, 0.3

Fitness weights (w obj , w sub) 0.5, 0.5

Initial territory size (τ 0) 0.01, 0.05, 0.1

Final territory size (τ H) 0.005

Decreasing factor (λ) 0.5

Number of interactions 3

Number of solutions per interaction 3

Interactive sessions have been planned as follows. At the beginning, participants are instructed in the purpose and con-

tent of the experiment, as well as in the use of the interactive tool, including the architectural preferences and actions.

Given that users are able to visualize the entire architectural model, special considerations are taken to reduce the inher-

ent cognitive burden. On the one hand, internal information about classes is not shown as it remains unaltered from one

solution to another, and a printed copy of the input class diagram is also provided during the session. On the other hand,

the number of components is restricted according to the configuration parameters, while the mechanism proposed to derive

interfaces ensures that the number of interfaces per component is not excessive.

Each participant executes a single run with the best configuration obtained after the parameter study and a different

random seed. The interaction scheme consists of 3 stops for the user to evaluate 3 different solutions each time. This way

all the participants evaluate the same number of solutions and every interactive execution will provide intermediate results

under the same conditions.

Exhaustive execution logs are generated to properly study the behavior of participants and receive relevant feedback from

their experience. During the experiment, participants are requested to write down the reasons of their decisions. Similarly,

at the very end of the session, they should fill in a form with additional questions about their experience and impressions,

as well as free comments or suggestions.

The two planned experiments, i.e. the parameter study and the empirical investigation, serve to respond RQ2 . On the

one hand, the analysis in terms of quality indicators proves the competitiveness of the algorithm from an evolutionary

point of view. On the other hand, the usefulness and intuitiveness of the approach can be derived from the information

gathered from the interactive session. Furthermore, the influence of the participants’ opinion with respect to the sort of the

solutions found and the level of metric optimization is assessed by comparing the outcomes of bMOEA and iMOEA. Notice

that, in this problem, any configuration is a solution, with the only exception of unfeasible individuals. Therefore, the fitness

function is intended to simulate the software engineer’s behavior in terms of his/her design preferences, which could not be

formulated beforehand, as they are expected to be indicated as the search progresses. Consequently, the solutions returned

do not necessarily have to be Pareto optimal, but a reflection close to the expectations of the expert.

5.2. Algorithm set-up

Table 2 shows the list of parameters and their respective values. Overall parameters like the population size and the stop-

ping criteria, as well as those being specific to the problem under study, have been set according to our previous studies

[28,30] . Same weights were applied to the objective and subjective evaluations. Furthermore, the influence of the territory

size (τ) on the update mechanism of the archive deserves special attention, since it might affect the number of resulting

solutions. In this case, three different initial values of τ are tested during the non-interactive experiment, while recom-

mendations from the authors of iTDEA are followed regarding the mechanism to update it after each interaction [15] . As

mentioned in Section 5.1 , the interaction scheme ensures that all users interact 3 times with the algorithm, sequentially

showing 3 different solutions each time.

Table 3 shows the quantitative characteristics of each problem instance. They provide a wide spectrum of complexity re-

garding the number of classes and relationships, which are classified into associations (as), aggregations (ag), compositions

(co), generalizations (ge) and dependencies (de). The last column indicates the number of candidate interfaces, i.e. the num-

ber of relationships whose navigability has been explicitly specified. With the exception of Aqualush, 4 a benchmark used for

educational purposes, all the problem instances represent working software systems. 5

4 http://www.ifi.uzh.ch/en/rerg/research/aqualush.html .
5 http://www.java-source.net/ .

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 103

Table 3

Problem instances and their characteristics.

Problem Classes Relationships Interfaces

as ag co ge de

Aqualush 58 69 0 0 20 6 74

Datapro4j 59 3 3 2 49 4 12

Java2HTML 53 20 15 0 15 66 170

JSapar 46 7 21 9 19 33 80

Marvin 32 5 22 5 8 11 28

NekoHTML 47 6 15 18 17 17 46

Table 4

Number of solutions of the final archive.

τ = 0 . 01 τ = 0 . 05 τ = 0 . 1

Aqualush 23.77 ± 6.28 14.80 ± 2.52 9.23 ± 1.87

Datapro4j 12.57 ± 3.62 8.37 ± 2.06 5.73 ± 1.12

Java2HTML 140.37 ± 3.03 49.75 ± 5.17 17.48 ± 1.92

JSapar 21.67 ± 4.99 12.20 ± 2.94 8.00 ± 1.41

Marvin 13.27 ± 4.02 8.27 ± 2.02 5.93 ± 1.29

NekoHTML 20.07 ± 4.56 11.60 ± 3.20 7.97 ± 1.33

Table 5

Results for spacing (S).

τ = 0 . 01 τ = 0 . 05 τ = 0 . 1

Aqualush 0.039 ± 0.023 0.045 ± 0.028 0.048 ± 0.020

Datapro4j 0.038 ± 0.034 0.044 ± 0.045 0.050 ± 0.027

Java2HTML 0.021 ± 0.002 0.022 ± 0.004 0.030 ± 0.009

JSapar 0.041 ± 0.021 0.064 ± 0.017 0.063 ± 0.031

Marvin 0.031 ± 0.009 0.029 ± 0.015 0.035 ± 0.019

NekoHTML 0.033 ± 0.011 0.032 ± 0.017 0.037 ± 0.019

Ranking 14.500 9.500 4.500

6. Analysis of results

6.1. Evolutionary performance

The number of solutions returned to the expert is a key aspect when dealing with real-world decision scenarios and

interactive approaches. In the proposed bMOEA, the archive size can be controlled by the parameter τ . Even though the

final number of solutions might depend on the way the engineer interacts with the algorithm, providing some guidance to

the algorithm in this regard could help.

As explained in Section 5.2 , the algorithm has been run considering three possible values of τ : 0.01, 0.05 and 0.1. Notice

that there is no interaction here, so τ remains constant along the search. Consequently, it only imposes a restriction with

respect to the minimum number of solutions to be returned. Table 4 shows the average archive size for the three aforemen-

tioned configurations, including the standard deviation. As might be expected, increasing the value of τ allows reducing the

archive size. Furthermore, the specific problem instance might be another determinant factor.

Given that a limited number of solutions could compromise the expected trade-off between convergence and diversity,

a further analysis of the quality of the solutions is carried out in terms of HV and S . Firstly, the spacing values for the three

configurations are studied in order to confirm that the use of territories allows our bMOEA to effectively preserve diversity

while maintaining an affordable number of alternatives to be returned to the participant.

Table 5 shows the obtained results for each problem instance, where higher values are better. As can be seen, setting too

low values of τ might demote the expected diversity, mainly because of the increase of the number of solutions returned

by the algorithm. Rankings reported by the Aligned Friedman test are also included in Table 5 . To confirm the existence

of statistical differences using this test, the statistic z –distributed according to a chi-square distribution with 2 degrees of

freedom–should be compared to a critical value of that distribution. Given that the obtained statistic, z = 4 . 1477 , is smaller

than the critical value (5.9915) for α = 0 . 05 , H 0 cannot be rejected, that is, bMOEA behaves similarly in terms of spacing for

the three proposed configurations.

In contrast, as can be observed in Table 6 , when comparing the three configurations in terms of HV , better values are

now obtained for τ = 0 . 01 , though the Aligned Friedman test reveals that there are not statistical differences (z = 4 . 0730)

at a confidence level (CL) of 95%. Consequently, τ = 0 . 05 is chosen as the most appropriate value for our algorithm, since it

104 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

Table 6

Results for hypervolume (HV).

τ = 0 . 01 τ = 0 . 05 τ = 0 . 1

Aqualush 0.637 ± 0.012 0.620 ± 0.015 0.599 ± 0.017

Datapro4j 0.658 ± 0.017 0.639 ± 0.017 0.614 ± 0.022

Java2HTML 0.282 ± 0.026 0.278 ± 0.027 0.261 ± 0.035

JSapar 0.555 ± 0.015 0.552 ± 0.018 0.530 ± 0.018

Marvin 0.616 ± 0.008 0.614 ± 0.007 0.604 ± 0.012

NekoHTML 0.602 ± 0.012 0.586 ± 0.015 0.567 ± 0.015

Ranking 3.667 9.333 15.500

Table 7

Results obtained by NSGA-II.

Num. of solutions Spacing Hypervolume

Aqualush 147.73 ± 11.84 0.018 ± 0.008 0.635 ± 0.015

Datapro4j 148.67 ± 4.25 0.013 ± 0.013 0.645 ± 0.010

Java2HTML 148.87 ± 2.96 0.009 ± 0.008 0.404 ± 0.048

JSapar 150.00 ± 0.00 0.018 ± 0.007 0.547 ± 0.014

Marvin 140.60 ± 23.22 0.014 ± 0.005 0.618 ± 0.009

NekoHTML 150.00 ± 0.00 0.016 ± 0.007 0.596 ± 0.013

Table 8

Architectural preferences applied during the experiment.

Architectural preference % Selected Usefulness Intuitiveness

No preference 22.22% 6.44 7.33

Best component 29.63% 7.44 7.44

Worst component 23.46% 7.22 7.33

Best provided interface 2.47% 5.29 6.38

Worst provided interface 0.00% 4.71 6.38

Number of components 17.28% 7.50 7.33

Metric in range 2.47% 4.17 5.44

Aspiration levels 2.47% 5.80 5.22

achieves the best trade-off between both indicators and the difference with the corresponding best possible configuration is

not statistically significant.

In addition to the influence of τ , it would be also interesting to find out to what extent the proposed algorithm provides

a similar performance that those MOEAs aimed at returning an approximation of the whole PF. In fact, NSGA-II has also

been considered here due to its ability to effectively guide the search towards non-dominated solutions and the lack of an

explicit mechanism to limit the number of final solutions. Table 7 shows the results for S and HV , as well as the number of

non-dominated solutions found. Although NSGA-II provides values of HV slightly higher than our algorithm (see Table 6 for

τ = 0 . 05), it is worth noticing the difference with respect to the spacing indicator. Besides, the high number of returned

solutions could complicate the decision-making process.

Pairwise comparison is performed here in order to precisely compare their performance. Regarding HV , the Wilcoxon test

reveals that NSGA-II performs better than our algorithm with a CL of 90% (p − v alue = 0 . 0938), even though this difference

is classified as negligible by the Cliff’s Delta test. On the contrary, our proposal is statistically better than NSGA-II in terms

of S with a CL of 95%, p − v alue = 0 . 0313 , the difference between both algorithms being classified as large . In this sense, our

algorithm is a competitive alternative against NSGA-II, since it is able to find not only high quality but also representative

solutions, even when the archive size has to be limited.

6.2. Use of interactive mechanisms

A key aspect of the proposed interactive approach is that the engineer is able to evaluate the solutions provided by the

algorithm in qualitative terms, e.g. by indicating both positive and negative preferences that might influence the subsequent

search process. It is interesting to observe how these architectural preferences are selected, and how useful and intuitive

participants consider their application. These two factors are scored by users on a scale between 1 (poor) and 8 (excellent).

Table 8 shows the frequency of use of preferences, and the average rating for usefulness and intuitiveness.

Within the preferences group, participants generally focus their attention on the internal structure of the components. In

fact, indicating the preferred number of components that should comprise the architectural specification is also a frequent

choice. In contrast, preferences related to interfaces have been rarely selected. It is likely that users consider a priority to find

a proper structure at first, and they omit any further detail on the component interaction, even when it could be a factor

to refine the search by filling components with the most appropriate interacting constituents, i.e. classes and relationships.

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 105

Fig. 3. Frequency and moment of selection of each architectural preference.

Table 9

Other actions taken during the interactive session.

Optional action % Selected Usefulness Intuitiveness

Add to archive 34.78% 6.11 6.89

Remove from population 30.43% 5.89 6.89

Freeze components 34.78% 7.44 7.44

Stop search 0.00% 5.14 7.44

Participants also avoid setting specific values to software metrics, possibly because they consider this could not lead to such

a straightforward and tangible result. Finally, it is also a common practice not to indicate any architectural preference. Some

participants pointed out that they just wanted to observe how the algorithm could evolve by itself, whilst others found it

a convenient way to deal with uncertainty about making a precise judgment. In any case, the applicability of architectural

preferences seems to be related to their intuitiveness and usefulness, according to users’ scores.

In order to examine the behavior of the participants, it is also interesting to study whether their design decisions are

somehow related to the interaction moment. Fig. 3 shows the total number of occurrences of the different preferences at

each specific interaction point, where i stands for the number of interaction break, and s for the solution position in the

group of three. Notice that, apart from the omission of choice, the three most intuitive and useful preferences—according

to the user rating—were applied throughout the entire search process. Nevertheless, some additional patterns can be still

observed. For instance, during the initial interactions, users tend to express negative opinions (e.g. worst component) or

to indicate some overall restriction (e.g. number of components) in order to reach an expected solution. However, as the

evolution progresses, positive opinions become more frequent because better solutions are returned.

Apart from indicating a preference, participants have the opportunity to take additional actions, such as adding the

solution to the archive, definitely removing it, or even freezing a specific part of an architecture. They could also stop the

search process to get the current archive. It is noticeable how these actions are not frequently selected by the user. Actually,

66% of the participants applied at least one of these actions but only once or twice. Table 9 summarizes how many times

each action was taken, and how users rated their usefulness and intuitiveness. Participants never stopped the search, as

they did not even find it so useful, probably because of the limits in the number of iterations and time constraints. When

applied, adding solutions and freezing components served the participants to reinforce their preferences, which also allowed

them to perceive the effect of these actions in subsequent interactions.

6.3. Impact of subjective evaluation

Without the user interaction, the proposed algorithm would be guided by objective measures like other non-interactive

approaches. The participation of the user might apparently distort the solutions returned from a merely evolutionary per-

spective. Nevertheless, notice that the real power of the iMOEA lies in its ability to reinforce certain solutions that engineers

might find close to their expectations. This is an important aspect to be considered in domains like search-based software

106 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

Table 10

Evolution of software metrics.

bMOEA iMOEA

ICD ERP GCR ICD ERP GCR

Initial population 0.619 ± 0.009 0.716 ± 0.009 0.689 ± 0.010 0.548 ± 0.006 0.712 ± 0.006 0.685 ± 0.006

Final population 0.640 ± 0.035 0.030 ± 0.013 0.027 ± 0.012 0.366 ± 0.066 0.168 ± 0.084 0.165 ± 0.085

Initial archive 0.476 ± 0.021 0.518 ± 0.053 0.491 ± 0.053 0.481 ± 0.036 0.520 ± 0.074 0.483 ± 0.070

Final archive 0.419 ± 0.029 0.133 ± 0.035 0.121 ± 0.033 0.414 ± 0.041 0.147 ± 0.046 0.139 ± 0.042

Fig. 4. Variation in the size of the solutions during the evolutionary process.

design, where a number of objective measures is not enough to evaluate the know-how, previous experiences and overall

expectations of the user. Next, the actual influence of the subjective decisions made along the interactive process in the

quality of the solutions is discussed.

According to the results from Section 6.1 , bMOEA and iMOEA behave similarly from an evolutionary perspective. For

instance, for iMOEA, the average value of HV is equal to 0.6368, which is quite close to the result obtained by bMOEA,

HV = 0 . 6391 (see Table 6 for the Datapro4j instance). Even two participants reached higher values for HV than bMOEA. In

terms of S , for iMOEA the 9 values lie on the range [0.0143, 0.0859], the average value (S = 0 . 0433) being a little less than

that obtained by bMOEA (S = 0 . 0439). Here, the observed difference in iMOEA is mainly due to the activation of the archive

update mechanism, which would be reacting to completely different user actions. In fact, the average number of solutions

stored in this set increased from 8.37 to 11.56, returning archives with up to 19 solutions for iMOEA.

Bringing the human in the loop influences the reached trade-off among software metrics. According to the conducted

experimentation, most of the design decisions made by the participants were implicitly directed towards the increase of

the ICD metric, which otherwise would tend to be demoted by the evolutionary algorithm in favor of ERP and GCR. More

specifically, Table 10 shows the average value for each metric in both the initial and the final population. These values are

also obtained for the solutions belonging to the archive. It should be noted that all values belong to the range [0,1], 0 being

the optimum. For bMOEA, ERP and GCR are greatly improved in the regular population, whereas ICD remains quite constant

or even increases. On the contrary, iMOEA is able to reduce ICD significantly without causing a dramatic increase of the other

metrics with respect to the values reached by bMOEA. Focusing on the archive, these differences are not so evident. Notice

that the archive only stores non-dominated solutions well distributed over the PF, the obtained average values representing

better trade-offs among the three metrics. In this sense, it is likely that interesting solutions from the engineer’s point of

view, e.g. those with low ICD values, represent dominated solutions. This explains why ICD values are higher in the archive

than in the regular population. In this case, these solutions cannot appear in the archive unless the user explicitly indicate

that they should be added.

With iMOEA, software engineers may also recommend their preferred structure for the architectural solutions. As dis-

cussed in Section 6.2 , most of the participants selected the architectural preference number of components at some point in

the interactive session. More precisely, many of them agreed that 4 components was an appropriate value for this problem

instance. As can be seen in Fig. 4 , this choice drastically affected the evolution, and iMOEA rapidly discarded solutions of

other sizes. In fact, notice that, even when both bMOEA and iMOEA start with a similar distribution of solutions regarding

their number of components, bMOEA finally leads the search towards architectural solutions having 2 or 3 components. It

is caused by the optimization of the objective criteria, since ERP and GCR can be reduced by creating large components.

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 107

6.4. Comparison between solutions

A complementary view of the outcomes of the interactive session can be made focusing on the type of solutions found,

and their similarity with the manually produced architecture. In addition, it also serves to analyze to what extent partici-

pants’ decisions might differ from those made by a search process only guided by design metrics. As a reference, the archi-

tectural specification of the case study, Datapro4j , was originally comprised of 4 components: Datasets, Columns, Algorithms

(a.k.a. Strategies) and Datatypes . Please notice that this comparison is made against the original source, human-designed

specification, which should not strictly comply with the design requirements implied by the design metrics, as they could

have consider others as well.

As a result of the interactive session, 104 solutions were returned as part of the 9 final archives. From this set, 6 solu-

tions (5.77%) contain a component that is equal to one of those specified by the original designers. These solutions were

obtained from 5 different participants (55.56% of the executions), but only one of them explicitly stored the solution in the

archive. If approximations to the source architecture are taken into account, 6 the percentage of solutions would increase to

76,92%. In this scenario, all the participants were able to find at least two alternative solutions with these characteristics. In

addition, 3 out of 4 original components were approximated at least once, Algorithms being the most frequently identified

component (in 52 of the 104 solutions). It is worth mentioning that 7 solutions archived by the participants contained that

component, which was also frozen in 4 of them. This suggests that the algorithm can achieve ‘human-looking’ solutions

with the assistance of the user, requiring just a few manual modifications to reproduce the original architecture.

After conducting a similar analysis on the non-interactive algorithm, it can be observed that an exact reproduction of

at least one original component is found in 18 of the 251 solutions (7.17%). However, they all are generated by only 8 of

the 30 executions (26.67%). When approximate components are considered, percentages increase up to 73.31% and 100%,

respectively. In this case, the algorithm provides good approximations of 3 components, two of them being the same that

those identified by iMOEA. The components appearing more often are those comprised of less classes and presenting less

interactions, i.e. Dataypes and Algorithms , as they can be more easily isolated. Therefore, the interaction with the user could

also help the algorithm to find a good separation of the most coupled functionalities.

It is worth mentioning that even when the algorithm is able to find similar solutions to those specified manually, the

interactive approach takes advantage of human design abilities to identify core functionalities and thus is able to produce

meaningful components. In addition, mechanisms like freezing parts of the solutions and their external storage may reinforce

the search in order to rapidly propagate human design decisions. In contrast, the influence of the stochastic nature of the

evolutionary process can be mitigated.

6.5. Human experience

In the context of software design, analyzing a number of full architectural models requires a major effort for the expert.

Therefore, steps should be taken in order to alleviate the burden of successive evaluations, such as restricting the number of

interactions with the algorithm, or reducing the spent time. With this aim, participants were asked to respond to a survey—

scores between 1 (completely disagree) and 8 (completely agree)—related to their fatigue at the end of their interaction. Their

replies indicate that, even though they partially disagree with the idea that the interactive session took too long (3.44), they

mostly recognized that they were paying more attention at the beginning of the process (5.13). This is clearly reflected by

the average time spent per evaluation (see Fig. 5). Notice that users take more time to evaluate solutions shown during the

initial interaction, probably because of a greater interest and less knowledge on the problem and the process itself. However,

as the search process advances and they acquire more knowledge about candidate solutions, users tend to reduce their

degree of interest in exploring new alternatives from the returned solutions, while improving their ability to process the

information displayed by the interactive tool. This effect is also noticeable for the first solution shown in every interaction.

As for their feedback, users pointed out that they found promising the idea of having tools to support design tasks (6.89),

since they consider that it helps reducing the effort that the design process implies (6.50). The overall perception was that

the algorithm could provide interesting solutions (6.13), and it even helped them to discover new design alternatives that

they had not thought about (6.38). Finally, participants also made diverse suggestions:

• To extend the number of architectural preferences and actions available, as well as to allow applying more than one

preference to the same solution.
• To allow the user to directly manipulate the provided solution, e.g. by splitting components or moving elements.
• To enable participants to undo previous actions and reconsider their decisions, as well as to allow exploring the candidate

solutions at once, instead of sequentially.

7. Threats to validity

The experimental and empirical nature of this study places certain limitations, which are discussed next in terms of

validity threats.

6 Here, a component having all the classes of the original component with a margin of error of ± 2 classes has been considered as a valid approximation.

108 A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109

Fig. 5. Average evaluation time during interactions.

Internal validity refers to those aspects of the experimentation that cannot ensure the causality between the hypothesis

and the obtained results. In this regard, comparisons between algorithms are based on 30 independent runs in order to deal

with the intrinsic randomness of evolutionary algorithms. Appropriate statistical tests have been applied to draw conclusions

about the performance of the algorithms in terms of two commonly used quality indicators. As for the experiment putting

the human in the loop, the relative small sample size would represent the main threat to internal validity. Nevertheless, 9

or even smaller sizes are common and properly accepted for interactive studies in SBSE [18,34] , since the motivation behind

this kind of experimentation is mostly focused on the analysis of the human experience, the usefulness of the approach,

and the contribution of human-made decisions to the evolutionary process.

The design of the interactive experiment poses additional threats to construct validity. Focusing on the selection of partic-

ipants, none of them had previous background on the use of interactive algorithms, though some of them were familiar with

evolutionary computation in domains different from SBSE. On the contrary, a few participants had some prior knowledge

about the system under study, which was intentionally selected in order to reflect the diversity of the practical scenario.

The threat caused by the user fatigue was controlled by applying a fixed interaction scheme, where each participant

performs only one execution within an interactive session never longer than 1 h. It also suitable to mitigate the learning

effect. Besides, the visualization and evaluation of complete architectural models might produce a heavy cognitive load to

the user. The proposed evaluation method tries to overcome this situation by focusing on the qualitative assessment of parts

of the solution, and it has been conceived to be open to other complementary mechanisms.

External validity is related to the generalization of the experimental results. Although participants are mostly working

in an academic context, some of them have previous experience in the industry or are currently working in an industrial

setting. Nevertheless, given that they all are software engineers, the experiment has served to confirm the benefit of the

interactive approach as a supporting mechanism to support the SE professional in the understanding of the underlying

architecture of a real software system.

8. Concluding remarks

This paper presents an interactive multi-objective evolutionary algorithm aimed at supporting software engineers during

the early analysis process. The combination of multi-objective optimization techniques with the so-called architectural pref-

erences guides the search towards the joint optimization of both objective and subjective criteria. Both types of evaluation

depend on the specific characteristics of the architecture optimization problem to be addressed, even so the adaptation of

the proposed algorithm in order to solve other design tasks would only require the redefinition of specific quality criteria,

e.g. the software metrics and architectural preferences. Under the assumption that engineers might detect more easily those

model elements that they dislike when analyzing complex architectural specifications, they have been also provided with

the possibility to indicate negative opinions on candidate solutions.

As for its validation, the proposed approach has been compared against a well-known multi-objective algorithm like

NSGA-II. To study its suitability for bringing the human in the loop, the algorithm has also been validated with a repre-

sentative number of users with different expertise levels, who have participated in interactive sessions. Results show that

the interactive approach is able to manage the expected trade-off between specific requirements of a real decision scenario:

good enough solutions, variety of alternatives and a restricted number of solutions. Furthermore, the use of architectural

preferences as a mechanism for the subjective, qualitative evaluation helps to overcome the limitations related to the use of

numerical ratings, as usually proposed by other IEC approaches.

To conclude, such a human in the loop approach would definitely allow software engineers to actively participate in the

generation and evaluation of different design alternatives, providing the search algorithm with accurate information con-

A. Ramírez et al. / Information Sciences 463–464 (2018) 92–109 109

cerning their real expectations and, consequently, leading to more satisfactory results. In the future, we intend to consider

the suggestions made by the participants to improve the interactive experience, and analyze whether their abilities to rec-

ognize promising parts of a solution might help to improve the search performance. In addition, the proposed evaluation

mechanism could be also applied to other multi-objective decision scenarios like the engineering field [17,19] , where the

opinion and knowledge of experts may suppose a significant difference to reach their expectations [20] .

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness [projects TIN2014-55252-P, TIN2017-

83445-P]; the Spanish Ministry of Education under the FPU program [grant FPU13/01466]; and FEDER funds.

References

[1] A. Aleti , B. Buhnova , L. Grunske , A. Koziolek , I. Meedeniya , Software architecture optimization methods: a systematic literature review, IEEE Trans.

Softw. Eng. 39 (5) (2013) 658–683 .
[2] A. Arcuri , L. Briand , A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering, Softw. Test. Verif. Rel. 24 (3)

(2014) 219–250 .
[3] D. Arthur , S. Vassilvitskii , k-means++: the advantages of careful seeding, Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms (2007) 1027–1035 .

[4] R. Balling , S. Wilson , The maximin fitness function for multi-objective evolutionary computation: application to city planning, Proc. Genetic Evol.
Comput. Conf. (2001) 1079–1084 .

[5] J. Branke , S. Greco , R. Slowinski , P. Zielniewicz , Learning value functions in interactive evolutionary multiobjective optimization, IEEE Trans. Evol.

Comput. 19 (1) (2015) 88–102 .
[6] A.M. Brintrup , J. Ramsden , H. Takagi , A. Tiwari , Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algo-

rithms, IEEE Trans. Evol. Comput. 12 (3) (2008) 343–354 .
[7] C.A.C. Coello , G.B. Lamont , D.A.V. Veldhuizen , Evolutionary Algorithms for Solving Multi-Objective Problems, second ed., Springer, 2007 .

[8] K. Deb , A. Pratap , S. Agarwal , T. Meyarivan , A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197 .
[9] J.A. Díaz-Pace , C. Villavicencio , S. Schiaffino , M. Nicoletti , H. Vázquez , Producing just enough documentation: an optimization approach applied to the

software architecture domain, J. Data Semant. 5 (1) (2016) 37–53 .

[10] L. Dobrica , E. Niemela , A survey on software architecture analysis methods, IEEE Trans. Softw. Eng. 28 (7) (2002) 638–653 .
[11] S. Ducasse , D. Pollet , Software architecture reconstruction: a process-oriented taxonomy, IEEE Trans. Softw. Eng. 35 (4) (2009) 573–591 .

[12] D. Falessi , G. Cantone , R. Kazman , P. Kruchten , Decision-making techniques for software architecture design, ACM Comput. Surv. 43 (4) (2011) 1–28 .
[13] D. Garlan , Software architecture: a roadmap, Proc. Conf. Future Software Eng. (20 0 0) 91–101 .

[14] M. Harman , S.A. Mansouri , Y. Zhang , Search based software engineering: trends, techniques and applications, ACM Comp. Surv. 45 (1–11) (2012) 1–61 .
[15] M. Koksalan , I. Karahan , An interactive territory defining evolutionary algorithm: iTDEA, IEEE Trans. Evol. Comput. 14 (5) (2010) 702–722 .

[16] A. Koziolek , D. Ardagna , R. Mirandola , Hybrid multi-attribute qos optimization in component based software systems, J. Syst. Softw. 86 (10) (2013)

2542–2558 .
[17] S. Kundu , S. Das , A.V. Vasilakos , S. Biswas , A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maxi-

mization of wireless sensor networks, Soft Comput. 19 (3) (2015) 637–659 .
[18] B. Marculescu , R. Feldt , R. Torkar , S. Poulding , An initial industrial evaluation of interactive search-based testing for embedded software, Appl. Soft

Comput. 29 (2015) 26–39 .
[19] R. Marler , J. Arora , Survey of multi-objective optimization methods for engineering, Struct. Multidiscipl. Optim. 26 (6) (2004) 369–395 .

[20] L. Martínez , J. Liu , D. Ruan , J.B. Yang , Dealing with heterogeneous information in engineering evaluation processes, Inf. Sci. 177 (7) (2007) 1533–1542 .

[21] D. Meignan , S. Knust , J.M. Frayret , G. Pesant , N. Gaud , A review and taxonomy of interactive optimization methods in operations research, ACM Trans.
Interact. Intell. Syst. 5 (3–17) (2015) 1–43 .

[22] K. Miettinen , M.M. Mäkelä, On scalarizing functions in multiobjective optimization., OR Spectrum 24 (2) (2002) 193–213 .
[23] K. Miettinen , F. Ruiz , A.P. Wierzbicki , Multiobjective optimization: Interactive and evolutionary approaches, chapter Introduction to Multiobjective

Optimization: Interactive Approaches, pages 27–57, Springer, Berlin, Heidelberg, 2008 .
[24] M.W. Mkaouer , M. Kessentini , S. Bechikh , K. Deb , M.O. Cinnéide , Recommendation system for software refactoring using innovization and interactive

dynamic optimization, in: Proc. 29th ACM/IEEE Int. Conf. Automated Software Engineering, pages 331–336, ACM, 2014 .

[25] I.C. Parmee , Poor-definition, uncertainty, and human factors - satisfying multiple objectives in real-world decision-making environments, Evol. Multi-
-Criterion Optim. (2001) 52–66 .

[26] O. Räihä, A survey on search-based software design, Comput. Sci. Rev. 4 (4) (2010) 203–249 .
[27] A. Ramírez , J.R. Romero , C. Simons , A systematic review of interaction in search-based software engineering, IEEE Trans. Software Eng. (2018) .

[28] A. Ramírez , J.R. Romero , S. Ventura , An approach for the evolutionary discovery of software architectures, Inf. Sci. 305 (2015) 234–255 .
[29] A. Ramírez, J.R. Romero, S. Ventura, An extensible JCLEC-based solution for the implementation of multi-objective evolutionary algorithms, in: Proc.

Companion Publication 2015 Genetic and Evolutionary Computation Conf., pages 1085–1092.
[30] A. Ramírez , J.R. Romero , S. Ventura , A comparative study of many-objective evolutionary algorithms for the discovery of software architectures, Empir.

Softw. Eng. 21 (6) (2016) 2546–2600 .

[31] G.R. Santhanam , Qualitative optimization in software engineering: a short survey, J. Syst. Softw. 111 (2016) 149–156 .
[32] C. Simons , J. Singer , D.R. White , Search-based refactoring: metrics are not enough, 7th Int. Symp. Search-Based Software Eng. (2015) 47–61 .

[33] C.L. Simons , I.C. Parmee , Elegant object-oriented software design via interactive, evolutionary computation, IEEE Trans. Syst., Man, Cybern. Part C 42
(6) (2012) 1797–1805 .

[34] C.L. Simons , J. Smith , P. White , Interactive ant colony optimization (iACO) for early lifecycle software design, Swarm Intell. 8 (2) (2014) 139–157 .
[35] C. Szyperski , Component Software: Beyond Object-Oriented Programming, 2nd edition, Addison-Wesley Longman, Boston, MA, 2002 .

[36] H. Takagi , Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation, Proc. IEEE 89 (9) (2001)

1275–1296 .
[37] S. Vathsavayi , Hadaytullah , K. Koskimies , Interleaving human and search-based software architecture design, Proc. Estonian Acad. Sci. 62 (1) (2013)

16–26 .
[38] A. Vescan , An evolutionary multiobjective approach for the dynamic multilevel component selection problem, in: Int. Conf. on Service-Oriented Com-

puting, pages 193–204, Springer, Berlin Heidelberg, 2016 .

7
Other publications associated to

this Ph.D. Thesis

203

7.1. Many-objective evolutionary composition of web services

7.1. Evolutionary composition of QoS-aware web services:

a many-objective perspective

Title Evolutionary composition of QoS-aware web

services: a many-objective perspective

Authors A. Ramı́rez, J.A. Parejo, J.R. Romero

S. Segura, A. Ruiz-Cortés

Journal Expert Systems with Applications

Volume 72

Pages 357-370

Year 2017

Editorial Elsevier

DOI 10.1016/j.eswa.2016.10.047

IF (JCR 2017) 3.768

Categories Computer Science, Artificial Intelligence

Operations Research and Management Science

Positions 20/132 (Q1), 8/83 (Q1)

Cites 3 (WoS), 4 (Scopus)

205

https://doi.org/10.1016/j.eswa.2016.10.047

Expert Systems With Applications 72 (2017) 357–370

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Evolutionary composition of QoS-aware web services: A

many-objective perspective

Aurora Ramírez

a , José Antonio Parejo

b , José Raúl Romero

a , ∗, Sergio Segura

b ,
Antonio Ruiz-Cortés b

a Department of Computer Science and Numerical Analysis, University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
b Department of Computing Languages and Systems, University of Sevilla, ETSII, Avda. de la Reina Mercedes, s/n, 41012, Sevilla, Spain

a r t i c l e i n f o

Article history:

Received 5 November 2015

Revised 14 October 2016

Accepted 20 October 2016

Available online 29 October 2016

Keywords:

QoS-aware web service composition

Many-objective evolutionary algorithms

Multi-objective optimization

a b s t r a c t

Web service based applications often invoke services provided by third-parties in their workflow. The

Quality of Service (QoS) provided by the invoked supplier can be expressed in terms of the Service Level

Agreement specifying the values contracted for particular aspects like cost or throughput, among others.

In this scenario, intelligent systems can support the engineer to scrutinise the service market in order

to select those candidates that best fit with the expected composition focusing on different QoS aspects.

This search problem, also known as QoS-aware web service composition, is characterised by the pres-

ence of many diverse QoS properties to be simultaneously optimised from a multi-objective perspective.

Nevertheless, as the number of QoS properties considered during the design phase increases and a larger

number of decision factors come into play, it becomes more difficult to find the most suitable candidate

solutions, so more sophisticated techniques are required to explore and return diverse, competitive al-

ternatives. With this aim, this paper explores the suitability of many-objective evolutionary algorithms

for addressing the binding problem of web services on the basis of a real-world benchmark with 9 QoS

properties. A complete comparative study demonstrates that these techniques, never before applied to

this problem, can achieve a better trade-off between all the QoS properties, or even promote specific

QoS properties while keeping high values for the rest. In addition, this search process can be performed

within a reasonable computational cost, enabling its adoption by intelligent and decision-support systems

in the field of service oriented computation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Current service oriented applications need to integrate third-

party services, like authentication or persistent storage, as part of

their core features. This integration clearly benefits code reuse and

modularity, though it also introduces additional concerns. In this

sense, the Quality of Service (QoS) experienced by end-users will

also depend on the QoS provided by these external services. For

example, if the persistence service is unavailable, the performance

of the entire application would probably drop or even the system

itself would become useless. In such a scenario, a careful selec-

tion of the services to be integrated is critical to determine the

composition that better achieves an appropriate overall QoS at af-

fordable cost. Moreover, the Service Level Agreement (SLA), i.e. the

∗ Corresponding author. Phone: +34957212660. Fax: +34957218360.

E-mail addresses: aramirez@uco.es (A. Ramírez), japarejo@us.es (J.A. Parejo),

jrromero@uco.es (J.R. Romero), sergiosegura@us.es (S. Segura), aruiz@us.es (A. Ruiz-

Cortés).

piece of a service contract where the level of service is determined,

could even bring more alternatives into play, considering that a

specific service provider might offer several QoS configurations for

the same service provision. For example, Amazon Web Services

(AWS) establishes up to 8 different deployment plans (instances)

for their computing services (EC2) (Wada, Suzuki, Yamano, & Oba,

2012), which combined with other configurable options like the

operating system, the available CPU and backup settings can lead

to 16,991 possible configurations (García-Galán, Rana, Trinidad, &

Cortés, 2013). Although highly demanded because of its flexibil-

ity, considering a larger set of configuration alternatives implies

increasing the number of QoS properties coming into play and,

consequently, finding appropriate trade-offs among them becomes

extremely difficult. For instance, notice that an investment in CPU

and exclusive dedication would improve response time but increas-

ing the cost.

Therefore, deciding which are the most appropriate services to

be included in an application, or their specific QoS configurations,

is a challenging task for designers, the automatic support acquiring

http://dx.doi.org/10.1016/j.eswa.2016.10.047

0957-4174/© 2016 Elsevier Ltd. All rights reserved.

358 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

even more relevance as the number of decision factors increases.

Here, intelligent systems may help to support them by applying

search techniques to the exploration and selection of design alter-

natives. Consequently, analysing how different search methods be-

have and how they are influenced by the problem structure, e.g.

different number of services being orchestrated in different ways,

becomes important for these systems to gain efficiency and effec-

tiveness.

The so-called QoS-aware Web Service Composition (QoSWSC)

problem has been identified as a key research problem in the ser-

vice oriented computing (SOC) field (Papazoglou, Traverso, Dust-

dar, & Leymann, 2007), which is actually NP-hard (Ardagna & Per-

nici, 20 07; Bonatti & Festa, 20 05). Although this problem was orig-

inally formulated as a single-objective optimisation problem, no-

tice that multiple, often conflicting QoS properties need to be si-

multaneously considered to address this problem (Wada et al.,

2012; Zeng et al., 2004). For example, availability, response time,

throughput or invocation cost can be clearly opposed, e.g. improv-

ing the availability of a service probably would imply an increase

in cost. In general, identifying priorities among these attributes is

not straightforward, and designers have to ensure an appropriate

trade-off between all of them according to their interests.

Given the large number of alternatives to be analysed, a com-

putational optimisation approach can serve to efficiently find the

best orchestration of candidate services (Canfora, Penta, Esposito,

& Villani, 2005). Both single-objective and multi-objective evolu-

tionary algorithms (MOEAs) constitute a commonly used alterna-

tive in the literature, where the latter return a set of solutions,

each one achieving a different trade-off between all the objec-

tives (Coello Coello, Lamont, & Van Veldhuizen, 2007). Actually,

the use of multi-objective optimisation algorithms has proved to

be a more convenient approach to deal with the QoSWSC prob-

lem, as recently discussed by Moustafa and Zhang (2013) ; Suciu,

Pallez, Cremene, and Dumitrescu (2013) ; Trummer, Faltings, and

Binder (2014) ; Wada et al. (2012) ; Yu, Ma, and Zhang (2015) . Hav-

ing a set of alternative solutions to choose among facilitates bet-

ter comprehension of the different possible trade-offs between the

QoS properties involved in the decision-making process. In con-

trast, this information would not be available in advance when a

single-objective evolutionary approach is applied using a weighted

sum.

The application of multi-objective evolutionary approaches to

the QoSWSC problem has been mostly focused on the selection of

well-known approaches, like NSGA-II (Nondominated Sorting Ge-

netic Algorithm II) or MOGA (Multi-Objective Genetic Algorithm),

and considering up to 5 QoS properties as optimisation objectives.

Nevertheless, when a large number of objectives need to be con-

sidered, the performance of these classical MOEAs tends to drop

off as the complexity of the resulting optimisation problem in-

creases. This factor has led to the appearance of new specific ap-

proaches, like many-objective evolutionary algorithms, which have

emerged as an effective alternative to efficiently explore highly di-

mensional objective spaces (Ishibuchi, Tsukamoto, & Nojima, 2008).

Similarly, many-objective evolutionary algorithms operate in accor-

dance to the precepts of the multi-objective approach. In fact, for

situations where engineers need to deal with a large number of

decision criteria, as during the design of complex web service com-

positions considering multiple QoS properties, many-objective op-

timisation provides an excellent support mechanism.

In this paper, the QoSWSC problem is addressed from the

emerging many-objective perspective considering a large number

of QoS properties. More specifically, our research question can

be phrased as follows: Is the application of many-objective algo-

rithms appropriate to address in a generalisable way the QoSWSC

problem considering a diversity and large number of QoS proper-

ties? To accurately respond to this question, a comparative study

of different evolutionary algorithms is proposed with the aim of

analysing their suitability when 9 diverse QoS properties constrain

the problem statement. Notice that the jointly optimisation of a

large number of objectives constitutes a real challenge to any op-

timisation approach. It could be expected that these algorithms,

primarily conceived to deal with such a complexity, will provide

a better performance than that obtained by long-standing MOEAs

in terms of both the obtained QoS values and the expected bal-

ance among then. Finally, we include an in-depth discussion of

the empirical insights obtained from the most fitting algorithm in

terms of a representative subset of properties, such as runtime and

design-time properties. The experimentation with many-objective

approaches provides valuable information about how robust and

effective these search methods are, which brings the opportunity

to incorporate them into intelligent systems aimed at supporting

the resolution of more realistic formulations of the QoSWSC prob-

lem.

The rest of the paper is organised as follows. Section 2 in-

troduces the multi-objective evolutionary optimisation, as well as

the bases for the QoSWSC problem as an optimisation problem.

Section 3 describes the related work and then Section 4 explains

the specific features of the implemented evolutionary approach, in-

cluding the definition of the QoS properties considered to evaluate

how objectives are met. A detailed performance analysis of the al-

gorithms is conducted in Section 5 , where findings and outcomes

are also discussed. Then, the threats to validity concerning the pre-

sented study are detailed in Section 6 . Finally, Section 7 outlines

some concluding remarks.

2. Background

In this section, the key concepts of multi- and many-objective

optimisation are introduced. Next, the QoS-aware binding of web

services is presented as a search problem.

2.1. Multi- and many-objective evolutionary algorithms

Multi-objective evolutionary algorithms are population-based

metaheuristics devoted to solve multi-objective optimisation prob-

lems (MOPs) (Coello Coello et al., 2007). Just like evolutionary al-

gorithms (EAs), MOEAs define a set of candidate solutions, i.e. the

population of individuals, which are modified through some itera-

tions seeking for the generation of better solutions. Usually, each

solution, also called individual, is encoded using a fixed-length nu-

merical array, i.e. the genotype. Continuing the simile, the pheno-

type is defined as the real-world representation of the genotype.

After the random creation of the initial population, the algo-

rithm starts an iterative process, as shown in Algorithm 1 . In ev-

ery generation, some individuals are selected to act as parents, and

genetic operators, like crossover and mutation, are applied to cre-

Algorithm 1 Pseudocode of an evolutionary algorithm.

Require: maxGenerations , populationSize

1: population ← createPopulation(populationSize)

2: evaluate(population)

3: generation ← 0

4: while generation < = maxGenerations do

5: parents ← selection(population)

6: of f spring ← crossover(parents)

7: of f spring ← mutation(of f spring)

8: evaluate(of f spring)

9: population ← replacement(population ∪ of f spring)

10: generation + +

11: end while

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 359

ate new solutions. On the one hand, the crossover operator recom-

bines genetic information of two parents, resulting in one or more

descendants (also known as offspring) that tend to be similar to

their parents. Therefore, this operator is expected to promote con-

vergence in the search process. On the other hand, the mutation

phase produces some alterations on a given offspring, e.g. changing

one value in the genotype, with the aim of introducing diversity in

the population. The generation ends with the selection of the set

of individuals, from both the current population and the offspring

pool, that will take part in the next population. Frequently, this

replacement mechanism tries to promote the survival of the best

solutions found so far, ensuring that diversity is also preserved.

The evolutionary process continues until a stopping criterion, e.g. a

maximum number of generations, is reached.

The main difference between EAs and MOEAs lies on the eval-

uation of individuals, which determines “how good” a solution is

in solving the optimisation problem. In EAs, a unique fitness func-

tion is defined to measure the quality of the solutions, so individ-

uals can be directly compared using this fitness value. Instead of

defining a specific set of weights to aggregate several objectives, a

multi-objective approach treats each objective as an independent

function. Not only the problem of determining the weight to be

assigned to each function is removed, but also the limitations of-

fered by the use of aggregation functions (Deb, 2001) are over-

come. Among others, the use of such a scalarisation function as-

sumes the linearity of the MOP and non-convexity of the PF. Be-

sides, it is not possible to assure that there would be a one-to-

one correspondence between the solution optimising the weighted

sum and a supposedly non-dominated solution.

Given that MOPs are characterised by the presence of 2 or more

objectives, each evaluated solution contains a set of objective val-

ues. As for their comparison, the Pareto dominance concept is fre-

quently included as a discerning criterion to choose between two

solutions, a and b , which is defined as follows: a is said to dom-

inate b , if and only if a is better or equal than b for all the ob-

jectives, and better for at least one objective than b . If this condi-

tion is not satisfied, individuals are referred as equivalent or non-

dominated. Thus, the purpose of any MOEA is to find the set of

non-dominated solutions, i.e. the Pareto set, establishing different

trade-offs among all the objectives. Mapping these solutions onto

the objective space allows getting the Pareto front (PF).

Some of the most well-known proposals in the field, like SPEA2

(Strength Pareto Evolutionary Algorithm 2) (Zitzler, Laumanns, &

Thiele, 2001) and NSGA-II (Deb, Pratap, Agarwal, & Meyarivan,

2002), are strongly based on the Pareto dominance principle to

guide the search towards the PF. On the one hand, SPEA2 assigns

a strength value to each individual, i , considering both the number

of solutions it dominates and the solutions dominating i . On the

other hand, NSGA-II ranks the population by fronts, where each

front comprises those equivalent solutions that dominate solutions

allocated in the following fronts. Regarding diversity preservation,

SPEA2 uses the k-nearest neighbour method to estimate the den-

sity at any point of the objective space, whereas NSGA-II proposes

a crowding distance to discard between solutions belonging to the

same front. Additionally, SPEA2 also defines an archive of solutions

with a fixed size, where non-dominated solutions are kept.

Certainly, SPEA2 and NSGA-II have shown a good performance

in a variety of problem domains when 2 or 3 objectives are con-

sidered. However, real-world applications might require the def-

inition of a greater number of objectives, which has lead to a

growing interest in solving the so-called many-objective optimisa-

tion problems. Although the actual difference between multi- and

many-objective problems has not been clearly stated in the litera-

ture (Purshouse & Fleming, 2007), most authors agree today with

the idea that many-objective problems require the presence of at

least 4 objectives (Deb & Jain, 2014; von Lücken, Barán, & Brizuela,

2014). With the increasing complexity of MOPs, concepts like the

Pareto dominance and distances, which characterise the aforemen-

tioned algorithms, lose the efficiency required to properly guide

the search (Khare, Yao, & Deb, 2003; Praditwong & Yao, 2007),

motivating the appearance of more sophisticated techniques. In

this sense, advances within the field of many-objective optimisa-

tion are mainly focused on the adaptation of the dominance prin-

ciple, the inclusion of specific diversity preservation mechanisms

and the use of quality indicators as key features to control the evo-

lution (Wagner, Beume, & Naujoks, 2007).

For instance, MOEA/D (Multiobjective Evolutionary Algorithm

based on Decomposition) (Zhang & Li, 2007) proposes a decompo-

sition approach creating a number of subproblems to be simulta-

neously optimised. Each subproblem associates a different weight

to each objective and, as a result, multiple search directions are

explored during the search.

Modifying the classical Pareto dominance also serves to im-

prove the performance of MOEAs, since the percentage of non-

dominated solutions in a population rapidly grows when the num-

ber of objectives increases (Ishibuchi et al., 2008). ε-MOEA (Deb,

Mohan, & Mishra, 2003) defines a special type of dominance, called

ε-dominance, which can be applied on an objective space divided

in hypercubes or grids. Thus, solutions are compared consider-

ing the hypercubes they belong to, instead of its objective values.

Moreover, the evolution process tries to generate an unique solu-

tion for each hypercube in favour of diversity, saving them in an

archive. Similarly, GrEA (Grid-based Evolutionary Algorithm) (Yang,

Li, Liu, & Zheng, 2013) also proposes a landscape partition, though

the grids are dynamically created in each generation. The sorting

approach defined by NSGA-II is considered, as well as some diver-

sity metrics based on the grids.

Another kind of algorithms are the so-called indicator-based ap-

proaches. An indicator allows summarising the quality of the over-

all PF in a real value (Coello Coello et al., 2007), so it can be

used to guide the search process. This idea is explored by IBEA

(Indicator-based Evolutionary Algorithm) (Zitzler & Künzli, 2004),

which proposes a generic multi-objective evolutionary algorithm

where the selected indicator is used in both the selection and the

replacement stages. Another interesting approach is HypE (Hyper-

volume Estimation Algorithm) (Bader & Zitzler, 2011), in which the

hypervolume (HV) indicator is estimated using Monte Carlo simu-

lations. HV is one of the most frequently used measures to evaluate

PFs, serving to calculate the hyper-area covered by the Pareto front.

Another relevant indicator is spacing (S), which computes the di-

versity of the solutions composing the Pareto set.

Finally, NSGA-III (Deb & Jain, 2014) is a reference-point-based

method that modifies the behaviour of NSGA-II regarding its di-

versity preservation technique. Instead of computing the crowding

distance, this algorithm defines a set of well-distributed points that

are used to promote the individuals that are close to these points

at the replacement step.

2.2. QoS-aware binding of composite web services as an optimisation

problem

The QoSWSC problem can be defined as the search for the

best subset of candidate services to accomplish a composite ser-

vice within a specific workflow. More precisely, the set of services

requiring binding (henceforth named tasks) is identified. For each

task t i , the set of service providers available S i =

{
s i, 1 , . . . , s i,m

}

(named candidate services) is determined. This set can be obtained

by searching in a service registry, or by analysing the set of QoS

configurations available in the SLA of the service. Thus, even when

a single provider is available, multiple candidate services could be

evaluated (one for each alternative QoS configuration provided by

the SLA).

360 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Fig. 1. Goods ordering composite service, adopted from (Parejo et al., 2014).

Table 1

Service providers, candidate services and QoS values for the Goods ordering composite service.

Task and services

Actor Bank Provider Delivery Dig. sign. Surveying

Provider A B C D E F G H I J

Task t 1 t 2 t 1 t 2 t 3 t 4 t 3 t 4 t 5 t 5 t 6 t 6 t 7 t 7
Candidate service s 1, A s 2, A s 1, B s 2, B s 3, C s 4, C s 3, D s 4, D s 5, E s 5, F s 6, G s 6, H s 7, I s 7, J

QoS properties

Cost (in cents) 1 .00 2 .00 1 .50 5 .00 1 .00 2 .00 1 .00 5 .00 1 .00 2 .00 1 .00 2 .00 1 .50 5 .00

Exec. time (in seconds) 0 .20 0 .20 0 .10 0 .15 0 .20 0 .20 0 .40 0 .25 0 .20 0 .20 0 .20 0 .20 0 .10 0 .15

To illustrate this conceptual framework, Fig. 1 shows a goods

ordering service using the Business Process Modelling Notation

(BPMN). The example presents a business process composed of 7

tasks (t 1 , . . . , t 7) with alternative providers including the payment

process, the stock management, the delivery and the request of

survey questions on the user satisfaction. Note that some of these

tasks need to be developed following a specific sequence (e.g. t 1
and t 2), whilst others require more complex building blocks. For

example, if a product is not available, the application reports about

the delay, waiting for some time before repeating t 3 and t 4 , i.e. a

loop will be executed. It is worth noting that the same provider

must be chosen for the tasks t 3 and t 4 , since the reservation in

t 4 refers to the stock of the specific provider queried in t 3 . This

constraint is denoted in the diagram using the elevation event of

BPMN linked to both tasks (an arrow up inscribed in a circle).

Next, t 5 and t 6 , which belong to two different branches, can be

performed in parallel. Finally, the completion of a user satisfaction

survey is requested in task t 7 .

Once the structure of the composition and its tasks have been

defined, a mechanism to choose among candidate services has to

be specified. Here, the goal is to find the binding of services (χ)

that maximises the global QoS (χ ∗) according to the consumers’

preferences. The set of QoS properties that need to be satisfied,

such as the execution time, availability or cost, among others, is

denoted by Q . For each QoS property q ∈ Q , a global QoS level, Q q ,

can be reached from the individual QoS values stipulated by the

agreement of each candidate service appearing in χ . Table 1 de-

tails the candidate services for the example of Fig. 1 and its QoS

values in terms of cost and execution time. For instance, invoking

the payment service t 2 of the provider A, s 2, A , costs 0.02$. In this

case, notice that the global cost Q cost of a composite web service

containing a loop inside will depend on the number of iterations

performed.

In order to obtain the set of Q q values of a specific binding of

services, the QoS values of each s i, j in χ are aggregated using a

utility function, U q , where the specific expression to calculate such

a function clearly depends on the nature of q . Thus, utility func-

tions express user preferences, i.e. the obtained values allow users

to decide if a given solution fulfils their expectations or satisfies

the existing constraints for a given QoS property. For instance, a

total cost of 0.2$ could be fair for some users, but excessive for

others.

Each utility function U q also needs to consider the sort of blocks

taking part in the composition workflow. The existence of condi-

tional branches entails the possibility that only the services allo-

cated in one branch will be executed, being a different scenario

than the invocation of a sequence of them. In this sense, U time for

a sequence can be established as the sum of the execution time of

all the services that compound that sequence, whilst for a branch

the overall value can be defined as the maximum execution time

of any path in this branch. However, U cost for a branch is computed

as the sum of the cost of tasks in each branch.

Furthermore, specific runtime conditions for loops and alter-

native branches also influence the calculation of every Q q . On the

one hand, the presence of a loop implies that one service could

be invoked many times. On the other hand, not all the services

in a conditional structure will be executed in every invocation. In

such cases, the total cost will be affected by the choice among

alternatives and the number of iterations in the loop, respectively.

Since these parameters are unknown in advance, an estimation of

the expected behaviour is usually adopted in the literature when

defining the problem statement (Canfora, Penta, Esposito, & Villani,

2008). For the goods ordering service example, the average number

of iterations per loop could be estimated to include the expected

number of querying (t 3) and reservation (t 4) of products in stock.

Similarly, the probability of executing each branch of the workflow

should be considered. For example, a use of credit card in 80% of

payments could be assumed, whilst t 3 and t 4 are executed twice

on average before bringing the order to completion. In total, the

estimated global cost for a binding χ = (A, B, D, D, F , H, J) can be

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 361

computed as Q Cost (χ) = Cost of switch (χ) + Cost of Loop (χ) +

Cost of fork (χ) + Cost 7 (χ) = 0 . 8 ∗ (0 . 01 + 0 . 02) + 2 ∗ (0 . 01 + 0 . 05)

+ (0 . 02 + 0 . 02) + 0 . 05 = 0 . 23 $.

Since those values are estimations, the actual global QoS values

provided can differ significantly in some invocations.

The final assignment of services into tasks is often obtained af-

ter a complex decision-making process, being its aim to find the

solutions χ ∗ that maximise the utility of the global QoS values

provided by the application. In the motivating example, where only

two providers are available for each task, 128 (i.e. 2 7) different

bindings are possible.

3. Related work

The QoSWSC problem was introduced as a single-objective op-

timisation problem in (Zeng et al., 2004), where integer pro-

gramming was applied to its resolution. Since then, several non-

evolutionary approaches have been used to address this problem.

An improved discrete immune optimisation algorithm based on

particle swarm optimisation (IDIPSO) has been proposed in (Zhao

et al., 2012), whereas in (Parejo, Segura, Fernández, & Ruiz-Cortés,

2014) the authors used GRASP with path relinking to provide ap-

propriate solution to the problems that required a response in

short execution time. Those approaches are compiled in (Jula, Sun-

dararajan, & Othman, 2014; Strunk, 2010). The first genetic ap-

proach was proposed by (Canfora et al., 2005), also considering a

single-objective problem statement.

More recently, the optimisation problem has been addressed

from a multi-objective perspective, applying either metaheuris-

tics or other kind of approaches. In (Li & Yan-xiang, 2010) the

multi-objective chaos ant colony optimisation algorithm is pro-

posed, showing that it can outperform MOGA under specific con-

ditions when dealing with 3 objectives (i.e. cost, time, and relia-

bility). Precisely, MOGA is the basis of the evolutionary framework

presented in (Wada et al., 2012), which also considers 3 QoS prop-

erties (i.e. throughput, latency and cost) to guide the search for

Pareto optimal solutions. Reinforcement learning was the selected

technique in (Moustafa & Zhang, 2013) to jointly optimise availabil-

ity, response time and cost, where the experimentation was carried

out over a synthetic dataset with only 4 tasks. Particle swarm opti-

misation (PSO) was also adopted in (Yin, Zhang, Zhang, Guo, & Liu,

2014) to optimise 3 objectives. In this case, sequence and parallel

structures constituted the only available building blocks to define

the workflow of the composition.

Metaheuristics approaches like EAs, scatter search and PSO

were compared to exact methods in (Trummer et al., 2014) in or-

der to optimise up to 5 objectives (i.e. response time, availability,

throughput, successability, and reliability), extracted from the QWS

Dataset (Al-Masri & Mahmoud, 2008). This dataset was also used

in (Zhang, 2014) considering all the available QoS properties. In

this case, the optimisation problem was solved using PSO, though

the experimental study was only performed in terms of the execu-

tion time.

Variants of NSGA-II were proposed in (de Campos, Pozo,

Vergilio, & Savegnago, 2010) to deal with 5 different objectives,

where preference relations were included with the aim of improv-

ing the performance of the original algorithm. Finally, MOEA/D was

the algorithm selected by (Suciu et al., 2013) to solve a 3-objective

variant of the QoSWSC problem. An adaptation of this algorithm

using two differential evolution approaches was compared against

NSGA-II and GD3 algorithms, also considering different configura-

tions of the number of tasks and candidate services.

A first recent approach using an evolutionary algorithm specifi-

cally conceived to deal with many objectives in order to solve the

QoSWSC problem is (Yu et al., 2015). In such a paper an adaptation

of NSGA-III, named F-MGOP, is proposed. Nevertheless, this work

Fig. 2. Phenotype and genotype of a candidate individual.

is strictly focused on data-intensive services, and F-MGOP is only

compared against SPEA2 and NSGA-II in the empirical validation.

In this case, the number of objective functions is limited up to 4

runtime properties (latency, execution cost, availability and accu-

racy), not usually constituting a real challenge to many-objective

algorithms. On the other hand, the study here presented performs

a wider and extensive empirical comparison considering diverse al-

gorithms from the different families of many-objective evolution-

ary approaches and QoS properties of different nature. Further-

more, the conducted analysis (see Section 5) serves to generalise to

any service composition the conclusions stated in (Yu et al., 2015)

regarding the suitability of many-objective algorithms for optimiz-

ing the QoS of data-intensive compositions.

4. Optimisation model

In this section, the common elements of the evolutionary ap-

proach are presented, including the encoding of solutions, the ge-

netic operators and the selection and replacement strategies. Eval-

uation is performed by calculating the objective functions as ex-

plained later.

4.1. The evolutionary approach

The genotype/phenotype mapping used in this work follows the

approach proposed by (Canfora et al., 2005), and extensively used

in the literature (Parejo et al., 2014; Wada et al., 2012). Here, each

solution is encoded as an integer array, where each position in the

genotype represents a task and its corresponding value, the se-

lected service that will provide it. Consequently, the length of the

genotype is equal to the number of tasks appearing in the work-

flow. Fig. 2 shows the correspondence between the phenotype and

the genotype of each individual.

Initialisation. The initialisation of the population is a random pro-

cedure, i.e. for each task, a web service (highlighted in bold type-

face) is randomly chosen from its list of candidate services.

Operators. The adopted genetic operators are those proposed

by (Canfora et al., 2005). The two points crossover establishes two

cut-points in the genotype of the parents, so each descendant is

created by recombining one part of one parent and two parts of

the other parent. The generated individuals represent two new

compositions where the service assigned to each task is inherited

from one of its two parents. An example of this procedure is de-

picted in Fig. 3 a. With regard to the mutation procedure, the one

locus mutator is performed after the crossover by choosing a ran-

dom gen from the genotype of an offspring in order to change its

value. As a result, a new binding is generated for the task associ-

ated to this position, as shown in Fig. 3 b.

Selection and replacement. Notice that both strategies are defined

by each evolutionary algorithm, since they are not domain-specific.

Table 2 summarises the characteristics of these procedures for all

362 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Fig. 3. Genetic operators.

Table 2

Selection and replacement strategies defined by each evolutionary algorithm.

Algorithm Selection Replacement Archive update

SPEA2 Comparison of fitness values, combining a

strength value and density information

Offspring replace the current population Updated with non-dominated solutions at each

generation

NSGA-II Tournament selection based on the ranking

position (front) and the crowding distance

Progressively stores individuals by fronts,

crowding distance takes a decision on the last

front

–

MOEA/D For each individual, two random neighbours

generate an offspring

Each offspring is compared against its

neighbours

Not used

ε-MOEA An individual within the population is

recombined with another one belonging to the

archive

The new individual replaces one or more

members of the population according to the

Pareto dominance

The ε-dominance and the already filled

hypercubes determine whether the new

individual is included or not

GrEA Tournament selection based on dominance and

grid measures

Progressively stores individuals by fronts, grid

measures takes a decision on the last front

–

IBEA Tournament selection based on the indicator

(fitness value)

Removes individuals with worst fitness value –

HypE Tournament selection based on the HV

estimation

Progressively stores individuals by fronts,

minimum loss of HV is considered in the last

front

–

NSGA-III Random selection Progressively stores individuals by fronts,

reference points takes a decision on the last

front

–

the algorithms described in Section 2.1 . The update mechanism of

the external archive is also detailed when required. In this sense,

two special considerations have been made regarding MOEA/D and

ε-MOEA, since both algorithms do not define a maximum size

for the archive of solutions. Looking for the fairest scenario, both

algorithms have been adapted in order to return as many non-

dominated solutions as the other algorithms can manage at each

generation, i.e. the population size. Thus, MOEA/D will be exe-

cuted without considering the archive, as recommended by its au-

thors (Zhang & Li, 2007), and the non-dominated solutions will be

extracted from the final population. In the case of ε-MOEA, if the

number of non-dominated solutions is greater than the population

size, the archive of solutions will be truncated by a post-processing

step using the method proposed by SPEA2. Nevertheless, the final

number of solutions would slightly vary from one algorithm to an-

other due to their different ability to explore the search space.

4.2. Objective functions

In the QoSWSC problem, the objective functions are those qual-

ity attributes that have to be optimised in order to achieve the best

possible global quality of the composite web service. The 9 QoS

properties of candidate services defined in the QWS Dataset (Al-

Masri & Mahmoud, 2008) have been considered in this work:

• Response time (T) . The required time to send a request and re-

ceive the response from the service, expressed in milliseconds.
• Availability (A) . The ratio (percentage) of successful invocations.
• Reliability (R) . A measure of the amount of error messages gen-

erated during the service execution, i.e. the ratio of error mes-

sages to the total messages.
• Throughput (G) . The number of invocations to the service per

second.

• Latency (L) . The time required to respond to a request, ex-

pressed in milliseconds.
• Successability (U) . The ratio (percentage) of requests that were

correctly replied.
• Compliance (C) . The ratio (percentage) of conformance with the

WSDL (Web Services Description Language) specification pro-

posed by the World Wide Web Consortium.
• Best practices (B) . The ratio (percentage) of accomplishment of

the WS-I Basic Profile, which establishes a set of requirements

to promote interoperability.
• Documentation (D) . The ratio (percentage) of description tags of

the WSDL used in the service documentation, e.g. service name,

operation name, etc.

As mentioned in Section 2.2 , each candidate service provides its

own QoS values, which should be combined in order to obtain the

overall QoS value for each property in the composite service. No-

tice that each specific property covers a different quality aspect of

a service. For instance, some properties like C, B or D may be more

related to the design and development process, which may affect

the correctness, error handling and maintainability of the system;

others like T and L are strongly influenced by the service provider

and the network infrastructure, similarly to R, A, G and U , which

may depend on the runtime conditions and other external factors

or operating errors. In most cases, a combination of different fac-

tors will determine the choice of the QoS properties to be globally

considered.

In order to conduct the evaluation of the quality objectives, an

utility function is applied for each QoS property q considering the

type of building blocks in the given workflow (see Table 3). For in-

stance, the response time (T) of a sequence of service invocations

can be obtained as the sum of the individual T values of these

services, whilst a loop containing that sequence should also take

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 363

Table 3

Utility functions.

QoS property Sequence Loop Branch Fork

Response time (T)
∑ m

i =1 T (a i) k · ∑ n
i =1 T (a i)

∑ m
i =1 P i · T (s b

i
) min

p
i =1

T (s f
i
)

Availability (A)
∏ m

i =1 A (a i) (
∏ n

i =1 A (a i))
k

∑ m
i =1 P i · A (s b

i
)

∏ p
i =1

A (s f
i
)

Reliability (R)
∏ m

i =1 R (a i) (
∏ n

i =1 R (a i))
k

∑ m
i =1 P i · R (s b

i
) min

p
i =1

R (s f
i
)

Throughput (G) min
m
i =1 G (a i) min

m
i =1 G (a i) /k

∑ m
i =1 P i · G (s b

i
) min

p
i =1

G (s f
i
)

Latency (L)
∑ m

i =1 L (a i) k · ∑ n
i =1 L (a i)

∑ m
i =1 P i · L (s b

i
) min

p
i =1

L (s f
i
)

Successability (U)
∏ m

i =1 U(a i) (
∏ n

i =1 U(a i))
k

∑ m
i =1 P i · U(s b

i
)

∑ p
i =1

U i · U(s f
i
)

Compliance (C) (
∑ m

i =1 C(a i)) /n (
∑ m

i =1 C(a i)) /n
∑ m

i =1 P i · C(s b
i
) (

∑ m
i =1 C(a i)) /n

Best practices (B) (
∑ m

i =1 B (a i)) /n (
∑ m

i =1 B (a i)) /n
∑ m

i =1 P i · B (s b
i
) (

∑ m
i =1 B (a i)) /n

Documentation (D) (
∑ m

i =1 D (a i)) /n (
∑ m

i =1 D (a i)) /n (
∑ m

i =1 D (s b
i
)) /n (

∑ p
i =1

D (s f
i
)) /n

into account the expected number of iterations, k. P i stands for the

probability of executing the branch i .

It is worth mentioning that the last four functions, i.e. U, C,

B and D , have been specifically designed for this work as a sec-

ondary contribution, whilst the rest were adopted from the litera-

ture (Ardagna & Pernici, 2007; Canfora et al., 2005; Strunk, 2010;

Wang, Tong, & Thompson, 2007; Zeng et al., 2004). With the ex-

ception of T and L , all the properties have to be maximised. Fur-

thermore, for the sake of simplicity, the former have been properly

inverted in a preprocessing step, and their aggregation functions

have been adapted accordingly.

5. Experimentation

In this section, the proposed experimental framework 1 is de-

tailed. Firstly, the design of the experimentation is motivated by

explaining how the obtained results have been validated. Next,

the experimentation set-up and algorithm parametrisation are de-

scribed. The analysis of the results is provided not only from the

evolutionary perspective, but also on the degree to which each

evolutionary algorithm fits the optimisation of the QoS properties

under study. In addition, a more thorough analysis of the approach,

including its advantages and limitations, is finally discussed at the

end of this section.

5.1. Experimentation rationale

The research methodology applied in this work is an empiri-

cal study based on a sequence of controlled experiments, as the

standard methodology in optimisation approaches. This methodol-

ogy enables the isolation and control of the factors that might in-

fluence the performance of the algorithms and the quality of the

resulting service compositions, thus providing a fair comparison

framework. The experimentation has been formulated according to

the intrinsic characteristics of the optimisation problem under con-

sideration: (a) the number of tasks and the number of candidate

services per task mostly determine the size of search space; (b) the

specific QoS values of each candidate are required to compute the

global QoS value; and (c) the composition structure of the work-

flow (i.e. nested loops, parallel flows, alternative branches, etc.) de-

termines which utility functions are computed.

Bearing these factors in mind, combining all the different con-

figurations and complexities would imply an extremely large num-

ber of executions, leading to an unaffordable combinatorial explo-

sion. Therefore, two representative experiments have been con-

ducted in order to ensure meaningful results and conclusions:

1 Additional material regarding the problem instances, experimentation results

and statistical tests is available for reproducibility from http://www.uco.es/grupos/

kdis/sbse/RPRSR15

Table 4

Problem instances generation parameters.

Composition structure parameters

Max. number of tasks 10, 20, 30, 40, 50

Prob. control flows 0 .20

Prob. loops 0 .45

Prob. branches 0 .45

Prob. flows 0 .10

Max. nesting levels 5 .00

Runtime flow parameters

Iterations per loop Gaussian distribution (μ = 5 . 00 , σ = 1 . 50)

Number of branches 2 .00

Candidate service parameters

Candidates per task Gaussian distribution (μ = 5 . 00 , σ = 2 . 00)

Candidates for each task Randomly chosen from the dataset

Experiment #1 It considers web service compositions having

a maximum of 10, 20, 30, 40, or 50 tasks, where each task

contains a different set comprised of 1 to 11 candidate ser-

vices, according to the parametrisation given in Table 4 .

Their composition is randomly chosen, where a total of 15

problem instances have been generated, i.e. 3 instances per

each maximum number of tasks, each one associated to a

different set of candidate services but sharing the workflow.

Thus, this experiment is based on a wide spectrum of prob-

lem sizes.

Experiment #2 In order to validate the conclusions drawn

from Experiment #1, Experiment #2 should serve to prove

that the fixed structure, i.e. the workflow, does not have a

marked influence on the outcomes. Therefore, 15 different

structures of composition were generated for 3 representa-

tive instances, i.e. 10, 30 and 50 tasks, leading to a total of

45 problem instances. If the relative performance of the al-

gorithms does not change in terms of an statistical signif-

icant difference, then it could be inferred that the conclu-

sions are valid under the conditions of Experiment #1. All

the problem instances used in these experiments were gen-

erated by the instance generator proposed in (Parejo et al.,

2014), whose parameters are shown in Table 4 .

All the experiments are conducted using the dataset proposed

by (Al-Masri & Mahmoud, 2008), which provides the specific QoS

values for each candidate service. This dataset has been extensively

used in the QoS-aware services computing area (Strunk, 2010) and,

particularly, in the recent literature about the QoSWSC problem.

It is comprised of QoS values obtained after monitoring 2507 real

world and publicly available web services, which contributes to

make more realistic experiments within the field.

The results of both experiments have been analysed similarly.

Each algorithm has been executed 30 times for each problem in-

364 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Table 5

Parameter set-up.

Common parameters

Population Size 165

Max. evaluations 33 ,0 0 0

Crossover probability 0 .70

Mutation probability 0 .10

SPEA2

Parents selector Binary tournament

Archive size 165

k th neighbour 12

MOEA/D

Neighbourhood size (τ) 10

Max. replacements (Nr) 4

No. weight vectors 165 (H = 3)

GrEA

Divisions (div) 10

IBEA

Scaling factor (k) 0 .05

HypE

Sampling points (M) 10 ,0 0 0

NSGA-III

No. reference points (boundary layer) 165 (p = 3)

No. reference points (inside layer) 66 (p = 2)

stance considering different random seeds. Then, the hypervol-

ume and spacing indicators have been computed over the returned

Pareto fronts, taking average values, to compare the quality of

the set of solutions returned by each evolutionary algorithm (see

Section 2.1). Both indicators vary in the range [0,1] and should be

maximised. Since the hypervolume requires all the objective val-

ues to fall into the range [0,1], a post-processing step has to be

performed in order to normalise the objective values of all the so-

lutions returned. Next, three non-parametric statistical tests (Arcuri

& Briand, 2011; Derrac, García, Molina, & Herrera, 2011) have been

executed to assess the differences in the performance of the algo-

rithms in terms of the aforementioned indicators. Firstly, the Fried-

man test for multiple comparison is carried out, where the null

hypothesis, H 0 , establishes that all the algorithms perform equally

well. This test provides a ranking of algorithms, and a critical value

to decide whether H 0 can be rejected at a certain level of signif-

icance (1 − α). However, this test can only report the existence of

significant differences, so a post-procedure has to be applied in or-

der to reveal the sort of these differences. This is the case of the

Holm test, where the best algorithm found by the Friedman test is

compared against the rest of algorithms.

Additionally, the Cliff’s Delta test has been executed to perform

pairwise comparisons using an effect-size measurement (Arcuri &

Briand, 2011). This method allows classifying the difference be-

tween pairs of algorithms as negligible, small, medium or large

on the basis of specific thresholds (Romano, Kromrey, Coraggio, &

Showronek, 2006).

5.2. Experimental set-up

The optimisation approach as well as the proposed experiments

have been coded in Java. The evolutionary algorithms have been

implemented using the JCLEC framework (Ramírez, Romero, & Ven-

tura, 2015; Ventura, Romero, Zafra, Delgado, & Hervás, 2007). The

experiments were run on a HPC cluster of 8 compute nodes with

Rocks cluster 6.1 x64 Linux distribution. Each node comprises two

Intel Xeon E5645 CPUs with 6 cores at 2.4 GHz and 24 GB DDR

memory.

Table 5 shows the parametrisation of the different evolution-

ary implementations. Notice that some part of the configuration

is common to all the algorithms. Both the population size and

the maximum number of evaluations have been fixed after some

preliminary experimentation. Crossover and mutation probabili-

Table 6

Statistical comparison of hypervolume in Experiment #1.

i Algorithm Ranking (Friedman) α/i (Holm)

7 NSGA-III 8 .0 0 0 0 0 .0071

6 SPEA2 6 .1333 0 .0083

5 GrEA 6 .0 0 0 0 0 .0100

4 MOEA/D 4 .80 0 0 0 .0125

3 IBEA 4 .2667 0 .0167

2 NSGA-II 3 .40 0 0 0 .0250

1 HypE 2 .0 0 0 0 0 .0500

0 ε-MOEA 1 .40 0 0

ties have been configured in accordance to the values proposed

by (Canfora et al., 2005). The rest of parameters have been set fol-

lowing each author’s recommendation.

As for the specific set-up of the algorithms, it should be noted

that IBEA applies the ε-indicator to guide the search, since the ex-

act computation of hypervolume would be prohibitive. The Tcheby-

cheff approach has been selected as the evaluation mechanism ap-

plied by MOEA/D, which allows the presence of objective func-

tions with different scales as happens in this optimisation prob-

lem. Moreover, ε-MOEA has been modified to internally set the

lengths of the hypercubes since they depend on the specific prob-

lem instance being solved. Given a workflow composition, the min-

imum and maximum values that a solution could reach for each

QoS property are estimated and used to define 10 hypercubes with

equal length, i.e. the same number of hypercubes established for

GrEA.

5.3. Experiment #1

In this section, the results provided by Experiment #1 are

shown and discussed. A comparative study is first presented in

terms of the evolutionary performance. Secondly, relevant aspects

of the search process regarding the trade-offs reached between

QoS properties are discussed. Finally, algorithms are also compared

in terms of their execution time.

5.3.1. Results and statistical analysis

After the execution of all the algorithms, the Friedman test de-

termines the ranking position obtained by each algorithm regard-

ing the HV , as shown in the third column of Table 6 , where ε-

MOEA is reported to achieve the best ranking. In addition, this test

reports a statistics, z , at the specified significance level (α = 0 . 01)

in order to determine whether H 0 can be rejected. If the obtained

value, which follows a F-Distribution, is greater than a critical

threshold, then there exist significant differences among the algo-

rithms. In this case, that condition is satisfied given that the critical

value, 2.8272, is lower than the respective statistics, z = 63 . 1879 .

In order to reveal the sort of those differences, the Holm post-

procedure is executed, being its outcomes shown in the fourth col-

umn of Table 6 . In this case, the test has indicated that the control

algorithm (ε-MOEA) is better than those algorithms having an α/ i

value lower than 0.025. Consequently, only HypE and NSGA-II per-

form equally well than ε-MOEA, i.e. all of them maintain a good

trade-off between convergence and divergence along the search

process and, as a result, these algorithms return an equivalent set

of high-quality solutions.

Next, as explained in Section 5 , the Cliff’s Delta test allows

analysing the relative performance of pairs of algorithms. Table 7

compiles the results for all the possible pairwise comparisons, each

cell showing the estimated difference in terms of HV and indicat-

ing whether such a value can be considered as negligible (n), small

(s), medium (m) or large (l) at the significance level α = 0 . 01 . For

instance, looking at the fourth row, it can be observed that, even

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 365

Table 7

Results of the Cliff’s Delta test for hypervolume (n = negligible, s = small, m = medium, l = large) (α = 0 . 01).

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 – −0.50 (l) −0.19 (s) −0.79 (l) −0.05 (n) −0.37 (m) −0.69 (l) 0 .96 (l)

NSGA-II 0 .50 (l) – 0 .23 (s) −0.46 (m) 0 .48 (l) 0 .16 (s) −0.28 (s) 0 .98 (l)

MOEA/D 0 .19 (s) −0.23 (s) – −0.55 (l) 0 .13 (n) −0.13 (n) −0.48 (l) 0 .96 (l)

ε-MOEA 0 .79 (l) 0 .46 (m) 0 .55 (l) – 0 .69 (l) 0 .58 (l) 0 .21 (s) 0 .92 (l)

GrEA 0 .05 (n) −0.48 (l) −0.13 (n) −0.69 (l) – −0.29 (s) −0.60 (l) 0 .96 (l)

IBEA 0 .37 (m) −0.16 (s) 0 .13 (n) −0.58 (l) 0 .29 (s) – −0.44 (m) 0 .95 (l)

HypE 0 .69 (l) 0 .28 (s) 0 .48 (l) −0.21 (s) 0 .60 (l) 0 .44 (m) – 0 .93 (l)

NSGA-III −0.96 (l) −0.98 (l) −0.96 (l) −0.99 (l) −0.96 (l) 0 .95 (l) −0.99 (l) –

Table 8

Statistical comparison of spacing in Experiment #1.

i Algorithm Ranking (Friedman) α/i (Holm)

7 IBEA 8 .0 0 0 0 0 .0071

6 HypE 6 .5333 0 .0083

5 GrEA 6 .40 0 0 0 .0100

4 NSGA-III 4 .7333 0 .0125

3 ε-MOEA 4 .0 0 0 0 0 .0167

2 SPEA2 2 .7333 0 .0250

1 MOEA/D 2 .60 0 0 0 .0500

0 NSGA-II 1 .0 0 0 0

when the previous statistical tests do not reveal a significant dif-

ference among ε-MOEA, NSGA-II and HypE, the difference between

ε-MOEA and NSGA-II (0.46) has been classified as medium. On the

other hand, the difference between ε-MOEA and HypE (0.21) is

rather small. In addition, differences among SPEA2, MOEA/D and

GrEA are reported as nearly negligible.

Focusing on the spacing indicator, Table 8 shows the results

of Friedman and Holm tests. The resulting z value is 202.1765, so

strong differences on the performance of the algorithms might be

expected (2.8272 < < z). Again, the Holm test determines that the

control algorithm performs better than those algorithms having an

α/ i value lower than 0.025. NSGA-II is shown to be able to gen-

erate a greater variety of solutions than that provided by most of

the many-objective algorithms, even though it has not significant

differences with SPEA2 and MOEA/D.

Table 9 compiles the obtained differences among the 8 algo-

rithms in terms of S after performing the Cliff’s Delta test. As can

be observed, SPEA2, NSGA-II, MOEA/D and ε-MOEA clearly outper-

form the rest of algorithms, since most of the differences are clas-

sified as large.

From the obtained results, it is worth noticing that SPEA2 and

NSGA-II behave similarly with respect to S , since they reach the

first positions in the ranking. However, NSGA-II clearly outperforms

SPEA2 in terms of HV . In this sense, NSGA-II has shown good scal-

ability when a high number of objectives is considered, only be-

ing overtaken by some specific many-objective approaches like ε-

MOEA and HypE.

Regarding the many-objective evolutionary algorithms, the de-

composition approach proposed by MOEA/D, which is aimed at

maintaining diversity during the search, allows obtaining good S

values. However, it has also a negative impact on the level of opti-

misation reached by the solutions, as shown in Table 6 . The same

behaviour is observed when GrEA and NSGA-III are executed, both

of them having problems to properly converge to the PF. Just the

opposite situation comes about with IBEA or HypE, since both al-

gorithms return better results for the HV than for S . As a general

matter, the joint optimisation of both indicators is a complicated

task, and only ε-MOEA and NSGA-II have achieved good ranking

positions in both cases.

5.3.2. Evolutionary influence on QoS properties

This section discusses the existing relation between algorithms

and QoS properties. Table 10 provides the big picture of how good

each algorithm is for a QoS property. This has been performed by

calculating the average values of each property within the PF and,

next, counting the number of times that each algorithm achieves

the highest value for each property. All the problem instances

were considered. Such values are expressed as percentages, the

best value for each QoS property being shown in bold typeface.

As can be observed, some specific many-objective approaches like

ε-MOEA, IBEA and HypE reach the best percentages. Moreover, ε-

MOEA and HypE have the ability to generate high quality solutions

for some specific QoS properties without demoting the trade-off

among all of them (see Table 6). Notice that the best set of al-

ternative solutions are provided by HypE and ε-MOEA algorithms,

what can become a relevant factor when software engineers have

not a clear preference on the properties to be optimised.

The separation of QoS properties in runtime (G, A, L, U, R , and

T) and design-time (C, B , or D) can provide further insights. For

the first case, Table 10 shows that HypE provides the best average

values, since it achieves the best average values for 5 out of the

6 runtime properties. Regarding design-time properties, this algo-

rithm also provides the best average values for the standards com-

pliance (C) property, even when for the three properties IBEA has

reached the best trade-off. Consequently, if runtime properties are

promoted against design-time properties, HypE seems to be the

most appropriate choice. Similarly, this algorithm provides the best

global trade-off.

Fig. 4 shows how the QoS values returned by each algorithm are

distributed. For the sake of clarity, all the QoS properties are nor-

Table 9

Results of the Cliff’s Delta test for spacing (n = negligible, s = small, m = medium, l = large) (α = 0 . 01).

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 – −0.88 (l) −0.07 (n) 0 .41 (m) 0 .93 (l) 0 .93 (l) 0 .93 (l) 0 .71 (l)

NSGA-II 0 .88 (l) – 0 .93 (l) 0 .96 (m) 0 .93 (l) 0 .93 (l) 0 .93 (l) 0 .93 (l)

MOEA/D −0.07 (n) −0.93 (l) – 0 .54 (l) 0 .93 (l) 0 .93 (l) 0 .93 (l) 0 .80 (l)

ε-MOEA −0.41 (m) −0.96 (l) −0.54 (l) – 0 .96 (l) 0 .93 (l) 0 .98 (l) 0 .27 (s)

GrEA −1.00 (l) −1.00 (l) −1.00 (l) −0.96 (l) – 0 .95 (l) 0 .02 (n) −1.00 (l)

IBEA −1.00 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.95 (l) – −0.93 (l) −1.00 (l)

HypE −1.00 (l) −1.00 (l) −1.00 (l) −98 (l) −0.02 (n) 0 .93 (l) – −0.99 (l)

NSGA-III −0.71 (l) −1.00 (l) −0.80 (l) −0.27 (s) 0 .93 (l) 0 .93 (l) −0.93 (l) –

366 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Table 10

Experiment #1: Best algorithms for each QoS property (expressed as percentages).

QoS Property SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

Response time (T) 0 .00 0 .00 0 .00 0 .00 6 .67 53 .33 40 .00 0 .00

Availability (A) 0 .00 6 .67 0 .00 13 .33 0 .00 40 .00 40 .00 0 .00

Reliability (R) 0 .00 0 .00 0 .00 13 .33 0 .00 6 .67 80 .00 0 .00

Throughput (G) 0 .00 0 .00 0 .00 13 .33 0 .00 6 .67 80 .00 0 .00

Latency (L) 0 .00 0 .00 0 .00 0 .00 0 .00 33 .33 66 .67 0 .00

Successability (U) 0 .00 0 .00 0 .00 6 .67 0 .00 40 .00 53 .33 0 .00

Compliance (C) 0 .00 0 .00 0 .00 6 .67 13 .33 26 .67 53 .33 0 .00

Best practices (B) 13 .33 0 .00 6 .67 40 .00 0 .00 20 .00 20 .00 0 .00

Documentation (D) 0 .00 0 .00 0 .00 33 .33 6 .67 40 .00 20 .00 0 .00

Fig. 4. Box plots of the distribution of QoS values in the Pareto front found by each algorithm.

malised, and have to be maximised. Notice that differences among

algorithms become more distinct. Firstly, ε-MOEA, IBEA and HypE

obtain not only similar distributions for design-properties, but also

a good balance among the rest of attributes. Secondly, NSGA-II pro-

vides a wide range of QoS values for all the properties, even when

the specific values are lower than those obtained by the aforemen-

tioned approaches. In addition, it can be observed that some QoS

properties are easier to optimise than others. For instance, latency

(L) is highly optimised by most of the algorithms, values greater

than 0.8 being frequently achieved. On the contrary, differences be-

tween the algorithms are more noticeable for availability (A) and

reliability (R).

5.3.3. Analysis of computational cost

As the number of QoS properties increases and the use of

more sophisticated algorithms becomes more necessary, it is im-

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 367

Fig. 5. Average execution time relative to the number of tasks.

Table 11

Statistical comparison of hypervolume in Experiment

#2.

i Algorithm Ranking (Friedman) α/ i (Holm)

7 NSGA-III 8 .0 0 0 0 0 .0071

6 SPEA2 6 .4222 0 .0083

5 GrEA 5 .7778 0 .0100

4 IBEA 4 .6667 0 .0125

3 MOEA/D 4 .64 4 4 0 .0167

2 NSGA-II 2 .9556 0 .0250

1 HypE 1 .9556 0 .0500

0 ε-MOEA 1 .5778

portant to confirm that the execution time is suitable to perform

the decision-making process. Even though this approach is framed

within the design phase, where requirements related to execution

time can be met more flexibly, an excessive computational cost

could still limit the general adoption of many-objective evolution-

ary algorithms. Fig. 5 shows the average execution time for all the

problem instances used in this experiment, depicting the scalabil-

ity of the algorithms with respect to the number of tasks. Error

bars represent the standard deviation. As can be seen, most of

the algorithms require just a few seconds to compute the overall

Pareto front, a soft linear increase being observed as the number

of tasks grows. Only SPEA2 and, especially, HypE require several

minutes to find all the solutions comprising the Pareto front. The

software engineer should consider whether such time level is man-

ageable for the project conditions. In addition, it should be noted

that obtaining high quality solutions is independent of the execu-

tion time required by each specific algorithm. For instance, NSGA-II

and ε-MOEA are reported as efficient algorithms while they pro-

vide the best set of solutions according to the experiment con-

ducted in Section 5.3.1 .

5.4. Experiment #2

This experiment serves to analyse the influence of the composi-

tion structure on the evolutionary performance or on the optimisa-

tion of the QoS properties. Experimentation is performed similarly

to Experiment #1.

Table 11 shows the comparison of algorithms in terms of the

hypervolume indicator, and reveals the outcomes of the Friedman

test considering all the problem instances generated for Experi-

ment #2. As can be observed, the ranking positions for the algo-

rithms are the same that those obtained in Experiment #1, except

for IBEA. In this case, z is equal to 220.9533, whereas the critical

value is 2.6977. Consequently, since 2.6977 < z , it can be concluded

that there exist significant differences between the algorithms, and

Table 12

Statistical comparison of spacing in Experiment #2.

i Algorithm Ranking (Friedman) α/ i (Holm)

7 IBEA 8 .0 0 0 0 0 .0071

6 HypE 6 .6222 0 .0083

5 GrEA 6 .3333 0 .0100

4 NSGA-III 4 .3333 0 .0125

3 ε-MOEA 3 .9778 0 .0167

2 SPEA2 4 .3463 0 .0250

1 MOEA/D 2 .4889 0 .0500

0 NSGA-II 1 .0 0 0 0

the threshold given by the Holm test, 0.05, indicates that ε-MOEA

is statistically better than the rest of algorithms, except for HypE.

The statistical tests have been computed for the spacing indi-

cator as well (see Table 12). In this case, z is equal to 453.6330,

whereas the critical value remains the same. Again, significant dif-

ferences are revealed after executing the Holm test, which rejects

all the hypothesis when comparing the control algorithm, NSGA-II,

against the rest of evolutionary approaches.

As previously performed in Experiment #1, Table 13 shows the

existing relation between optimisation algorithms and QoS proper-

ties. Notice that ε-MOEA generates the best solutions in terms of

documentation (D) and best practices (B), whereas IBEA seems to

promote solutions with good values of standards compliance (C).

Again, HypE is mostly focused on the search of solutions that sat-

isfy the 6 runtime properties.

As can be observed, the obtained results remain rather similar

to those discussed above. IBEA is likely to be the only exception

to this statement, as in Experiment #1 had reach the best position

to deal with design-time properties. More specifically, in this case

IBEA performs worse regarding availability (A) and documentation

(D) and, even when it behaves much better in terms of standards

compliance (C), it is outperformed by ε-MOEA and HypE glob-

ally for the design-time properties. Between the latter approaches,

ε-MOEA tends to demote the standards compliance (C), whereas

HypE reaches a better balance among all the QoS properties. Nev-

ertheless, notice that the three algorithms behave very similarly

for the three design-time properties according to the distribution

of QoS values (see Fig. 4), which implies that any minor change

in the selected problem instances could modify their ranking posi-

tions.

With regard to the composite structure, it does not affect the

relative performance of algorithms from an evolutionary perspec-

tive, as can be observed from the results. In global terms, the rank-

ing positions remain the same, and the observed strengths and

weaknesses of each evolutionary approach to explore the search

368 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Table 13

Experiment #2: Best algorithms for each QoS property (expressed as percentages).

QoS Property SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

Response time (T) 0 .00 0 .00 0 .00 0 .00 4 .44 46 .67 48 .89 0 .00

Availability (A) 2 .22 2 .22 0 .00 13 .33 0 .00 24 .44 57 .78 0 .00

Reliability (R) 0 .00 0 .00 2 .22 6 .67 0 .00 15 .56 75 .56 0 .00

Throughput (G) 0 .00 0 .00 0 .00 4 .44 2 .22 13 .33 80 .00 0 .00

Latency (L) 0 .00 0 .00 0 .00 0 .00 2 .22 33 .33 64 .44 0 .00

Successability (U) 2 .22 2 .22 0 .00 13 .33 0 .00 17 .78 64 .44 0 .00

Compliance (C) 0 .00 0 .00 0 .00 2 .22 8 .89 57 .78 31 .11 0 .00

Best practices (B) 6 .67 2 .22 0 .00 44 .44 8 .89 17 .78 20 .00 0 .00

Documentation (D) 4 .44 0 .00 0 .00 40 .00 6 .67 20 .00 28 .89 0 .00

space are due to other characteristics of the QoSWSC problem, i.e.

its highly combinatorial nature and the number of objectives. The

observed differences between both experiments can be explained

by the fact that Experiment #2 considers a greater number of

problem instances, and the addition of new workflow structures.

This might influence the returned QoS values and, consequently,

the results of the indicators.

5.5. Discussion of results

Understanding the advantages and limitations of the experi-

mental findings can give awareness of the applicability of the pro-

posed approach. Regarding its advantages, the comparative study

has provided novel evidences of the performance of six many-

objective algorithms to solve the QoSWSC problem, comparing

them with two classical multi-objective algorithms. In this sense,

results have shown that differences on the evolutionary perfor-

mance of the algorithms are mostly due to the number of ob-

jectives and, consequently, their behaviour is shown to be signif-

icantly robust in all cases. On the one hand, many-objective ap-

proaches like ε-MOEA and HypE have proven to be more effective

search methods than multi-objective algorithms in terms of the

obtained QoS values. More specifically, experimental results show

that ε-MOEA provides the best values for the QoS properties being

optimised, whereas HypE reaches a better trade-off between the

values of the target QoS properties. Even so, they tend to obtain

less variety of web service compositions.

An in-depth analysis of the solutions returned by each algo-

rithm points out that some algorithms, such as HypE and IBEA,

are able to generate solutions with highly optimised values for

some specific QoS properties of runtime (reliability and through-

put) and design-time (documentation), respectively. At the same

time, they maintain a good balance among the rest of properties.

Hence, many-objective approaches become especially well-suited

in those cases in which these properties are of particular interest

to the engineer. To the best of our knowledge, this kind of study

had never been conducted before in the context of the QoSWSC

problem. If properly used, this information can be also exploited by

the intelligent system aimed at providing the engineer with valu-

able heuristics for the selection of the most appropriate algorithm

for each QoS property.

This proposal has some limitations, too. For instance, some of

the algorithms are only suitable to solve the problem at design-

time due to their high computational complexity. Nevertheless, no-

tice that their execution time is still affordable at this stage of

the development. Even some of the many-objective algorithms ap-

plied here, like IBEA, NSGA-III and MOEA/D, are faster than multi-

objective approaches like SPEA2. Furthermore, a low execution

time does not necessarily conflict with the generation of high qual-

ity solutions, as demonstrated by ε-MOEA. From the point of view

of the decision-making process, the engineer could consider as a

drawback the need of selecting a specific solution from the fi-

nal Pareto front. This is usual when dealing with Pareto-based ap-

proaches, which could be configured or adapted to return a smaller

set of solutions to choose from.

6. Threats to validity

As any research methodology, the experimental study pro-

posed here presents limitations that should be clearly pointed out.

These are described next in terms of internal and external validity

threats, including the decisions taken to mitigate their impact.

Internal validity . This refers to whether there is sufficient evi-

dence to support the conclusions and the sources of bias that

could compromise those conclusions. In order to minimise the im-

pact of external factors in the obtained results, all the algorithms

were executed 30 times per problem instance (market of candi-

date services and structure of the composition) to compute aver-

ages. Moreover, statistical tests were performed to ensure the sig-

nificance of the differences identified between the results obtained

by the compared proposals. Finally, the experiments have been ex-

ecuted in a remote cluster of computers, so a stable experimenta-

tion platform was provided.

External validity. This is concerned with how the experiments cap-

ture the research objectives and the extent to which the drawn

conclusions can be generalised. This can be mainly divided into

limitations of the approach and generalisability of the conclu-

sions. Regarding the limitations, experiments did not reveal signif-

icant differences for all the pairwise comparisons between algo-

rithms. Nonetheless, the obtained results have provided solid in-

sights when comparing the general behaviour of multi-objective

evolutionary algorithms, mostly focused on maintaining diversity,

and many-objective approaches, which tend to work better in

terms of hypervolume.

Regarding the generalisability of conclusions, the parameters

and the size of the analysed problem instances were chosen con-

sidering the most common values used in the literature (Strunk,

2010). Additionally, Experiment #2 was performed to ensure the

generalisability of the results independently of the specific com-

position structure used in the problem instances (workflow lay-

out). In this case, up to 45 different problem instances were ran-

domly generated in order to compare the performance of the pro-

posals with disparate composition structures. Since the rankings

of the algorithms mostly remain unaltered with respect to Experi-

ment #1, and differences are statistically significant in all cases, it

can be concluded that results are generalisable for the composition

structures having the applied parameters. Finally, our experimen-

tal study does not take into account neither global QoS constraints

nor interdependence constraints. Although most of the selected al-

gorithms can be adapted to deal with constrained problems, con-

clusions regarding their performance cannot be extrapolated from

the current study.

A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370 369

7. Concluding remarks

This paper presents a comparative study on the suitability and

performance of different multi- and many-objective algorithms to

deal with the QoS Web Service Composition problem, which has

been identified as a key issue in the field of SOC. This problem

has been already addressed from a multi-objective perspective in

the near past, when only a small number of properties was un-

der study, e.g. cost or availability. Having a few properties leads to

an objective space where multi-objective evolutionary algorithms

work well. However, in real-world environments these approaches

have shown their unsuitability as the number of objectives in-

creases, e.g. considering at the same time both runtime and design

attributes. Even so, the trade-off among all of them has to be still

preserved, and the choice of candidate services becomes a harder

task demanding more sophisticated optimisation techniques.

A comparative study of 2 multi-objective and 6 many-objective

evolutionary algorithms has been proposed to address a 9-

objective (QoS properties) QoSWSC problem, taking into consider-

ation those aspects that the engineer might find in a real environ-

ment. This is the first generalisable and extensive application of

specific many-objective evolutionary algorithms to solve this opti-

misation problem, where factors like the number of tasks or the

composition structure influence its complexity. Therefore, experi-

ments have also considered a wide range of problem instances us-

ing real QoS values.

Experimental results confirm that many-objective algorithms

are a suitable option to face QoSWSC problems considering a large

number of objectives at design time. Among the implications that

can be derived from the conducted analysis, it is worth mentioning

the ability of many-objective algorithms like ε-MOEA, HypE and

IBEA to optimise specific QoS properties. Additionally, the experi-

mental study has shown that the proposed approach is not specif-

ically influenced by the way how the problem is formulated in

terms of its structure composition and tasks.

As many-objective optimisation has turned out to be an inter-

esting paradigm to move one step forward in the automatic com-

position of web services, future research is planned to explore even

more complex formulations of the QoSWSC problem. As a next

step, adding constraints like service dependencies or the satisfac-

tion of thresholds for certain QoS properties will allow analysing

their influence on the search process. In this application domain,

it is of particular relevance to study how constraint-handling tech-

niques can be effectively integrated into many-objective evolution-

ary approaches. Similarly, combining many-objective algorithms

with prioritisation techniques would allow focusing the search on

those QoS properties of highest interest to the engineer.

In addition, authors plan to explore the possibility of combin-

ing the approaches proposed in this paper, aimed at addressing

the QoSWSC problem at design time, with other techniques more

appropriate to enable the optimisation process at runtime (Parejo

et al., 2014). With such a combined approach, the entire life-cycle

of the service compositions could be covered, including design-

time service selection, optimisation at deployment-time, and run-

time reconfiguration. Another important step forward is the appli-

cation of this approach to a real case study using popular services

like Amazon EC2 and PayPal. Finally, we consider relevant for the

expert system to let the engineer get involved by the search al-

gorithm using human-in-the-loop models, so that it could explore

the search space guided by the experts decisions.

Acknowledgements

Work supported by the Spanish Ministry of Science and Tech-

nology and the Andalusian R&I&D, projects P12-TIC-1867, TIN2012-

32273, TIC-5906, and FEDER funds. This research was also sup-

ported by Spanish Ministry of Economy and Competitiveness,

projects TIN2014-55252-P and TIN2015-71841-REDT, and the Span-

ish Ministry of Education under the FPU program (FPU13/01466).

References

Al-Masri, E., & Mahmoud, Q. H. (2008). Investigating web services on the world
wide web. In Proceedings of the 17th international conference on world wide web .

In WWW ’08 (pp. 795–804). New York, NY, USA: ACM. doi: 10.1145/1367497.
1367605 .

Arcuri, A., & Briand, L. (2011). A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In Proceedings of the 33rd inter-

national conference on software engineering . In ICSE ’11 (pp. 1–10). New York, NY,

USA: ACM. doi: 10.1145/1985793.1985795 .
Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flexible processes.

IEEE Transactions on Software Engineering, 33 (6), 369–384. doi: 10.1109/TSE.2007.
1011 .

Bader, J., & Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-based
many-objective optimization. Evolutionary Computation, 19 (1), 45–76. doi: 10.

1162/EVCO _ a _ 0 0 0 09 .

Bonatti, P. A., & Festa, P. (2005). On optimal service selection. In Proceedings of the
14th international conference on world wide web . In WWW ’05 (pp. 530–538).

New York, NY, USA: ACM. doi: 10.1145/1060745.1060823 .
de Campos, A., Pozo, A., Vergilio, S., & Savegnago, T. (2010). Many-objective evo-

lutionary algorithms in the composition of web services. In Proceedings of the
11th brazilian symposium on neural networks . In SBRN’10 (pp. 152–157). IEEE.

doi: 10.1109/SBRN.2010.34 .

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2005). An approach for QoS-
aware service composition based on genetic algorithms. In Proceedings of the

7th annual conference on genetic and evolutionary computation . In GECCO ’05
(pp. 1069–1075). New York, NY, USA: ACM. doi: 10.1145/1068009.1068189 .

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2008). A framework for QoS-
aware binding and re-binding of composite web services. Journal of Systems and

Software, 81 (10), 1754–1769. doi: 10.1016/j.jss.2007.12.792 .
Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary al-

gorithms for solving multi-objective problems (2nd). Secaucus, NJ, USA: Springer-

Verlag New York, Inc.. doi: 10.1007/978- 0- 387- 36797- 2 .
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms . New York,

NY, USA: John Wiley & Sons, Inc. .
Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part i: Solving
problems with box constraints. IEEE Transactions on Evolutionary Computation,

18 (4), 577–601. doi: 10.1109/TEVC.2013.2281535 .

Deb, K., Mohan, M., & Mishra, S. (2003). Towards a quick computation of well-
spread pareto-optimal solutions. In C. s. Fonseca, P. J. Fleming, E. Zitzler,

L. Thiele, & K. Deb (Eds.), Evolutionary multi-criterion optimization . In Lecture
Notes in Computer Science: 2632 (pp. 222–236). Springer Berlin Heidelberg.

doi: 10.1007/3- 540- 36970- 8 _ 16 .
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6 (2), 182–197. doi: 10.1109/4235.996017 .
Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use

of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1 (1),

3–18. doi: 10.1016/j.swevo.2011.02.002 .
García-Galán, J., Rana, O., Trinidad, P., & Cortés, A. R. (2013). Migrating to the cloud

- a software product line based analysis. In Proceedings of the 3rd international

conference on cloud computing and services science . In CLOSER 2013 (pp. 416–426).
doi: 10.5220/0 0 04357104160426 .

Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective op-
timization: a short review. In Proceedings of the ieee congress on evolutionary

computation . In CEC 2008 (pp. 2419–2426). doi: 10.1109/CEC.2008.4631121 .
Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service compo-

sition: A systematic literature review. Expert Systems with Applications, 41 (8),

3809–3824. doi: 10.1016/j.eswa.2013.12.017 .
Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evo-

lutionary algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele, &
K. Deb (Eds.), Proceedings of the 2nd international conference on evolutionary

multi-criterion optimization . In Lecture Notes in Computer Science: 2632 (pp. 376–
390). Berlin, Heidelberg: Springer. doi: 10.1007/3- 540- 36970- 8 _ 27 .

Li, W., & Yan-xiang, H. (2010). A web service composition algorithm based on global

QoS optimizing with MOCACO. In C.-H. Hsu, L. T. Yang, J. H. Park, & S.-S. Yeo
(Eds.), Algorithms and architectures for parallel processing . In Lecture Notes in

Computer Science: 6082 (pp. 218–224). Springer Berlin Heidelberg. doi: 10.1007/
978- 3- 642- 13136-3 _ 22 .

von Lücken, C., Barán, B., & Brizuela, C. (2014). A survey on multi-objective evolu-
tionary algorithms for many-objective problems. Computational Optimization and

Applications, 58 (3), 707–756. doi: 10.1007/s10589- 014- 9644- 1 .
Moustafa, A., & Zhang, M. (2013). Multi-objective service composition using rein-

forcement learning. In S. Basu, C. Pautasso, L. Zhang, & X. Fu (Eds.), Service-

oriented computing . In Lecture Notes in Computer Science: 8274 (pp. 298–312).
Springer Berlin Heidelberg. doi: 10.1007/978- 3- 642- 45005- 1 _ 21 .

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented
computing: State of the art and research challenges. IEEE Computer, 40 (11), 38–

45. doi: 10.1109/MC.20 07.40 0 .

370 A. Ramírez et al. / Expert Systems With Applications 72 (2017) 357–370

Parejo, J. A., Segura, S., Fernández, P., & Ruiz-Cortés, A. (2014). QoS-aware web ser-
vices composition using GRASP with path relinking. Expert Systems with Appli-

cations, 41 (9), 4211–4223. doi: 10.1016/j.eswa.2013.12.036 .
Praditwong, K., & Yao, X. (2007). How well do multi-objective evolutionary algo-

rithms scale to large problems. In Proceedings of the ieee congress on evolutionary
computation . In CEC 2007 (pp. 3959–3966). IEEE. doi: 10.1109/CEC.2007.4424987 .

Purshouse, R., & Fleming, P. (2007). On the evolutionary optimization of many con-
flicting objectives. IEEE Transactions on Evolutionary Computation, 11 (6), 770–

784. doi: 10.1109/TEVC.2007.910138 .

Ramírez, A., Romero, J. R., & Ventura, S. (2015). An extensible JCLEC-based solution
for the implementation of multi-objective evolutionary algorithms. In Proceed-

ings of the companion publication of the 2015 annual conference on genetic and
evolutionary computation . In GECCO Companion ’15 (pp. 1085–1092). New York,

NY, USA: ACM. doi: 10.1145/2739482.2768461 .
Romano, J. , Kromrey, J. D. , Coraggio, J. , & Showronek, J. (2006). Appropriate statis-

tics for ordinal level data: Should we really be using t -test and cohen’s d for

evaluating group differences on the NSSE and other surveys? In Annual meeting
of the florida association of institutional research (pp. 1–33) .

Strunk, A. (2010). QoS-aware service composition: a survey. In Proceedings of the
2010 ieee 8th european conference on web services . In ECOWS (pp. 67–74). IEEE.

doi: 10.1109/ECOWS.2010.16 .
Suciu, M., Pallez, D., Cremene, M., & Dumitrescu, D. (2013). Adaptive MOEA/d

for QoS-based web service composition. In M. Middendorf, & C. Blum (Eds.),

Evolutionary computation in combinatorial optimization . In Lecture Notes in
Computer Science: 7832 (pp. 73–84). Springer Berlin Heidelberg. doi: 10.1007/

978- 3- 642- 37198- 1 _ 7 .
Trummer, I., Faltings, B., & Binder, W. (2014). Multi-objective quality-driven service

selection - a fully polynomial time approximation scheme. IEEE Transactions on
Software Engineering, 40 (2), 167–191. doi: 10.1109/TSE.2013.61 .

Ventura, S., Romero, C., Zafra, A., Delgado, J. A., & Hervás, C. (2007). JCLEC: A

java framework for evolutionary computation. Soft Computing, 12 (4), 381–392.
doi: 10.10 07/s0 050 0-0 07- 0172- 0 .

Wada, H., Suzuki, J., Yamano, Y., & Oba, K. (2012). E3: A multiobjective optimiza-
tion framework for SLA-aware service composition. IEEE Transactions on Services

Computing, 5 (3), 358–372. doi: 10.1109/TSC.2011.6 .
Wagner, T., Beume, N., & Naujoks, B. (2007). Pareto-, aggregation-, and indicator-

based methods in many-objective optimization. In S. Obayashi, K. Deb, C. Poloni,

T. Hiroyasu, & T. Murata (Eds.), Evolutionary multi-criterion optimization . In Lec-
ture Notes in Computer Science: 4403 (pp. 742–756). Springer Berlin Heidelberg.

doi: 10.1007/978- 3- 540- 70928- 2 _ 56 .

Wang, H., Tong, P., & Thompson, P. (2007). QoS-based web services selection. In
Proceedings of the ieee international conference on e-business engineering . In ICEBE

2007 (pp. 631–637). doi: 10.1109/ICEBE.2007.109 .
Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algorithm

for many-objective optimization. IEEE Transactions on Evolutionary Computation,
17 (5), 721–736. doi: 10.1109/TEVC.2012.2227145 .

Yin, H., Zhang, C., Zhang, B., Guo, Y., & Liu, T. (2014). A hybrid multiobjective dis-
crete particle swarm optimization algorithm for a SLA-aware service compo-

sition problem. Mathematical Problems in Engineering, 2014 , 1–14. doi: 10.1155/

2014/252934 .
Yu, Y., Ma, H., & Zhang, M. (2015). F-MOGP: A novel many-objective evolutionary

approach to QoS-aware data intensive web service composition. In Proceedings
of the 2015 ieee congress on evolutionary computation . In CEC (pp. 2843–2850).

IEEE. doi: 10.1109/CEC.2015.7257242 .
Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnam, J., & Chang, H. (2004). QoS-

aware middleware for web services composition. IEEE Transactions on Software

Engineering, 30 (5), 311–327. doi: 10.1109/TSE.2004.11 .
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on Evolutionary Computation, 11 (6), 712–731.
doi: 10.1109/TEVC.2007.892759 .

Zhang, T. (2014). QoS-aware web service selection based on particle swarm opti-
mization. Journal of Networks, 9 (3), 565–570. doi: 10.4304/jnw.9.3.565-570 .

Zhao, X., Song, B., Huang, P., Wen, Z., Weng, J., & Fan, Y. (2012). An improved dis-

crete immune optimization algorithm based on PSO for QoS-driven web service
composition. Applied Soft Computing, 12 (8), 2208–2216. doi: 10.1016/j.asoc.2012.

03.040 .
Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In

X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria,
J. E. Rowe, P. Tin ̆o, A. Kabán, & H.-P. Schwefel (Eds.), Parallel problem solving

from nature - ppsn viii . In Lecture Notes in Computer Science: 3242 (pp. 832–842).

Springer Berlin Heidelberg. doi: 10.1007/978- 3- 540- 30217- 9 _ 84 .
Zitzler, E. , Laumanns, M. , & Thiele, L. (2001). SPEA2: improving the strength pareto

evolutionary algorithm. In Proceedings of the conference on evolutionary meth-
ods for design, optimisation and control with applications to industrial problems

(pp. 95–100) .

7.2. Review of interaction in SBSE

7.2. A systematic literature review of interaction in search-

based software engineering

Title A Systematic Review of Interaction in Search-Based

Software Engineering

Authors A. Ramı́rez, J.R. Romero, C.L. Simons

Journal IEEE Transactions on Software Engineering

Year 2018

Editorial IEEE

DOI 10.1109/TSE.2018.2803055

IF (JCR 2017) 3.331

Category Computer Science, Software Engineering

Position 6/104 (Q1)

Cites 1 (Scopus)

221

https://doi.org/10.1109/TSE.2018.2803055

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 1

A Systematic Review of Interaction in
Search-Based Software Engineering
Aurora Ramı́rez, José Raúl Romero, Member, IEEE, and Christopher L. Simons

Abstract—Search-Based Software Engineering (SBSE) has been successfully applied to automate a wide range of software
development activities. Nevertheless, in those software engineering problems where human evaluation and preference are crucial,
such insights have proved difficult to characterize in search, and solutions might not look natural when that is the expectation. In an
attempt to address this, an increasing number of researchers have reported the incorporation of the ’human-in-the-loop’ during search
and interactive SBSE has attracted significant attention recently. However, reported results are fragmented over different development
phases, and a great variety of novel interactive approaches and algorithmic techniques have emerged. To better integrate these
results, we have performed a systematic literature review of interactive SBSE. From a total of 669 papers, 26 primary studies were
identified. To enable their analysis, we formulated a classification scheme focused on four crucial aspects of interactive search, i.e. the
problem formulation, search technique, interactive approach, and the empirical framework. Our intention is that the classification
scheme affords a methodological approach for interactive SBSE. Lastly, as well as providing a detailed cross analysis, we identify and
discuss some open issues and potential future trends for the research community.

Index Terms—Search-Based Software Engineering, Interaction, Systematic Literature Review, Optimization

F

1 INTRODUCTION

THe design and development of complex, large-scale
software systems can be non-trivial and challenging

for the software engineer to perform. In an attempt to
assist him/her, formulating software development activities
as optimization problems has enabled the application of
a range of metaheuristic search approaches. Such search-
based software engineering (SBSE) [1] approaches have at-
tracted significant research attention in recent years. Indeed,
attempts have been made to support the software engineer
in many cognitively challenging development activities by
applying SBSE approaches across a range of lifecycle activi-
ties, as surveyed by Harman et al. [2].

1.1 Problem description

The application of search-based approaches in support of
software engineers raises a number of challenges. For ex-
ample, it is generally difficult to formulate both a solution
representation and a fitness measure of appropriate fidelity
to fully reflect the reality of the software engineer’s de-
velopment activity [3]. This can be especially challenging
when development decisions involve a range of seemingly
unrelated and disparate criteria for solution acceptance
where many cannot be explicitly articulated [4], [5]. Also,
it is important that the run-time performance of the search
approach is satisfactory with respect to support for develop-
ment. Given the typical dimensionality and scale of search-

• A. Ramirez and J.R. Romero are with the Department of Computer Science
and Numerical Analysis, University of Córdoba, 14071, Spain.
E-mail: aramirez@uco.es,jrromero@uco.es

• Christopher Simons is with the Department of Computer Science and
Creative Technologies, University of the West of England, Bristol, BS16
1QY, United Kingdom.
Email: chris.simons@uwe.ac.uk

Manuscript received April 1, 2017; revised August 26, 2025.

based problems in the software development lifecycle, this
may also be challenging [6] (chapter 9).

In addition, results of automated search approaches
should engender the trust and acceptance of software engi-
neers. As has been pointed out previously by Klien et al. [7],
the software engineer and any computationally intelligent
tool must use common ground to work jointly to agreed
goals. Klien et al. suggest that “to be a team player, an
intelligent agent, like a human, must be reasonably predictable
and reasonably able to predict others actions”. Without this
common ground, it is possible that software engineers may
be reticent to apply probabilistic search approaches they
cannot control and that produce solutions that do not look
“human-written” [8]. In an example of search-based auto-
matic software repair using genetic programming [9], the
authors report that “an additional challenge is establishing
the credibility of automated repairs in terms of programmers
confidence in them and their understandability”. It is possible
to speculate that because of these challenges, and because
SBSE is a relatively recent field of research, SBSE does not
yet appear to have provoked broad industrial adoption by
software engineers.

To address the challenges of applying search to the reali-
ties of software development, as well as search performance
and trust, attempts have been made to engage the software
engineer by incorporating their participation during search.
Exploiting software engineer insight via interaction within
search can enrich fitness measure fidelity, and assist search
performance by steering the trajectory of search to pre-
ferred regions, as well as guiding parameters of the search
process itself. The notion of exploiting human interaction
in search is not new, however. Early examples of human
interaction with computational evolution can be found in
Dawkins’ biomorphs [10] and Sims’ evolutionary virtual
creatures [11], while a survey of interactive evolutionary

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 2

computation was conducted by Tagaki in 2001 [12]. Later, in
2007, Branke et al. report on research into interactive multi-
objective optimization [13].

In essence, notice that any attempt to involve the hu-
man in the search process with the aim of adapting the
results to his/her preferences can be viewed as a sort of
interaction [3]. Different approaches involve the capture of
human preference a priori to set parameters and constraints
for subsequent search, while other approaches allow search
to reach termination and, a posteriori, present candidate
solutions to the human for inspection [14]. However, in
defining the scope of the problem description, we exclude a
priori and a posteriori approaches and focus solely on direct
human participation in search, which allows the user to
intervene more than once and therefore react to intermediate
results.

Nevertheless, while artificial intelligence (AI) tools can
support optimization or knowledge discovery activities, it
is possible that they can also introduce new types of errors.
According to Lyell and Coiera [15], “automation bias (AB)
happens when users become overreliant on decision support, which
reduces vigilance in information seeking and processing”. The
notions of automation bias and user complacency in auto-
mated decision support have been reported previously [16],
[17], and experiments conducted by Bahner et al. [18] indi-
cate that the perception of false recommendations is associ-
ated with high levels of user complacency. Shackelford [19]
reports that an over-reliance on repeated ’human-in-the-
loop’ evaluation and interaction in search can result in user
fatigue, wherein a non-linearity of user focus results in
inconsistent search trajectory. Lyell and Coiera [15] suggest
that strategies to minimize automation bias might focus on
cognitive load reduction.

It can also be challenging to capture subjective evalua-
tion of qualitative factors as a fitness measure in metaheuris-
tic search. Indeed, there are some ill-defined aspects of good
software systems quality that cannot be articulated, but nev-
ertheless ‘you know it when you see it’. This phenomenon
has been referred to as the “quality without a name” [20],
and is endorsed by the software design patterns community
[21]. A distinction between implicit versus explicit user
feedback and evaluation is drawn by Aljawadeh et al. in
the metaheuristic design pattern ’preference’ [14].

1.2 Motivation

Reflecting on SBSE in an overview of approaches to realiz-
ing artificial intelligence in software engineering (SE), Har-
man [22] notes a number of research gaps and challenges for
future research. Among these are a need for SBSE to provide
insight for the software developer, and novel ’AI-friendly’
software development incorporating developer interaction
to foster engagement, trust, comfort and satisfaction. Ad-
dressing these research challenges, interactive approaches
have emerged using a variety of metaheuristics including
evolutionary computing [S1] and swarm intelligence [S8],
and interactive evaluation mechanisms including, for ex-
ample, weights [S9], scores [S24] and rankings [S25]. We
speculate that this could reflect the emergence of a new
subfield for SBSE, namely interactive SBSE (iSBSE). We are
firstly motivated to conduct a systematic review to connect

diverse studies that have hitherto largely been examined
separately, thus being able to expose current approaches,
open issues and future trends. Secondly, this review can
provide some guidance to researchers on the development
of interactive SBSE approaches, whose main components
will be categorized here. We also seek to provide an under-
standing of the emerging subfield of iSBSE as a prerequisite
and promoter of further industrial adoption of SBSE.

1.3 Approach and Contribution
To make connections among the diverse areas of knowledge
in interactive SBSE and offer an up-to-date comprehensive
picture of the state-of-the-art, this paper offers a systematic
literature review (SLR) of interactive SBSE. Drawing upon
established, evidence-based software engineering system-
atic literature methodology [23], we locate and examine 669
papers published in conference and journal papers related
to interactive SBSE. We define appropriate inclusion and
exclusion criteria to select a set of 26 primary sources. We
then analyze the content of the primary sources, and with
reference to existing surveys in the field [2], [3], formulate a
classification scheme to provide a comprehensive overview
of contemporary research for interactive SBSE. In addition
to quantitative analysis, we review qualitative aspects to
identify trends, gaps, open issues and, in our opinion,
significant future trends. As a result of this systematic lit-
erature review, the comprehensive knowledge provided can
enable researchers to make informed and effective decisions
regarding interactive SBSE, as appropriate to their problem
context.

This SLR of iSBSE is posed under the formulation of the
following four research questions (RQ):
RQ1: In what ways has interactivity been adopted within
search-based software engineering? To answer this RQ, the
proposed classification scheme serves to reflect the main
characteristics of current developments in iSBSE.
RQ2: Which findings about search techniques and inter-
active approaches along the complete development cycle
can be extracted from the current state-of-the-art? This RQ
aims at bringing the current state of the use of interactive
approaches in SBSE to light. To this end, primary studies are
analyzed regarding the addressed SE problem, the proposed
interactive mechanism and the defined experimentation
framework.
RQ3: To what extent do the detected gaps hamper human
interaction in SBSE? After thoroughly analyzing findings
from RQ2, some gaps in the application of interactive ap-
proaches in SBSE can be identified. Then we speculate possi-
ble causes, as well as provide suggestions for improvement.
RQ4: What are the emerging trends and how might they
be addressed in the future? Given that the combination of
search-based software engineering and interactive optimiza-
tion is still an emerging topic, this paper outlines potential
future lines of research.

1.4 Organization
The remainder of the paper is organized thus. In Section 2,
some background to search-based software engineering,
search techniques and human interaction is provided. Next,
Section 3 provides an overview of the review methodology

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 3

used in this paper, including the classification scheme for-
mulated for analysis of primary sources. In Section 4, we
present findings of quantitative analysis before outlining the
wider findings of the review in Section 5. In Section 6, we
reveal the results of cross category data analysis to illustrate
possible gaps and limitations of interactive SBSE, while
speculating on possible causes. Then, in Section 7, we iden-
tify open issues and future trends before considering threats
to validity in Section 8. Lastly, we conclude in Section 9.

2 BACKGROUND

This section introduces the main concepts and terminology
related to search-based software engineering, as well as a
brief description of the most commonly applied search tech-
niques in the field. Then, interactive optimization methods
are presented.

2.1 Search-Based Software Engineering

The term search-based software engineering was coined by
Harman and Jones in 2001 to encompass the application of
search and optimization techniques to automate SE activi-
ties or support engineers during their resolution [2]. Search
algorithms seek for optimal or near optimal solutions to
a given problem, meaning that the first step towards the
adoption of a SBSE approach is to reformulate the SE task
as a search problem, i.e. the representation of the real-world
problem so that the algorithm can generate and transform
candidate solutions. In addition, the definition of a quanti-
tative function, known as the fitness function, is required to
let the algorithm discriminate between promising and poor
solutions. This notion of quality is usually defined only in
terms of software metrics, even though software engineers
could make use of other more subjective mechanisms to
assess quality, too.

Nowadays, SBSE covers all the phases of the software
development process. In fact, there are a number of surveys
and reviews specifically focused on each stage, including
requirements management [24], software design [25], [26],
software testing [27] and maintenance topics [28], [29],
among others. For these specific SE problems, the selection
of requirements to be implemented in the next iteration
according to the stakeholders’ interests and budgetary avail-
ability (the so-called next release problem, NRP), the early
class analysis guided by software metrics, the automatic
generation of test cases based on code coverage, or finding
the optimal sequence of refactoring operations are some
illustrative examples of SE tasks already solved using search
techniques. The flourishing of these SLRs show an increas-
ing interest in systematically analyzing the state of the field
from diverse perspectives, though none of them address
interactive optimization in SBSE.

The more complex the SE problem to be faced, the more
sophisticated the optimization approach is required. There-
fore, initial approaches adopted in early stages of SBSE were
progressively enhanced to deal with multiple constraints,
incorporate preferences, cope with uncertainty or allow the
simultaneous optimization of two or more objectives [30].
Interestingly, Harman et al. [2] also suggest some areas of
SBSE they consider overlooked and/or emerging. Among

others, the potential of ’interactive optimization’ is recog-
nized, where issues related to possible fatigue and learning-
effect bias still need to be thoroughly studied.

Continuing challenges make SBSE an increasingly ac-
tive research field [31], which is also gaining the attention
of industry [32]. Additionally, incorporating the software
engineer’s expertise to the process is essential to reach a
good solution, which goes beyond the scope of software
metrics [33]. Even for those cases where software metrics
seem to be commonly accepted, the search process does not
guarantee that the result of the search problem will result
in representative solutions to the human, who may consider
other additional, qualitative measures [34].

2.2 Search Techniques

Within the artificial intelligence field, search techniques
are usually classified according to their ability to find the
optimal solution and the exploitation of additional infor-
mation when exploring the search space, i.e. the set of
possible solutions [35]. Optimality of the final solution can
be only guaranteed by exact methods, such as, for example,
direct search of tree structures, dynamic programming, and
integer linear programming. Therefore, to avoid having to
explore all the candidate solutions, heuristic methods intro-
duced the concept of problem-specific knowledge, defining
rules to select or discard solutions depending on the current
state of the process. Greedy search is a well-known example
of a heuristic method.

Metaheuristic algorithms are iterative and non-exact
methods, whose results could vary from one execution to
another because of their stochastic nature. They are charac-
terized by their efficiency and flexibility when solving com-
plex optimization problems [36]. As opposed to heuristic
procedures, metaheuristics are problem-independent tech-
niques that define general and intelligent mechanisms to ex-
plore the search space, which are often inspired by biological
processes. These algorithms are usually classified according
to the number of candidate solutions they can handle at the
same time [37]. Thus, a single-solution based metaheuristic
starts from an initial solution and aims for its optimization
in each iteration of the search process. On the other hand, a
population-based metaheuristic deals with a set of solutions,
combining their intrinsic information to reach a satisfactory
solution. Within each category, a broad range of techniques
can be found depending on how the search trajectory is
determined or the nature-inspired mechanism that is being
simulated by the algorithm.

Evolutionary algorithms (EAs) and Swarm Intelligence
(SI) are two extensively used approaches of population-
based metaheuristics. On the one hand, an EA starts with
the random initialization of a population of solutions, called
individuals. Then, an iterative process simulates the nat-
ural evolution of a species: selecting parents, generating
offspring via crossover and mutation, and preserving the
fittest individuals according to the fitness function. On the
other hand, SI is based on emulating the collective behavior
of entities working together in order to achieve a particular
goal. For instance, a representative case is ant colony opti-
mization (ACO), which takes inspiration from the foraging
behavior of ants. Artificial ants look for the solution to the

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 4

optimization problem as if they build the shortest path to
the food source. Decisions on the most promising paths are
based on a pheromone matrix that is dynamically updated
considering areas already explored by other previous ants
and the quality of their corresponding solutions.

A complementary categorization of search techniques
relies on the nature of the optimization problem and, more
specifically, on the number of objectives to be simultane-
ously handled. Thus, single-objective optimization prob-
lems are defined in terms of a unique objective, whereas
multi-objective optimization problems are characterized by
the presence of 2 or 3 objectives, often in conflict. Those
problems requiring the definition of 4 or more objectives are
currently recognized as many-objective [38]. This property
affects the way a search algorithm solves the optimiza-
tion problem. On the one hand, single-objective algorithms
are able to directly compare candidate solutions using the
fitness function. On the other hand, multi-objective algo-
rithms [39] look for trade-offs between objectives and, con-
sequently, require new strategies to decide which solutions
should be kept in each step. Similarly, many-objective algo-
rithms [38] still need to consider these trade-offs, though the
problem complexity demands specific mechanisms to deal
with the high dimensionality of the objective space.

2.3 Interactive Optimization

As described in [3], interactive optimization methods en-
able the user’s active participation in the search process.
Also known as ‘human-in-the-loop’ approaches, they are
founded on three main pillars: the need for more realistic
optimization models (with respect to problem representa-
tion and fitness function), the scope for improvement of the
search efficiency, and the complete satisfaction of the user’s
expectations. Notice that the real problem under study often
needs to be oversimplified in order to formulate its com-
putational representation. This can limit the optimization
method by making it unable to capture the complete de-
cision context beforehand, e.g. when considering imprecise
objectives or temporary constraints. Besides, users can often
become frustrated and lack confidence in results because
of the existing gap between the solutions automatically
generated by optimization techniques and their realistic
expectations. User participation is specially relevant in dy-
namic scenarios, where the expert’s knowledge could be
considered as a complementary source for the exploratory
capability of the search procedure. However, other factors
inherent in being human (e.g. uncertainty and fatigue) can
appear and need to be thoroughly considered [40].

In order to involve the human in the search process,
the optimization method is required to provide intermedi-
ate outcomes to enable him/her to better understand the
current search state, as well as how the process itself is
being conducted. The role of human consists in returning
some feedback that will be considered somehow thereafter
in the iterative process [3]. In this context, the taxonomy
proposed by Meignan et al. [3] provides a primary source
to properly classify current interactive approaches in SBSE.
More precisely, Meignan et al. establish five categories of
interactive methods:

• trial and error, consisting of interactive adjustment of
parameters;

• interactive reoptimization, aiming at redefining the for-
mulation of the optimization problem;

• interactive multiobjective optimization, wherein the user
interactively determines an appropriate trade-off be-
tween objectives;

• interactive evolutionary computation (IEC) [12], in
which the human serves as fitness function; and

• human-guided search, a local search procedure directly
incorporating transformations approved by the hu-
man.

When designing these interactive methods, there are a
number of additional requirements that need to be con-
sidered, such as the point in which interaction happens
(e.g. occasional or periodical participation), the specific task
undertaken by the human (e.g. comparison, evaluation or
correction of solutions) or the nature of the information
gathered from such interaction, among others. Although the
taxonomy proposed by Meignan et al. is comprehensive and
covers many general interactive methods, not all the addi-
tional requirements are considered. Therefore, it is necessary
to adapt and extend the taxonomy to address the specific
requirements of interactive SBSE studies.

Finally, it is worth mentioning that SBSE can also be
applied in combination with other types of approaches
such as machine learning and interactive methods, which
is known as interactive machine learning [41]. In short,
machine learning (ML) techniques typically seek to predict
classifications of new data by learning from past experience.
With user involvement, a ML algorithm is able to integrate
additional valuable information in order to build more pre-
cise and realistic models while gaining further knowledge.

3 REVIEW METHODOLOGY

The review method has been built upon best practice in
systematic literature review [23], [42]. Recent SLRs in the
fields of empirical software engineering [43] and search-
based software engineering [26], [44] have been taken as
a reference, too. This section explains in detail the method-
ology used for conducting this review on iSBSE. To address
the precisely raised research questions, a method is defined
and followed in order to determine how the literature re-
vision is performed. Such a method includes mentioning
the literature search strategy, explicitly enumerating the
inclusion and exclusion criteria for the papers found, and
determining how the review data are collected from the
selected works.

3.1 Literature Search Strategy

All the revised papers have been queried from a wide range
of scientific literature sources, to prevent relevant studies
remaining hidden:

• Digital libraries: ACM Library, IEEE Xplore, Sci-
enceDirect, SpringerLink.

• Citation databases: ISI Web of Knowledge, Scopus.
• Citation search engines: DBLP, Google Scholar.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 5

• Specialized sources: SBSE repository maintained by the
CREST research group at UCL1, as a reference for the
SBSE community.

To build the search strings, the three authors firstly
defined a list of terms embracing the variety of both ap-
plication domains and search techniques to be covered.
Synonyms and keywords were derived from this list and
logical operators (AND, OR) used to properly link search
terms. Beforehand, a pilot search was conducted on all
the data sources to verify the adequacy and effectiveness
of the resulting search strings. Then, some minor changes
were applied to the queries to avoid a number of un-
wanted outcomes being returned. The refined search strings
are shown in Table 1. Notice that search string #1 looks
for SBSE publications in the broadest sense, whereas the
search string #2 looks for those publications that do not
explicitly contain the term SBSE but still apply search and
optimization techniques to a SE task. The ACM Computing
Classification System2 and the IEEE Taxonomy3 were used
to define the list of tasks. When required, a search string was
adapted to the specific query language used by a particular
engine or database. Searches were conducted at first by the
first author, and then double-checked by the rest of authors.
String adjustments were agreed by all authors.

After the execution of the search queries, a total of 653
references were returned. Following best practices in con-
ducting SLRs [23], [42], all authors performed independent
manual searches to complement automatic results. More
specifically, web profiles of relevant authors and their net-
works were consulted, and cross-references were checked
following a snowballing procedure. As a result, 16 new refer-
ences were added. Table 2 shows the number of publications
found per data source, including the manual search. Then,
an initial manual examination of titles and abstracts enabled
publications not related to SBSE to be discarded. In this way,
the list of candidate papers decreased to 67 publications (see
Table 2). Finally, the papers to be included in the review,
known as primary studies, are rigorously arrived at by
applying the corresponding inclusion and exclusion criteria
(see Section 3.2). A total number of 26 primary studies is
obtained. During this search period monitoring and follow-
up meetings were held to detect errors, disagreements or
deviations from planned procedure.

3.2 Inclusion and Exclusion Criteria
From the list of candidate papers aforementioned, only
those publications related to iSBSE could be considered as
primary studies, i.e. the authors should propose an interac-
tive search-based approach to solve a software engineering
task. Such a limitation could be broken down into the
following inclusion criteria:

1) The search model should explicitly incorporate a
user, who is required to perform at least one in-
teraction in order to solve a task during the search
process, e.g. evaluation or selection of candidate
solutions. Another valid approach is the user to

1. http://crestweb.cs.ucl.ac.uk/resources/sbse repository
2. https://www.acm.org/publications/class-2012
3. https://www.ieee.org/documents/taxonomy v101.pdf

participate at least once the search has finished but
only when another iteration or algorithm is exe-
cuted afterwards, so that the user’s opinion could
be integrated somehow in the overall process.

2) A paper should describe the method followed for
the user’s interaction. It should explain the role of
the human in the search process, how his/her feed-
back is then integrated into the search process, or
any other relevant aspect concerning the interactive
action.

3) The search problem should be defined in terms of
a decision space, evaluation objectives and the ex-
isting constraints, if any. The problem could be for-
mulated as either single-objective or multi/many-
objective, or both.

4) The search problem should be framed within one
or several phases of the software development life
cycle.

5) The search technique applied to address the soft-
ware engineering problem is not restricted, but it
should be a computational method.

6) The nature of the information provided by the user
is not restricted, but it should cause an effect on the
search.

7) Theoretical proposals are allowed.

In contrast, papers meeting any of the following exclu-
sion criteria were not considered as a primary study:

1) The interactive approach does not address a soft-
ware engineering optimization problem.

2) The user is only able to (re)configure the param-
eters of the search algorithm right before/after an
independent run, or he/she is only able to make a
decision at the end of the process, e.g. by selecting
one single individual from the resulting solution set
generated after completing a multi-objective opti-
mization algorithm.

3) The research paper is written in a language other
than English.

4) The full text of the manuscript is not accessible.
5) Either the publication process has not followed an

accurate scientific peer-review process or there is no
clear evidence of this point.

Finally, if multiple variants of the same research work
are found, the conditions under which a paper is considered
as a primary study are described next. They are applied if
the same authors have published different papers for the
same interactive approach, so only significant contributions
are analyzed for the review. Nonetheless, notice that these
constraints are also influencing the statistical study shown
in Section 4:

• Considering a previous primary study, if the problem
is the same but the technique is different and novel,
then accept.

• Considering a previous primary study, if both the
problem and the technique are the same but the
authors have reported different findings from a new
significantly different experimentation, then accept.

• If a journal paper is found as an extension of a pre-
vious conference paper and it satisfies the inclusion

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 6

TABLE 1
The two search strings defined

Search string #1 (interactivity OR interactive OR human-in-the-loop OR user-interaction OR user-centered OR user-centred)
AND (search-based OR “search based”) AND “software engineering”

Search string #2 (interactivity OR interactive OR human-in-the-loop OR user-interaction OR user-centered OR user-centred)
AND software AND (requirements OR architecture OR design OR development OR testing OR debugging OR
verification OR maintenance OR evolution) AND (search OR search-based OR optimisation OR optimization)

TABLE 2
Number of references per data source

Data source
Search Candidate Primary
results papers studies

ACM Library 86 11 4
DBLP 20 15 5
IEEE Xplore 122 15 5
ISI-WoK 207 21 10
SBSE Repository 33 20 10
ScienceDirect 43 5 4
Scopus 218 32 13
SpringerLink 124 15 7
Manual search 16 15 6
Total unique papers 669 67 26

criteria, then reject the previous conference paper
unless it provides with different but significantly
distinct experimental outcomes.

3.3 Data Collection Process

After identification, primary studies were thoroughly ana-
lyzed to rigorously conduct the review process. With this
aim, these papers are randomly distributed among the au-
thors following some basic rules: (a) only the authors (3)
of this review could participate in data collection process;
(b) every primary study should be scrutinized by at least
two reviewers; (c) a paper could not be reviewed by any of
its authors; (d) there should be a balance among reviewers
with respect to the number of papers, their category (i.e.
conference, journal, etc.) and their SBSE topics that they
study. Each reviewer should compile a data extraction form
for each primary study. After completing the analysis, these
forms are brought together to detect any disagreements
between the reviewers. If so, the author who did not par-
ticipate in the data extraction of the corresponding paper
should also read the primary study and provide an opinion
before a final and collective decision is reached.

All papers have been objectively reviewed under strict
control and consistent conditions. No information has been
inferred during the extraction process, and authors of the
primary studies were not contacted. In the case of a potential
conflict of interest when a primary study was authored by
a reviewer, she/he did not participate in the data extraction
and analysis. In addition, missing data are possible for some
categories, and are reflected accordingly.

At this point, it is worth highlighting that data extraction
discrepancies appeared for many of the primary studies,
most of which were minor disagreements that could be
resolved after a brief discussion between the reviewers

involved in the data extraction process. In general, dis-
crepancies appeared in all the categories. However, the
disagreements appearing most frequently were focused on
very specific aspects. For example, characterizing the role of
the user, the interaction mechanism (type of solution shown
and frequency of interaction), the influence of the user’s
opinion and the scope of the case studies were the most
contentious discussion points. We observed that deciding
the role of the user and the influence of his/her opinion
were too often subject to the reader’s interpretation. We
also observed that the description of information such as
the interaction mechanism was incomplete or imprecise
in most primary studies. Furthermore, the lack of agreed
benchmarks and standards within the SBSE field often made
difficult to determine the scope of the cases studies. This
emphasizes the importance of following a strict conceptual
framework and agreed guidelines when defining the inter-
active proposal, given that misunderstanding can be easily
reached otherwise.

3.4 Classification Scheme
In order to facilitate systematic data collection, as a response
to RQ1, we developed a classification scheme drawing on
best practice [23]. This scheme classifies iSBSE data relating
to the following aspects: (i) meta-information, (ii) problem
formulation, (iii) search technique, (iii) interactive approach and
(v) experimental framework. For each of these aspects, we
determined a number of data categories, and enumerated
discrete values for each one. The resulting classification
scheme does not only provide the guidelines for reviewers
during the data extraction process, but also is intended to
assist those researchers interested in iSBSE to accurately
define their new approaches.

Firstly, meta-information related to the primary sources
includes: (i) author(s) name(s); (ii) title of publication; (iii)
type of publication (journal, conference or workshop); (iv)
name of publication and publisher; (v) year of publication;
and (vi) volume, issue and pages. For the sake of brevity,
a brief introduction to the rest of categories follows below.
Notice that a summary of the classification scheme can be
found in the supplementary material, while a description is
available on a website4 accompanying this paper.

3.4.1 Classification of the Problem Formulation
The problem formulation refers to information describing
the SE problem under study and its computational represen-
tation. Drawing on classifications used in previous surveys
by Harman et al. [2] and Li et al. [38], and established
software engineering texts [45], data are classified into 4
categories:

4. http://www.uco.es/grupos/kdis/sbse/isbse

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 7

• Type of software engineering problem, which refers to
the phase of the software lifecycle where the prob-
lem is framed including values such as requirements,
analysis and design, etc.

• Development practice, which corresponds to the SE
methodology in which the problem is contextualized
(prescriptive model, specialized model or agile develop-
ment), if any.

• Number of objectives stated in the definition of the
problem. Depending on this number, the problem
is classified as single-objective (1 objective), multi-
objective (from 2 to 3) or many-objective (more than
3).

• Constraints, which indicates whether the optimiza-
tion problem comprises a formal definition of con-
straints (i.e. constrained problem). If there is an explicit
mention to the lack of constraints, it will be defined
as an unconstrained problem. Otherwise, N/A (not
applicable/not available) is specified.

3.4.2 Classification of the Search Technique
Drawing on previous surveys of optimization heuristics [3],
[37] and established texts relating machine learning to soft-
ware engineering [46], search technique data are classified
along 2 categories:

• Search algorithm type, which describes the resolution
technique applied to the problem. The specific values
correspond to techniques like exact procedure, heuristic
procedure, metaheuristic procedure and machine learning,
as introduced in Section 2.2.

• Objective approach, which specifies the number of
objectives with which the algorithm deals, indepen-
dently of the number of objectives defining the SE
problem. The possible values are single/multi/many-
objective, where single-objective could also include
the use of an aggregation fitness function.

3.4.3 Classification of the Interactive Approach
The taxonomy proposed by Meignan et al. [3] provides a
baseline classification for the interactive approach, which
has been significantly extended to include additional infor-
mation specifically adapted to the iSBSE field. We formu-
lated 12 categories of data specific to iSBSE, as follows.

• The interactive algorithm type (adapted from [3])
differentiates among four interactive optimization
methods: (i) interactive reoptimization, where the prob-
lem definition is refined; (ii) preference-based interac-
tivity, where the goal is to incorporate users pref-
erences during the search; (iii) human-based evalua-
tion, wherein the user totally or partially replaces
the fitness function; and (iv) human-guided search,
where user actions directly impact candidate solu-
tions. These methods can appear in combination.

• Two non-exclusive purposes of user interaction are de-
fined to describe the focus of such interaction [3]. On
the one hand, an interaction is problem-oriented when
the user contributes to (re)define the optimization
problem. On the other hand, a search-oriented inter-
action is focused on actions conducted during the
search procedure in order to improve its efficiency.

• The role of the user in the process depends on the
specific selected purpose of interaction [3]. Hence, if
it is a problem-oriented interaction, the user could be
an adjuster of constraints and/or objectives, or and
enricher who adds or removes them. For a search-
oriented interaction, there are three possible roles: (i)
assistant, which refers to the selection or modification
of solutions; (ii) guide, which means that the user
controls the search process; or (iii) tuner, relating to
adjusting search parameters.

• The type of user task describes the action(s) performed
by the user over the solution(s). It includes evaluation
of some aspects of the solution quality, the selection
of promising solutions, the comparison between two
or more solutions, or even the manual modification
of the solution, including freezing it. More than one
task could be performed if requested.

• The evaluation mechanism should be identified if any
sort of evaluation is involved in the interaction. The
possibilities consist of (i) providing a fitness value, (ii)
assigning weights, (iii) offering a discrete score, (iv)
giving rankings, and promoting or demoting with a
reward or penalization.

• The adjustment of interaction time describes how often
interaction occurs. If interruptions are fixed a priori,
an interaction could occur every iteration, every N
iterations or between two runs of an algorithm. Oth-
erwise, if the interaction is dynamic, then it could be
either based on the course of the search (adaptive) or
requested by the user (on demand).

• The number of solutions shown to the user per inter-
action can be set to only one, a pair, N solutions or all
of them, i.e. the whole population.

• The level of detail indicates whether the information
shown to the user about a given solution for a
specific interaction represents a complete or a partial
solution.

• The selection strategy for solutions to show to the user
can rely on the algorithm (fixed) or the user (free). In
the first case, the specific criterion is determined by
selecting the best, random or a specific solution. It is
also possible to show all of them.

• Feedback integration refers to the mechanism that
manages the users opinion [3]. It is defined as model-
free when the preference information is directly in-
corporated by the algorithm. In contrast, model-based
approaches include a learning process instead.

• The preference information lifetime describes the tem-
poral scope of users feedback [3]. Information life-
time can be step based (used between two sequential
interactions, (ii) short-term (valid for a single run or
(iii) long-term (reused across different executions).

• Information validity indicates how the information is
integrated and kept during the search. Three values
are possible: (i) permanent; (ii) flexible, if the user can
modify feedback; and (iii) unrestricted, if the user can
revoke feedback.

3.4.4 Classification of Experimental Frameworks
Categories regarding the experimental framework are ex-
tracted after a comprehensive examination of primary stud-

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 8

ies and for the statistical analysis, the guide by Arcuri and
Briand [47] was considered. We formulated 8 categories of
data to classify the experimental frameworks used in the
primary studies, as follows.

• Type of study, which determines the scope of the ex-
perimental study presented in the paper. Four values
have been identified: (i) theoretical proposal, (ii) sample
execution, (iii) simulated interaction and (iv) empirical
investigation.

• For empirical studies, the number of participants
should be specified using prefixed intervals.

• For empirical studies, the participant position should
be determined to develop a complete profile of the
users. Accepted values include: (i) engineer, (ii) PhD
academia staff, (iii) postgraduate student, (iv) undergrad-
uate student, and (v) any other.

• For empirical studies, total work experience (exper-
tise) of the users should be also gathered in terms of
time intervals varying between less than 5 years and
more than 20 years.

• Experimental evaluation criteria should be selected to
indicate how results are analyzed. The three crite-
ria found in iSBSE studies are measures (e.g. fitness
values), examples of solutions and responses to ques-
tionnaires.

• Case studies reported in experiments can be artificially
created (synthetic), small but real problems known to
participants (controlled environment) or an industrial
case.

• If evidence of additional materials is found, the avail-
able information should be accessed, compiled and
classified by their respective types (source code, prob-
lem instances, raw results, solutions, questionnaires, tran-
scripts, additional statistics or other).

• Studies including statistical tests may contain one
or more types of tests (pairwise comparison, multiple
comparison, effect size measurement).

4 QUANTITATIVE ANALYSIS

As an initial result of the analysis conducted to respond
RQ2, this section provides quantitative information about
iSBSE studies and their respective authors in order to pro-
vide an overview of the state of the field.

4.1 Information on Sources
After strictly applying the method described in Section 3.1,
26 primary studies have been obtained (a separate list of
references is provided at the end of the paper). It should
be noted that the 8 candidate papers shown in Table 3 also
satisfied the inclusion criteria, but they were considered as
variants of primary studies according to the review protocol
(see Section 3.2). Although excluded from the review anal-
ysis, they have been included within this quantitative anal-
ysis to reduce the bias towards certain types of publication
and authors.

Fig. 1 depicts the bar chart displaying the cumulative
number of publications per year. As can be observed, the
first two contributions within the field were published in
1999 by Monmarché et al., though no more publications

0

5

10

15

20

25

30

35

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year of publication

N
um

be
r

of
 p

ub
lic

at
io

ns

Conference Journal

Fig. 1. Cumulative number of publications per year and type

appeared until the mid 2000s. In the earlier years, the
number of papers showed a small but steady increase.
However, after 2013, iSBSE attracted increasing attention.
This is evidenced by how the different types of publication
have evolved. Fig. 1 reveals that the majority of publications
(71%) are contributions to international conferences. Nev-
ertheless, 29% of the total of publications refers to journal
papers. It is worth noticing that 8 out the 10 journal papers
were published after 2013.

Regarding the journals where papers are published and,
consequently, their audience, submissions are equally dis-
tributed, only Applied Soft Computing and Information and
Software Technology appearing twice (see List of primary
studies before References). Most of these articles are ranked
top according to the Journal Citation Reports, covering a
broad spectrum of areas: Software Engineering (3), Ar-
tificial Intelligence (2), Multidisciplinary Sciences (2) and
Cybernetics (1). This seems to be clearly motivated by the
multidisciplinary nature of SBSE. As for conference papers,
a similar distribution between the SE and AI communities
is found. However, it is worth mentioning a more frequent
appearance of the Symposium on Search-Based Software Engi-
neering, a specialized event where 3 papers were presented
and extended afterwards as journal papers [S1], [S4], [S18].

4.2 Information on Authors

A total of 66 authors based in 13 different countries have
been identified from the list of publications under study. Ta-
ble 4 shows the most frequent authors in the area, including
their number of co-authored publications. They contribute
to 76% of primary studies and their variants. With respect
to their country, Table 5 shows the total number of papers
published in iSBSE per country. Authors based in Italy,
Sweden, the United Kingdom (UK) and the United States of
America (USA) are the most frequently published in iSBSE.
With the aim of providing a baseline for SE publications,
the affiliation countries and level of cooperation have been
also analyzed from a renowned broad community like
ICSE (International Conference on Software Engineering).
Between 2007 and 2016, 845 ICSE technical papers were
authored by researchers based in 41 different countries,
USA, Canada and Germany being the most frequent. Both

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 9

TABLE 3
List of variants of primary studies sorted by publication year and first author’s surname

Reference Authors Title Journal/Conference Year

[48] A.A. Araújo and M.H. Paixão
Machine Learning for User Modeling in an Interactive Genetic Symposium on Search Based Software

2014
Algorithm for the Next Release Problem Engineering

[49] B. Marculescu et al.
Practitioner-Oriented Visualisation in an Interactive Search-Based Asia-Pacific Software Engineering

2013
Software Test Creation Tool Conference

[50] B. Marculescu et al. A Concept for an Interactive Search-Based Software Testing System
Symposium Search Based Software

2012
Engineering

[51] P. Tonella et al. Using Interactive GA for Requirements Prioritization
Symposium on Search-Based Software

2010
Engineering

[52] L. Troiano et al.
Interactive Genetic Algorithm for choosing suitable colors Learning and Intelligent Optimization

2009
in User Interface Conference

[53] C. Simons and I.C. Parmee
Agent-based Support for Interactive Search in Conceptual Genetic and Evolutionary Computation

2008
Software Engineering Design Conference

[54] C. Simons and I.C. Parmee User-centered, Evolutionary Search in Conceptual Software Design
IEEE Congress on Evolutionary

2008
Computation

[55] N. Monmarché et al.
On Generating HTML Style Sheets with and Interactive Genetic European Conference on Artificial

1999
Algorithm Based on Gene Frequencies Evolution

TABLE 4
List of authors with three or more publications

Author No. Publications
Allysson Araújo 4
Cosimo Birtolo 3
Altino Dantas 3
Robert Feldt 6
Marouane Kessentini 3
Bogdan Marculescu 5
Francis Palma 3
Ian Parmee 5
Christopher Simons 6
Jerffeson de Souza 3
Angelo Susi 3
Paolo Tonella 3
Richard Torkar 5
Luigi Troiano 3

the number of papers and countries show that iSBSE is still a
relatively small area, but somehow more widely distributed
by country. For instance, around 50% of ICSE papers have
one or more authors affiliated to a USA institution, whereas
authors based in USA appear in 21% of iSBSE papers. With
a similar percentage in iSBSE, UK and Italy obtain the 5th
and 6th positions for ICSE publications, respectively. The
level of cooperation between different countries is slightly
lower than that of the ICSE community, notably because
iSBSE is still in its earlier stages. In this sense, 53% of
the considered publications are co-authored by researchers
working for different institutions (51% in ICSE), 39% of
which refer to collaborations between authors located in
different countries (55% in ICSE).

5 FINDINGS OF THE REVIEW PROCESS

Responding to RQ2, this section provides a detailed re-
view of the primary works under study. Following the
high-level structure specified in the classification scheme
described in Section 3.4, the data extraction process has
produced insightful results regarding the problem formu-
lations addressed in iSBSE, the search techniques applied,

TABLE 5
List of countries

Country No. Publ. Publication year
Brazil 4 2014-2016
Canada 1 2013
China 2 2013, 2016
Egypt 1 2014
Finland 1 2013
France 2 1999
Ireland 1 2014
Italy 7 2009-2013, 2016
Singapore 1 2013
Sweden 6 2009, 2012, 2013, 2015, 2016
Tunisia 1 2014
United Kingdom 7 2008-2010, 2012, 2014, 2016
United States of America 7 2007, 2013, 2014, 2016

the mechanisms for human interaction, and how outcomes
are empirically validated.

5.1 Problem Formulation

As shown in Table 6, iSBSE has been proposed to address
a significant number of project phases. Tasks related to
the analysis and design, where creativity and experience
play a key role, have emerged as problem fields where hu-
man interactivity has been applied to achieve better search
performance. In these cases, there is a variety of design
artifacts to be optimized, including object-oriented specifi-
cations [S8], [S10], [S11], [S13], software architectures [S9],
software product lines [S7] and graphic user interfaces [S6],
[S12], [S14]. In contrast, other problem areas like testing and
verification or coding, incorporate the software engineer’s
opinion in the search process to a limited extent. Notice
that interactive search-based refactoring is classified under
the area ’distribution and maintenance’, wherein artifacts
include both design models and source code. Others, such as
those related to project management, are as yet unexplored.
Indeed, the lack of research studies into interactive search-
based project management is perhaps surprising, given that
others have previously explored interactive search-based
approaches for project management more generally.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 10

TABLE 6
Problem formulation

Category Percentage Papers
Type of software engineering problem
Requirements 19% [S1], [S2], [S3], [S4], [S5]
Analysis and design 38% [S6], [S7], [S8], [S9], [S10], [S11], [S12], [S13], [S14], [S15]
Code implementation 4% [S16]
Testing and verification 12% [S17], [S18], [S19]
Distribution and maintenance 27% [S20], [S21], [S22], [S23], [S24], [S25], [S26]
Project management 0%
Development practice
Prescriptive process model 12% [S1], [S2], [S3]
Specialized process model 4% [S24]
Agile development 0%
Not specified 85% [S4], [S5], [S6], [S7], [S8], [S9], [S10], [S11], [S12], [S13], [S14], [S15], [S16],

[S17], [S18], [S19], [S20], [S21], [S22], [S23], [S25], [S26]
Number of objectives
Single-objective 27% [S1], [S2], [S3], [S4], [S5], [S15], [S26]
Multi-objective 38% [S6], [S8], [S10], [S11], [S12], [S13], [S14], [S19], [S20], [S23]
Many-objective 23% [S7], [S9], [S17], [S18], [S24], [S26]
Not specified 15% [S16], [S21], [S22], [S25]
Constraints
Constrained 38% [S1], [S2], [S3], [S4], [S5], [S8], [S10], [S11], [S13], [S22]
Unconstrained 27% [S7], [S12], [S15], [S19], [S23], [S24], [S26]
Not specified 35% [S6], [S9], [S14], [S16], [S17], [S18], [S20], [S21], [S25]

Only 15% of sources specify the development practice
for interactive search (see Table 6). In such a case, an
iterative and incremental process model is indicated for
the majority of sources, all of them dealing with the next
release problem [S1], [S2], [S3], while one source reports
a specialized process for model driven engineering [S24].
Agile development is not specifically reported as a software
engineering process in any source.

Regarding the number of objectives reported for each
problem context, the majority (i.e. 62%) of sources describe a
multi/many objective software engineering problem, com-
pared to (27%) that report problems formulated as single
objective. This finding is in line with the general trend of
SBSE, where the adoption of multi-objective problem for-
mulations is increasing in order to better reflect the multiple
decision factors involved in any SE problem [30]. Besides,
some studies i.e. [S16], [S21], [S22], [S25] are not sufficiently
informative about the number of objectives, which is note-
worthy in a field like SBSE. With respect to the applicability
of constraints in the problem formulation, fewer than half of
the sources (38%) can be properly described as constrained.
Notice that the constrained problems mainly refer to the
NRP [S1], [S2], [S3], [S4], [S5], in which budgetary restric-
tions need to be considered, and design tasks [S8], [S10],
[S11], [S13], which usually define specific rules to derive
valid specifications. The remainder may either be described
as unconstrained, or the application of constraints is not
mentioned in the source.

5.2 Search Technique

Table 7 classifies the primary studies according to the search
methods they apply and objective approach (see Section 3.4).

In terms of the algorithm type used as a search technique, it
can be observed that metaheuristics are the most frequently
applied (88%). Within this group, evolutionary computation
is used by a large majority of primary sources (81%), though
different types of evolutionary algorithms are considered,
including genetic algorithms (57%), multi-objective evolu-
tionary algorithms (24%), differential evolution (14%) and
genetic programming (5%). This may largely be due to a his-
torical bias to evolutionary computing among metaheuris-
tics carrying through to SBSE [2]. Nevertheless, two studies
based on the application of swarm intelligence follow the
ACO paradigm. In the minority is one paper that uses exact
search, and two that use machine learning. None of the
primary studies rely on heuristics to conduct the search.

With respect to the objective approach of the search tech-
niques described, the majority of sources (73%) describe
a single-objective search approach, many of them using
an aggregation of several metrics to compute fitness. The
remainder describe multi/many-objective search, with the
exception of one paper [S15] not defining a fitness function
and ML approaches. As can be seen from Table 7, two
primary studies [S11], [S26] explore the corresponding SE
problem from two different perspectives. Even though most
of the metaheuristic paradigms have been adapted to deal
with multiple objectives, only evolutionary techniques have
been applied in iSBSE hitherto, due presumably to their
broad popularity and maturity.

5.3 Interactive Approach
Firstly, we examined the interactive algorithm type used in the
interactive approach with the software engineer. As shown
in Table 8, at 42%, interactive reoptimization and preference-
based interactivity are the most frequently occurring type

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 11

TABLE 7
Search techniques currently used in iSBSE

Single-objective Multi-objective Many-objective Not applicable
Exact [S5]
Metaheuristic

Single-solution based [S20]

Evolutionary computation
[S1], [S3], [S6], [S17], [S18], [S19], [S20], [S21], [S22], [S24] [S10], [S23], [S26] [S7] [S15]

[S4], [S9], [S11], [S12], [S14], [S26] [S11], [S13]
Swarm intelligence [S2], [S8]

Machine learning
Supervised [S16]
Unsupervised [S25]

TABLE 8
Interactive approaches and their application in iSBSE

Interactive algorithm type Description Percentage Papers
Interactive reoptimization Feedback is used to modify some elements of the problem

formulation (adding constraints or objectives, adjusting weights,
etc.) instead of the solution itself.

42% [S2], [S3], [S4], [S5],
[S7], [S9], [S10],
[S17], [S18], [S19],
[S20]

Preference-based interactivity Preference information is used to guide the search towards
some zones of search/objective space, e.g. selecting between two
candidate solutions.

42% [S7], [S11], [S13],
[S14], [S15], [S16],
[S20], [S21], [S23],
[S25], [S26]

Human-based evaluation Human subjective judgment is obtained by means of different
evaluation mechanisms (e.g. scores, rankings, etc.)

27% [S1], [S4], [S6], [S8],
[S12], [S22], [S24]

Human-guided search Actions performed by the human that have a direct impact on
the solutions, such as freezing parts of the encoding.

8% [S9], [S15]

TABLE 9
Purpose of interactivity and role of the user

Category Percentage Papers
Problem-oriented interaction 69%

Adjuster 35% [S2], [S8], [S9], [S10],
[S14], [S17], [S18], [S19],
[S21]

Enricher 35% [S1], [S3], [S4], [S5],
[S6], [S7], [S20], [S24],
[S26]

Search-oriented interaction 50%
Assistant 12% [S8], [S15], [S16]
Guide 23% [S7], [S11], [S12], [S13],

[S22], [S23]
Tuner 19% [S1], [S2], [S9], [S15],

[S25]

of algorithm used. Human-guided evaluation is described
in 27%, while human-guided search is employed in two
papers. Notice that five primary studies [S4], [S7], [S9],
[S15], [S20] combine two different interactive approaches,
which seems to indicate that the authors prefer to focus the
interaction on a specific activity or part of the search process.
Interestingly, iSBSE studies do not usually delegate the
complete evaluation of solutions as originally proposed by
IEC, allowing users to influence the search in more flexible
ways, such as adding restrictions or selecting solutions.

Secondly, for the purpose of user interaction (see Table 9),
a greater proportion (50%) of approaches are problem-
oriented compared to search-oriented (31%). As the for-
mer type of interaction is concerned with the application
domain, gathering knowledge from the expert seems to

be a primary goal when adopting an interactive method.
Nevertheless, there are also some primary studies (19%)
combining both approaches, which allows the decision
maker to perform different actions. In fact, the role of
the user in interaction shows some variety. A more in-
depth view reveals that objectives are often adjusted by
means of weights [S8], [S19]. However, the addition of
constraints [S3], [S4] and providing a subjective evaluation
of solutions to complement their fitness value [S1], [S24]
are frequent actions when the user acts as enricher. Among
search-oriented interactions, there are diverse approaches.
When the user is an assistant, the interaction consists in
finding promising solutions by marking some of them [S8]
or labeling examples [S16]. Guiding the algorithm towards
specific regions of the search space often appears in multi-
objective approaches [S7], [S23], while tuners are allowed
to dynamically change parameters such as the probabilities
associated with genetic operators [S9], [S15], [S25].

As shown in Table 10, more than a half of the sources
describe evaluation of solutions as the type of user task.
Selection, comparison and modification of solutions are
described in 31%, 12% and 23% of sources respectively. Such
a variety might reflect the emerging nature of this research
field, wherein no single approach to user interaction with
search is yet predominant. In fact, even though manually
fixing solutions could be viewed as a natural action to be
performed, modifying solutions mostly appears in combi-
nation with other tasks like evaluation and comparison.

When the provided feedback directly or indirectly in-
fluences the evaluation phase, the user applies a particular
evaluation mechanism to achieve this. Table 10 shows that

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 12

TABLE 10
Tasks performed during interaction and evaluation mechanisms

Category Percentage Papers
Type of task
Evaluation 58% [S1], [S2], [S3], [S6], [S8], [S9], [S10], [S12], [S17], [S18], [S19], [S21], [S22],

[S23], [S24]
Selection 31% [S7], [S8], [S11], [S13], [S14], [S15], [S16], [S25]
Comparison 12% [S4], [S5], [S26]
Modification 23% [S8], [S9], [S15], [S20], [S23], [S26]
Evaluation mechanism
Fitness value 4% [S22]
Weights 15% [S9], [S17], [S18], [S19]
Scores 31% [S1], [S6], [S8], [S10], [S11], [S12], [S13], [S24]
Rankings 8% [S4], [S25]
Reward/penalization 42% [S2], [S3], [S5], [S13], [S14], [S15], [S16], [S20], [S21], [S23], [S26]
Not applicable 4% [S7]

reward/penalization is most frequently occurring at 42%
of sources, followed by scores (31%), and weights (15%).
Ranking is described in two sources while providing a
fitness value is described in one.

Another key aspect of the interactive approach is the
adjustment of interaction time. Regarding the number of it-
erations/generations of search between user interaction,
the great majority of sources (92%) report a fixed number
of iterations (see Table 11). Conversely, only two studies
apply an adaptive approach, where the time of interaction
depends on either how fitness values are progressing [S8] or
when a tie is found [S4].

The primary studies provide further detail about the
way the user interacts the algorithm, and how solutions
are shown to the decision maker. Regarding the number of
solutions presented at an interactive event, Table 11 shows
that 27% sources describe the presentation of one solution
to the user for evaluation, the remainder describe multiple
solutions presented (with the exception of one paper that
does not provide any information in this regard). Notice that
one significant case of multiple solutions is when the user
is requested to pick a pair of solutions from the candidate
set in order to compare them [S4], [S5]. The level of detail
of the presentation to the user is mainly complete detail (at
77%), and only four studies [S5], [S16], [S21], [S26] focus the
interaction on specific parts of the solutions. A combination
of both approaches can be also found in two studies [S17],
[S18], where the user is able to get an overview of the
candidate solutions in terms of their objective values before
entering to inspect the most interesting ones in more detail.

In 88% of sources, the selection strategy to pick solutions
was controlled by the algorithm. It appears that interaction
with the user is mostly viewed as a fixed mechanism to
reinforce some aspects of the automatic search, instead of
an opportunity to create a more flexible, collaborative, user-
oriented process. Selecting best, specific or all solutions are
equally considered (27%). However, random selection of
solutions is not described. Some studies propose returning
specific solutions by selecting those with the same fitness
value so that the user is requested to determine a win-
ner [S4], [S5]. In [S12] a clustering technique is applied to
perform the selection. Notice that only one primary source

describes the user providing a qualitative fitness value.
We suggest that this, combined with a variety of level of
solution detail presented, may be an attempt to capture
implicit preference information [14] from the user.

Analysis of primary sources, compiled in Table 12, shows
that the feedback integration within search directly affected
the solution models in 19% of sources, compared to the great
majority (i.e. 81%) of sources that are reportedly model-free.
Although the latter approaches use ML techniques with dif-
ferent purposes, most of them are focused on modeling the
subjective evaluation. For instance, two studies [S8], [S10]
propose adjusting the weights associated with the metrics
comprising the fitness function by applying a regression
model of the user’s ratings. Two other studies [S1], [S22]
replace user’s feedback by using neural networks to build
their learning models. In [S1], a regression method (least
mean square) is also considered for comparison.

With respect to the preference information lifetime of user
feedback during search, it is observed that sources describe
either a step-based (50%) or short-term (54%) lifetime. How-
ever, long-term lifetimes are not described, that is, infor-
mation is not reused across different runs of the algorithm
to solve similar problems. In addition, with respect to the
information validity of the user feedback, permanent and
flexible account for 54% and 42% of sources respectively.
Notice that these approaches somehow restrict the informa-
tion flow between the algorithm and the user, who is likely
to be interested in ensuring that his/her opinion actually
influences the search or changes it in light of new results.
Only four sources [S8], [S15], [S16], [S25] allow the user to
revoke the decision made during a previous interaction.

5.4 Experimental Framework

Regarding the type of study used in experiments, Table 13
indicates that empirical investigations are described in over
half of the primary sources (65%). Simulated interaction is
reported in 35% of sources, while sample execution and
theoretical proposals account for 4 sources and one source
respectively. Table 14 shows the number of participants and
their specialization for those primary studies reporting some
kind of empirical investigation. With respect to the number

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 13

TABLE 11
Selection of solutions and adjustment of interaction time

Adjustment of interaction time
Fixed 92%

Every iteration 19% [S1], [S5], [S10], [S15], [S22]
Every n iterations 35% [S2], [S6], [S12], [S14], [S17], [S18], [S19], [S24], [S26]
Between two runs 38% [S3], [S7], [S9], [S11], [S13], [S16], [S20], [S21], [S23], [S25]

Dynamic 8%
Adaptive 8% [S4], [S8]
On demand 0%

Category Percentage Papers
Number of solutions
One solution 27% [S2], [S3], [S8], [S9], [S10], [S20], [S26]
Pair of solutions 8% [S4], [S5]
N solutions 38% [S1], [S6], [S11], [S12], [S13], [S14], [S15], [S19], [S22], [S24]
All solutions 23% [S7], [S17], [S18], [S21], [S23], [S25]
Not specified 4% [S16]
Level of detail
Complete solution 77% [S1], [S2], [S3], [S4], [S6], [S7], [S8], [S9], [S10], [S11], [S12], [S13], [S14], [S15], [S19], [S20],

[S22], [S23], [S24], [S25]
Partial solution 15% [S5], [S16], [S21], [S26]
Both 8% [S17], [S18]
Selection strategy
Fixed 88%

Best solution(s) 27% [S2], [S3], [S9], [S19], [S20], [S24], [S26]
Random solution(s) 0%
Specific solution(s) 27% [S4], [S5], [S8], [S10], [S11], [S12], [S21]
All solutions 27% [S1], [S7], [S15], [S17], [S18], [S23], [S25]
Not specified 8% [S14], [S22]

Free 8% [S13], [S16]
Not specified 4% [S6]

of participants in experiments, only 8% of sources included
greater than 20 participants. In fact, acquiring a large num-
ber of diverse participants appears to be a major challenge
in this area. From the studies including some empirical
investigations, 88% of sources either partially or completely
describe the profession and expertise of the participants.

Analysis of the participants’ position also reveals that 53%
of the empirical investigations are conducted with partici-
pants who came from an academic background, either as
staff (12%) or students (35%). 35% of the empirical studies
describe their participants as being software engineering
practitioners in an industrial setting. Furthermore, in an-
other four studies [S9], [S10], [S20], [S23], we found other
user profiles, although all participants perform the same
experimental task. In other cases such as [S17], [S20],
[S25], participants are separated into experimental and con-
trol groups in order to compare the interactive experience
against manually resolving the corresponding task. It is
noteworthy that empirical investigations are occasionally
conducted in combination with other methods like simu-
lated interactions [S1], [S2], [S18] or sample executions [S9],
which provide an efficient comparison framework. In com-
menting on these findings, we note that the majority of
experiments report empirical investigations, providing a
necessary level of robustness and rigor associated with
experiments involving human behavior.

The evaluation criteria determine which mechanism is
used to analyze the experimental outcomes. In interactive
search experiments (see Table 13), the majority of the ana-
lyzed sources (81%) report the use of measures, i.e. fitness
values or specific assessment metrics. With respect to the
scope of the software artifacts deployed as case studies in ex-
periments, 58% of sources report controlled environments.
On the other hand, industrial case studies are reported
in 38% of sources, and four sources describe the use of
synthetic case studies. We note that, while acknowledging
the logistical challenges involved, it is clear that from the
point of view of iSBSE as a requisite and precursor to the
adoption of industrial SBSE tools, experiments involving
industrial case studies are to be preferred over controlled
environments and synthetic simulations.

It is remarkable that only some studies are accompanied
with evidence in the form of additional experimental mate-
rial. Table 13 reflects the nature of the reachable materials,
which were found in 27% of sources. Finally, we find that
58% of studies employ statistical tests to validate experimen-
tal results. Pairwise and/or multiple comparison techniques
are reported in 15 sources, while estimation of effect size
is conducted in 3 (12%). Table 15 shows the details of the
specific statistical tests applied in each case study. As can be
observed, the Wilcoxon Mann-Whitney test is preferred for
pairwise comparisons. There is less agreement for multiple

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 14

TABLE 12
Feedback integration and information lifetime

Category Percentage Papers
Feedback integration
Model-free 81% [S2], [S3], [S4], [S5], [S6], [S7], [S9], [S11], [S12], [S13], [S14], [S15], [S17], [S18], [S19], [S20], [S21],

[S23], [S24], [S25], [S26]
Model-based 19% [S1], [S8], [S10], [S16], [S22]
Preference information lifetime
Step-based 50% [S4], [S6], [S7], [S12], [S13], [S14], [S15], [S17], [S18], [S19], [S21], [S23], [S24]
Short-term 54% [S1], [S2], [S3], [S5], [S8], [S9], [S10], [S11], [S15], [S16], [S20], [S22], [S25], [S26]
Long-term 0%
Information validity
Permanent 54% [S1], [S4], [S5], [S6], [S9], [S11], [S13], [S14], [S20], [S21], [S22], [S23], [S24], [S26]
Flexible 42% [S2], [S3], [S7], [S8], [S9], [S10], [S12], [S15], [S17], [S18], [S19]
Unrestricted 15% [S8], [S15], [S16], [S25]

comparison or effect size measurement, and their use is
not that usual either. In commenting on these findings, we
would encourage authors to make experimental materials
available for readers. Furthermore, in recognition of the
stochastic nature of metaheuristic search and the variability
of human behavior, we would also encourage authors to
always make use of appropriate statistical analysis.

6 CROSS CATEGORY DATA ANALYSIS

As a response to RQ3, in this section we review the extracted
data across categories of the classification scheme as a way
to identify potential gaps and limitations of iSBSE, while
speculating about possible causes. We firstly compare and
contrast extracted data relating to the software engineering
problem formulation with data in the various categories of
search technique and interactive approach used in the primary
sources. Secondly, we contrast the data regarding search
techniques in the primary sources with the data in various
categories of interactive approach. To illustrate possible asso-
ciative relationships, bubble charts revealing the frequency
of occurrence of data from various categories are shown.
Note that statistical analysis was considered as a means
to determine the presence of correlation. However, due to
sparsity and a lack of independence of the categorical data,
this proved inappropriate.

6.1 Problem Formulation and Approaches
Fig. 2(a) reveals the frequencies of search techniques used in
various problem formulations. As can be seen, evolutionary
computation is widely adopted in almost all SE phases,
but is frequently used in analysis and design (9 studies)
and maintenance (6 studies) problems. It is worth noting
that other metaheuristics like swarm intelligence [S8] and
hill climbing [S20] have been also applied very recently for
the first time in the area. For instance, first results on the
application of swarm intelligence for requirement elicitation
were published in 2016 [S2].

Fig. 2(b) shows how a great variety of types of interactive
algorithms have been already employed to address analysis
and design problems. We observe that iSBSE was first used
in design tasks. As a result, the landscape of approaches in
this area is more extensive, including the only two primary

studies on human-guided search [S9], [S15]. An interesting
finding here is that, even though the automatic evaluation
of solutions is a well-known challenge in SBSE, it remains
a difficult task for the software engineer as ’human-in-the-
loop’, and so indirect mechanisms to evaluate candidate
solutions are preferred in iSBSE. This is reflected by the fact
that PI (preference-based interactivity) and IR (interactive
optimization) are more frequently used than HE (human-
based evaluation) in all SE areas. As for PI, it is the most fre-
quent interactive approach for the design and maintenance
categories of problem formulation, meaning that researchers
find it appropriate to leverage the designer’s abilities for
recognizing promising solutions. It is noteworthy that this
approach is not used for requirements and testing problems,
wherein human preferences often abound.

Fig. 2(c) reveals that EV (evaluation) is frequently used
across a range of problem formulations (with the exception
of source code development). This might reflect a relative
ease of implementation by simply presenting candidate
solution(s) in a visualization for either direct or indirect
evaluation, when compared with other interactive tasks. An
interest in gathering information to reinforce the problem
formulation predominates. It is also noticeable that CO
(comparison) is not found in relation to analysis and de-
sign. Apparently, this task might be well suited to design
problems, though the implementation difficulties caused
by visually presenting multiple complete solutions might
represent the major limitation at this point.

Fig. 2(d) illustrates the frequencies of interactive evalua-
tion mechanisms used across various problem formulations.
We can observe here that evaluation based on RA (rank-
ings) is the least frequently occurring, and is confined to
requirements and maintenance problems. It is interesting
to speculate that this may in some part be due to the
relative difficulty of implementing a RA mechanism as part
of the visualization of multiple candidate solutions for an
interactive user experience. To overcome such a limitation,
the amount of information to be shown needs to be reduced
and somehow limited to a subset of solutions. For example,
the sorting procedure applied to requirements prioritiza-
tion [S4] only displays those solutions showing a conflict in
the priority order within a pair of requirements. In addition,
the information is limited by setting a maximum number of

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 15

TABLE 13
Characteristics of the experiments conducted in iSBSE

Category Percentage Papers
Type of study
Theoretical proposal 4% [S7]
Sample execution 15% [S9], [S11], [S15], [S20]
Simulated interaction 35% [S1], [S2], [S3], [S4], [S5], [S12], [S18], [S19], [S26]
Empirical investigation 65% [S1], [S2], [S6], [S8], [S9], [S10], [S13], [S14], [S16], [S17], [S18], [S20], [S21], [S22], [S24], [S25]
Evaluation criteria
Measures 81% [S1], [S2], [S3], [S4], [S5], [S6], [S8], [S10], [S11], [S12], [S13], [S14], [S16], [S17], [S18], [S19], [S22],

[S23], [S24], [S25], [S26]
Solutions 35% [S2], [S9], [S11], [S14], [S15], [S16], [S20], [S21], [S23]
Questionnaires 35% [S1], [S6], [S8], [S10], [S16], [S17], [S18], [S23], [S25]
Case studies
Synthetic 15% [S1], [S2], [S9], [S15]
Controlled environment 58% [S2], [S3], [S8], [S10], [S11], [S14], [S16], [S17], [S20], [S21], [S22], [S23], [S24], [S25], [S26]
Industrial case 38% [S1], [S4], [S5], [S6], [S13], [S18], [S19], [S20], [S23], [S26]
Not specified 4% [S12]
Evidence
Source code 12% [S1], [S5], [S20]
Case studies 27% [S1], [S3], [S5], [S10], [S11], [S13], [S20]
Experimental results 8% [S5], [S10]
Solutions 0%
Questionnaires 0%
Transcripts 12% [S11], [S13], [S20]
Additional statistics 4% [S1]
Other 8% [S5], [S10]
Statistical tests
Yes 58%

Pairwise comparison 50% [S1], [S3], [S6], [S8], [S10], [S12], [S17], [S18], [S20], [S22], [S23], [S25], [S26]
Multiple comparison 19% [S4], [S5], [S6], [S10], [S12]
Effect size measurement 12% [S1], [S17], [S26]

No 42% [S2], [S7], [S9], [S11], [S13], [S14], [S15], [S16], [S19], [S21], [S24]

TABLE 14
Characteristics of the participants in empirical studies (user’s profile)

Number of participants
1 participant
Between 2 and 10 [S1], [S9], [S10], [S13], [S14], [S16], [S18], [S21], [S24]
Between 11 and 20 [S2], [S8], [S20], [S22], [S23], [S25]
More than 20 [S6], [S17]
Participant position
Engineer (industry) [S1], [S2], [S13], [S18], [S22], [S23]
PhD academia staff [S9], [S10], [S22]
Postgraduate student [S9], [S17], [S20], [S21], [S22], [S23], [S24]
Undergraduate student [S10], [S20], [S22], [S25]
Other [S6], [S8]
Not specified [S14], [S16]
Participant expertise (in years)
Less than 5 [S2], [S10], [S17], [S18], [S22], [S23]
Between 5 and 10 [S1], [S2], [S10], [S13], [S18], [S22], [S23]
Between 11 and 20 [S2], [S10], [S13], [S18], [S22], [S23]
More than 21 [S10]
Not specified [S6], [S8], [S9], [S20], [S21], [S24], [S25]

disagreements to be solved.
Focusing on selection mechanisms for the presentation

of candidate solutions (see Fig. 2(e)), it is apparent that
showing a fixed numbers of solutions – especially BE (best)
and AL (all) solutions – is preferred in almost all problem
domains. Showing specific solutions might be of highest

TABLE 15
Statistical tests applied in iSBSE

Pairwise comparison
Student’s t-test [S8], [S25]
Wilcoxon Mann-Whitney [S1], [S3], [S6], [S17], [S18], [S20], [S22]

[S8], [S10], [S12], [S23], [S26]
Multiple comparison
ANOVA [S4], [S5]
Friedman [S10]
Kruskal-Wallis [S6], [S12]
Effect size measurement
Cliff’s Delta [S1], [S17]
Vargha and Delaney [S26]

interest to the user, i.e. FI(SP) (fixed, specific). It was con-
sidered in the earliest stages of iSBSE to face requirements
or design problems [S5], [S10], [S11], [S12]. However, in the
last few years studies seem to be more oriented towards BE
and AL, i.e. selecting the best solution [S2], [S20] or all of
them [S1], [S17], independently of the problem domain.

Taking the extracted data results analysis shown in fig-
ures 2(a) to 2(e) overall, it is clear that some categories
of search types and interactive approaches do occur for
some problem formulations in the primary studies more

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 16

1

9

1

6

1

1

1

3

1

3

ML(U)

ML(S)

MH(SI)

MH(EC)

MH(HC)

EX

Requirements Anal. & Des. Distr. & Maint. Code impl. Testing & Ver.

(a) Search technique

1

3

2

3

5

2

1

5

2

4 3

HS

HE

PI

IR

Requirements Anal. & Des. Distr. & Maint. Code impl. Testing & Ver.

(b) Interactive approach

1

5

3

6

1

4

3

1

2

3 3

MO

CO

SE

EV

Requirements Anal. & Des. Distr. & Maint. Code impl. Testing & Ver.

(c) Task

13

6

1

1

1

4

1

1

3

1

3WE

SC

R/P

RA

FI

Requirements Anal. & Des. Distr. & Maint. Code impl. Testing & Ver.

(d) Evaluation mechanism

1

2

1

1

4

1

1

2

3

1

1

1

2

2

2

1

NS

FR

FI(OT)

FI(AL)

FI(SP)

FI(BE)

Requirements Anal. & Des. Distr. & Maint. Code impl. Testing & Ver.

(e) Selection mechanism

Fig. 2. Relation between Software Engineering phases and other categories

frequently than others. To summarize and highlight these
with respect to the following problem formulations:

• Requirements: Interactive reoptimization is the most fre-
quently occurring interactive algorithm, and with
reward/penalization the most frequent problem eval-
uation mechanism.

• Design: Preference-based interactivity is the most fre-
quently occurring interactive algorithm, with selec-
tion and evaluation the most frequent interactive tasks
for the user, together with scores as the the most
frequent solution evaluation mechanism.

• Maintenance: Preference-based interactivity is again the
most frequently occurring interactive algorithm, and
reward/penalization the most frequent solution evalu-
ation technique.

For code and testing, because of the paucity of studies, it
seems too early to reach meaningful conclusions and make

suggestions about how interactivity is being considered
within these fields.

6.2 Search Technique and Interactive Approach

Focusing on the search algorithms, there is no clear trend re-
garding the application of a specific interactive model. Some
recent studies apply human-based evaluation [S1], [S6].
Other approaches like preference-based interactivity and
interactive reoptimization can be also found over the years,
the latter being applied by an evolutionary algorithm for the
first time in 2012 [S10]. Likewise, ant colony optimization
was firstly applied following the precepts of human-based
evaluation [S8], whereas interactive reoptimization has been
considered more recently in 2016 [S2]. In addition, we note
that machine learning does not directly work on candidate
solutions as SBSE does, and the problem is not defined in
terms of a fitness function. Consequently, the studies within

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 17

the ML paradigm fall into the same interactive approach
(PI).

By a wide margin, the most frequently occurring inter-
active task is for evaluation of solutions and evolutionary
computation (with 13 studies). Notice that the ultimate
goal of user interaction is to provide some kind of evalu-
ation, at least indirectly. This can be observed for swarm
intelligence too, given that the two studies using the ACO
paradigm [S2], [S8] focus their interaction on the evaluation
phase. However, [S8] combines this task with the selection
and modification of solutions. The latter also appears in
combination with evaluation in three evolutionary-based
studies [S9], [S23], [S26], which suggests that this decision
is mostly motivated by the specific requirements of the
problem domain. It is worth noting that both primary
studies based on machine learning [S16], [S25] propose that
the human participates in selecting input data to enable
the subsequent mining process to produce more accurate
classification models. However, how the user could help
to improve other phases of the learning process (such as
selecting features of interest or interactively supervising the
construction of the classifier) remains as yet unexplored.

In analyzing how frequently each search technique ap-
plies an evaluation or a selection mechanism, little or no
correspondence is immediately apparent. More specifically,
it seems that there exists an independence between the
underlying search technique (acting as a ’search engine’)
and the implementation of the user’s interactive experience,
at least in terms of interactive task, evaluation mechanism,
and selection of candidate solutions for presentation and
visualization. This is a valuable aspect of iSBSE, since it
offers the flexibility to incorporate a customized interactive
experience related to the characteristics of the problem
domain independently from the underlying ’search engine’.

7 OPEN ISSUES AND FUTURE TRENDS

Taking the results of the systematic literature review pre-
sented in previous sections overall, it is evident that iSBSE
has attracted significant research attention over recent years
and substantive progress has been made. However, the
review also reveals a number of challenges. In the following,
we comment on some open issues and also speculate on
future trends, as a response to RQ4.

Distance between the ’Optimizer’ and the Software
Engineer: In a real industrial setting, most probably those
researchers who design and develop iSBSE software systems
may not be the same persons acting as SE stakeholders
to provide the domain-specific requirements, and subse-
quently use and interact with the iSBSE software system.
If so, several issues might arise. For example, iSBSE re-
quirements elicitation and analysis is crucial particularly
with regard to the required interactive user experience. In
addition, search algorithms chosen for implementation may
not always be entirely appropriate for the given software
engineering problem domain and development process. We
speculate that it would be highly advantageous to engage
with SE stakeholders, possibly by means of pilot studies, to
validate and refine the user interactive experience, and its
relationship to the search ’optimizer’, prior to conducting
experimental investigations.

User Trust and Acceptance: Achieving user trust and
acceptance remains an open challenge for the field of iSBSE.
The issue of ’automation bias’ [15] is highly relevant, as is
user complacency [16], [17]. Lyell and Coiera [15] suggest
that strategies to minimize automation bias might focus
on cognitive load reduction. The suggestion is echoed by
Jackson [56] who points out that supporting human under-
standing is an important role for automation in software
engineering, and it seems possible that wherever there is a
lack of understanding, a lack of user trust and acceptance
might follow. In addressing this challenge, it is noteworthy
that Marculescu et al. [S17] report the use of the NASA Task
Load Index (NASA-TLX), a subjective workload assessment
tool (see Hart and Staveland [57]). It is also noteworthy
that qualitative methods such as Grounded Theory [58]
may have a role to play in the analysis of free format
questionnaire data. Unlike quantitative approaches, where
typically a pre-formed theory is proposed (possibly as one
or more hypotheses) and experiments are designed to collect
data to prove or refute hypotheses, Grounded Theory starts
without a pre-formed theory and through repeated data
collection and analysis, allows a theory to emerge from the
data [59], [60]. As part of efforts to achieve user trust and
acceptance in iSBSE, we would encourage consideration of

• techniques such as cognitive load monitoring and
qualitative methods to examine the interactive user
experience, and

• effective mechanisms to hide the underlying com-
plexity of search techniques, such as reducing the
number of parameters required of the user.

Role of the User: The nature of user participation in
iSBSE also remains an open issue for the field. As ob-
served in Section 5.3, it is possible that less rigid interac-
tion mechanisms beyond evaluation of solutions, including
direct manipulation of candidate solutions and the search
process itself, may prove beneficial. However, previous
work from other fields may offer possibilities to address
this. For example, Kosorukoff [61] proposes a human-based
genetic algorithm, wherein all primary genetic operators
are delegated to the human. Kosorukoff asserts that the
advantage of such an approach is its ability to not only
facilitate the direct evaluation of individuals, but also to
identify a good representation for them. In a further ex-
ample, Bush and Sayama [62] propose hyperinteractive
evolutionary computation (HIEC), in which the user pro-
actively chooses when and how each evolutionary operator
is applied. In human-subject experiments comparing HIEC
with interactive evolutionary computing, Bush and Sayama
report that HIEC facilitated a “more controllable, more fun
and more satisfying” user experience. In a more recent study,
Byrne et al. [63] propose an interactive methodology to
enable the user to directly interact with the encoding of
the candidate solutions they find aesthetically pleasing, and
assert that “broadening interaction beyond simple evaluation
increases the amount of feedback and bias a user can apply to
the search.” Given the crucial role of the user in iSBSE, we
would also encourage a flexible and rich role for the user,
possibly by drawing inspiration from the wider interactive
metaheuristic search research community.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 18

Assessment of Solution Fitness: User evaluation of
solution fitness remains an open challenge to the iSBSE
community, as software engineers can struggle to bring their
’hidden’ knowledge to bear during interaction. ’Hidden’
knowledge can relate to user qualitative evaluation of aes-
thetic aspects, such as the visual appeal of graphical user
interfaces, or software design elegance. For example, Quiroz
et al. [S14] compute the fitness of a graphical user interface
using a weighted combination of user aesthetic evaluation
and interface design guidelines. Troiano et al. [S6] search for
a good compromise between interface aesthetics and acces-
sible color schemes, taking account of two different fitness
factors: an objective measure of color distances and contrast
ratios found in the user interface and a subjective aesthetic
score given by user. In a further example of the use of
’hidden’ knowledge [S10], user measures relating to aspects
of software design elegance (e.g. symmetry) are integrated
with more established measures of coupling and cohesion
during search to achieve more ’human-looking’ solutions.
Moreover, the notion of distinguishing user preferences as
either hidden or implicit (as opposed to explicit) is explored
by Aljawadeh et al. [14]. Results of this review suggest that
user preferences can be short term or long term, which is
consistent with the concept of a dynamic and flexible user
experience recommended by Aleti et al. [26]. In addition,
user fatigue is a crucial factor for the assessment of solution
fitness [2]. Some tactics to reduce its effects have been
offered by Shackelford [19] and these have been extended in
the ’interactive solution presentation’ metaheuristic design
pattern [64]. Furthermore, reflecting the SBSE-related trend
to Pareto-optimal many/multi-objective approaches [30],
human solution fitness assessment and dynamic trade-
off analysis present a challenge for many/multi-objective
search algorithms. Current approaches are mostly focused
on the dynamic adjustment of objectives during search [S9],
[S17], which simplifies the problem into a single-objective
one. Only a few studies maintain the original problem
formulation, trying to infer user’s judgment from actions
such as the prioritization of non-dominated solutions [S23]
or by means of sub-populations whose size varies with the
relative importance of each objective as perceived by the
user [S10]. It is interesting to observe that although many
reports comparing multi/many objective Pareto-optimal ap-
proaches have appeared in the SBSE field [65], [66], [67],
reports of dynamic, “in-the-loop” adjustment of the relative
user importance of objective trade-offs for these approaches
are less readily available, and we speculate that this might
seem a fruitful avenue for future research.

Choice of Search Technique: As revealed in Section 5.2,
evolutionary computation has been chosen as a search
technique across a variety of SE problem formulations.
However, it is interesting to note that studies comparing
the relative performance of various metaheuristics generally,
and iSBSE specifically, are not abundant in the literature, es-
pecially with regard to multi-objective optimization. Having
said that, in a recent study, Piotrowski et al. [68] compare the
relative performance of 33 metaheuristic techniques on 22
numerical real-world problems across a range of scientific
domains. Results obtained would appear to be broadly
consistent with those previously observed by Simons and
Smith [69], who conducted a study comparing the perfor-

mance of greedy local search, an evolutionary algorithm
and ACO for search-based software design. Piotrowski et
al. report that “Particle Swarm Optimization algorithms and
some new types of metaheuristics perform relatively better when
the number of allowed function calls is low, whereas Differential
Evolution and Genetic Algorithms perform better relative to
other algorithms when the computational budget is large”. Such
findings resonate with the need to achieve effective search
performance quickly in iSBSE, wherein reducing waiting
times might help to mitigate the sensation of fatigue per-
ceived by the user. While the findings of these two studies
cannot be considered to be a comprehensive and complete
picture of this open issue, they do however suggest that
the use of swarm intelligence is worthy of consideration
when choosing a search technique for iSBSE, particularly
for multi-objective scenarios.

Available Frameworks and Implementations: Follow-
ing the choice of search technique, a further open issue
relates to the extent to which the availability of develop-
ment frameworks for metaheuristic search might influence
the choice of the search technique. Mature frameworks for
the development of evolutionary computation approaches
are readily available (e.g. jMetal [70], JCLEC [71]) and it
is possible that this availability might contribute to the
bias towards evolutionary algorithms found in the review
results. It also seems possible that iSBSE researchers might
not necessarily have appropriate expertise in optimization
or search algorithms, and so seek to build on advances
in the field by utilizing benchmarked implementations of
algorithms. It is interesting to speculate that comparable
studies (e.g. of similar algorithm implementations) could
be a criterion for researchers in their choice of a search
technique.

Experimental Validity and Empirical Studies: As dis-
cussed in Section 5.4, experimental evaluation of iSBSE re-
search with respect to both research and empirical industrial
contexts remains an on-going challenge. Given the emerging
state of the iSBSE field, there appears to be a general lack of
readily agreed and available benchmark case studies and
standards. Considering the presence of human interaction
with search, statistical analysis is appropriate, although it is
recognized that this might be difficult if the sample size (in
terms of number of participants and problem instances) is
small. To address this, we note that Arcuri and Briand offer
a helpful guide to statistical tests for assessing randomized
algorithms in software engineering [47], and Neumann et
al. suggest a useful executable experimental template pat-
tern for the systematic comparison of metaheuristics [72].
Furthermore, important aspects like reproducibility are also
related to additional materials being made available, allow-
ing experiments and results to be contrasted. However, the
results of this review reveal that additional experimental
materials are made available in just 27% of the primary
studies, and we would encourage authors to consider this,
respecting ethical and confidentiality issues where appro-
priate. Notice that the evaluation of interactive sessions
is essential to give insights about the effectiveness of the
interaction with the software engineer. However, the lack
of commonly accepted guidelines to design and conduct
experiments in iSBSE makes difficult the comparison of
different proposals. In this context, the use of common

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 19

problem instances and mechanisms to collect and process
data, as well as unifying the creation of questionnaires
would be highly recommended. It also seems likely that,
with regard to industrial case studies in iSBSE, it remains
a logistic challenge to recruit sufficient participants of suf-
ficient expertise to be representative of some subset of the
software engineering practitioner community. Lastly, in the
longer term, we suggest that assessing the economic benefit
of iSBSE (as suggested by Aleti et al. [26] for the field
of Operations Research), may be important for promoting
future industrial adoption.

Combining other Artificial Intelligence Techniques
with iSBSE: We also speculate that one future trend lies in
the combination of other artificial intelligence techniques,
e.g. machine learning, with iSBSE, to learn implicit user
preferences and thus help reduce user fatigue and improve
the interactive user experience. It is interesting to note that
in one of the primary studies, in addressing the next release
problem, Araújo et al. [S1] report that the expertise of
the decision maker is more effectively incorporated when
machine learning techniques integrate tacit human knowl-
edge with the optimization process. A further example of
research combines machine learning and SBSE, where Amal
et al. [S22] report the application of machine learning to
classify ill-defined, implicit fitness functions using a case
study on search based software refactoring. In a different
(non-interactive) approach, Aleti et al. [73] incorporate a
probabilistic Bayesian heuristic during search-based opti-
mization of component deployment in embedded software
systems. This is achieved by calculating the a posteriori
probability that a particular component/host assignment
constitutes a good outcome, which is then used to identify
high quality deployed architectures, given a number of
observations during search. These examples suggest that
learning from the optimization process can provide valuable
knowledge in SBSE, but further research is required into
how reuse of such knowledge might be exploited when ad-
dressing related problems. We speculate that future research
in iSBSE might investigate the opportunities that artificial
intelligence can bring beyond the partial substitution of the
human evaluation.

After an in-depth analysis of iSBSE, we have also ob-
served some gaps in the field that might turn into research
opportunities. As revealed in Section 5.1, results of the
review indicate that some lifecycle project phases appear
to be as yet unexplored in the primary studies. The lack
of iSBSE studies in the areas of source code implementation
and project management would seem to indicate a gap in
the field. As noted previously, the deficiency of research
studies into interactive search-based project management is
interesting, considering its analogy to requirements prioriti-
zation, and the fact that others have investigated interactive
search-based project management scheduling approaches
more generally [19], [74]. In addition, we speculate that
incorporating expert knowledge into search in iSBSE repre-
sents a gap in the field. As is typical in metaheuristic search,
sources in the review initialize populations of solution indi-
viduals either at random or according to domain-specific
heuristics. However, the reuse of expert knowledge (e.g.
patterns, benchmarks etc.) to initialize populations might
offer possibilities. We also observe that while individual

phases of development are well supported by iSBSE, each
is presented as if isolated from others, with different solu-
tion representations and search operators. Knowledge may
be generated by search at one phase, but often discarded
thereafter. We conjecture that a fruitful focus of research
might address the bringing together these isolated search
elements in a development chain, aligned to the software
engineering development process.

8 THREATS TO VALIDITY

Threats to the validity of this systematic review mainly
relate to factors that might affect outcomes without the
researchers’ knowledge. Such threats center principally on
the selection of primary studies and the process of extracting
the appropriate data from the primary studies.

Regarding the selection of primary studies for the re-
view, we describe in Section 3.1 the steps taken to justify
their systematic and unbiased selection. To ensure relevant
studies were located, we formulated a list of search strings
derived from terms from a variety of application domains
and search techniques. We conducted multiple iterative
pilot searches to validate the adequacy and effectiveness of
the search strings, looking for publications in the broadest
sense. When required, a search string was adapted to the
specific query language used by a particular engine or
database. A yield of 653 sources returned suggests a level
of confidence in the breadth of search. Having identified
relevant sources using the search strings, we drafted and
composed sets of inclusion and exclusion criteria to specif-
ically identify those sources related to interactive SBSE. In
Section 3.2, we state the inclusion and exclusion criteria to
precisely describe the scope of the interactive role of the
software engineer in SBSE. After applying inclusion and
exclusion criteria, a resulting focus on 26 remaining primary
sources out of the 669 originally returned by search also
suggests a level of confidence in the inclusion and exclusion
process.

With regard to the process of accurate and objective
data extraction from the primary sources, we first formu-
lated an appropriate classification scheme (see Section 3.4),
which precisely describes the data items to be extracted.
The classification scheme was derived by reference to other
rigorous classifications of interactive metaheuristic search
previously presented in other fields, and the specific context
of SBSE. Secondly, each primary source was independently
scrutinized by at least two reviewers, and in the case of
any disagreements occurring, a third reviewer’s assessment
was brought to bear as arbiter. To prevent any potential
conflict of interest, reviewers did not participate in data
extraction where they were also an author of the primary
source. Finally, we believe that the data extraction review
process itself provided a thorough and robust validation of
the classification scheme, which we hope may itself prove a
useful contribution and starting point for other researchers
in the field.

9 CONCLUSION

The design, development and maintenance of complex soft-
ware systems can be challenging for the software engineer

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 20

to perform. The application of computational optimization
methods has been shown to be an efficient mechanism
to support the engineer in different software engineering
tasks during development. However, there are still many
problems where human intervention is crucial for solution
evaluation and indication of preferences to the algorithm
about how a given situation should be solved. In this work,
we present the results of a systematic literature review into
interaction within search-based software engineering. Such
interaction occurs when the software engineer provides
their implicit and/or explicit feedback during the search
process, which significantly modifies the results and per-
formance of the search.

To enable analysis of the primary studies, we formu-
late a classification scheme focused on four key aspects
of iSBSE, i.e. the problem formulation, search technique,
interactive approach, and the empirical framework used in
experiments. Using this classification scheme, we analyzed
the primary sources and present the results in manner
that enables researchers to relate their work to the cur-
rent body of knowledge and recognize future trends. We
organized our results into tables and graphics, aiming to
enable knowledge transfer for industrial practitioners, and
across research communities whose focus may lie in distinct
phases across the software development lifecycle. We note
that research into iSBSE is multi-disciplinary in the sense of
drawing on three areas, i.e. human-computer interaction, ar-
tificial intelligence (e.g. metaheuristic search, machine learn-
ing etc.), and software engineering. It seems unlikely that
researchers might possess expertise in all three areas, and so
this review helps to bridge the gap between the discipline-
based communities and promote inter-disciplinary knowl-
edge transfer.

The review and analysis based on the classification
scheme highlights some open research issues for the field
of iSBSE. The role of the user during interaction with search
remains a challenge for researchers, particularly with regard
to provision of a flexible and dynamically adapting user
experience to promote user trust and acceptance of the
search results obtained. We note that this is non-trivial to
implement, and so conclude that it is crucial to take account
of user requirements, software engineering context and hu-
man factors in the development of an iSBSE system. The
generation and management of knowledge during iSBSE
also represents an interesting and fruitful research trend
for iSBSE. Currently, much knowledge about the problem
formulation and candidate solutions is generated during
interactive search, but is seldom retained for longer term
use. We also conclude that future research might fruitfully
be directed towards the acquisition and exploitation of
knowledge generated during interactive search.

Finally, the results of this systematic review will enable
the advancement of the iSBSE research community as the
area continues to grow, and hopefully the classification
scheme presented herein might form the beginning of a
methodological approach for the design of iSBSE systems.

ACKNOWLEDGMENTS

This Work is supported in part by the Spanish Ministry of
Economy and Competitiveness, projects TIN2014-55252-P

and TIN2015-71841-REDT, the Spanish Ministry of Educa-
tion under the FPU program (FPU13/01466), and FEDER
funds.

PRIMARY STUDIES

[S1] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza,
“An Architecture based on interactive optimization and machine
learning applied to the next release problem,” Automat. Softw. Eng.,
vol. 24, no. 3, pp. 623–671, 2017.

[S2] T. do Nascimento Ferreira, A. A. Araújo, A. D. B. Neto, and
J. T. de Souza, “Incorporating user preferences in ant colony
optimization for the next release problem,” Appl. Soft Comput.,
vol. 49, pp. 1283–1296, 2016.

[S3] A. Dantas, I. Yeltsin, A. A. Araújo, and J. Souza, “Interactive
Software Release Planning with Preferences Base,” in Proc. 7th Int.
Symp. Search-Based Software Engineering, 2015, pp. 341–346.

[S4] P. Tonella, A. Susi, and F. Palma, “Interactive requirements pri-
oritization using a genetic algorithm,” Inf. Softw. Technol., vol. 55,
no. 1, pp. 173–187, 2013.

[S5] F. Palma, A. Susi, and P. Tonella, “Using an SMT Solver for Inter-
active Requirements Prioritization,” in Proc. 19th ACM SIGSOFT
Symp. / 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 48–58.

[S6] L. Troiano, C. Birtolo, and R. Armenise, “A validation study
regarding a generative approach in choosing appropriate colors
for impaired users,” SpringerPlus, vol. 5, no. 1, p. 1090, 2016.

[S7] A. E. El Yamany, M. Shaheen, and A. S. Sayyad, “OPTI-SELECT:
An Interactive Tool for User-in-the-loop Feature Selection in Soft-
ware Product Lines,” in Proc. 18th Int. Software Product Line Conf.:
Companion Vol. for Workshops, Demonstrations and Tools - Vol. 2, 2014,
pp. 126–129.

[S8] C. L. Simons, J. Smith, and P. White, “Interactive ant colony
optimization (iACO) for early lifecycle software design,” Swarm
Intell., vol. 8, no. 2, pp. 139–157, 2014.

[S9] S. Vathsavayi, H. Hadaytullah, and K. Koskimies, “Interleaving
human and search-based software architecture design,” Proc. Es-
tonian Academy of Sciences, vol. 62, no. 1, pp. 16–26, 2013.

[S10] C. L. Simons and I. C. Parmee, “Elegant Object-Oriented Software
Design via Interactive, Evolutionary Computation,” IEEE Trans.
Syst., Man, Cybern. C, Applications and Reviews, vol. 42, no. 6, pp.
1797–1805, 2012.

[S11] C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive,
Evolutionary Search in Upstream Object-Oriented Class Design,”
IEEE Trans. Softw. Eng., vol. 36, no. 6, pp. 798–816, 2010.

[S12] C. Birtolo, P. Pagano, and L. Troiano, “Evolving colors in user
interfaces by interactive genetic algorithm,” in Proc. World Congr.
Nature Biologically Inspired Computing, 2009, pp. 349–355.

[S13] C. L. Simons and I. C. Parmee, “An empirical investigation
of search-based computational support for conceptual software
engineering design,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2009, pp. 2503–2508.

[S14] J. C. Quiroz, S. J. Louis, A. Shankar, and S. M. Dascalu, “Interac-
tive Genetic Algorithms for User Interface Design,” in Proc. IEEE
Congr. on Evolutionary Computation, 2007, pp. 1366–1373.

[S15] N. Monmarché, G. Nocent, M. Slimane, G. Venturini, and P. San-
tini, “Imagine: a tool for generating html style sheets with an
interactive genetic algorithm based on genes frequencies,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern., vol. 3, 1999, pp. 640–645.

[S16] S. Axelsson, D. Baca, R. Feldt, D. Sidlauskas, and D. Kacan,
“Detecting Defects with an Interactive Code Review Tool Based
on Visualisation and Machine Learning,” in Proc. 21st Int. Conf.
Softw. Eng. Knowl. Eng., 2009, pp. 412–417.

[S17] B. Marculescu, S. Poulding, R. Feldt, K. Petersen, and R. Torkar,
“Tester interactivity makes a difference in search-based software
testing: A controlled experiment,” Inf. Softw. Technol., vol. 78, pp.
66–82, 2016.

[S18] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “An initial
industrial evaluation of interactive search-based testing for em-
bedded software,” Appl. Soft Comput., vol. 29, pp. 26–39, 2015.

[S19] B. Marculescu, R. Feldt, and R. Torkar, “Objective Re-weighting
to Guide an Interactive Search Based Software Testing System,” in
Proc. 12th Int. Conf. Machine Learning and Applications, vol. 2, Dec
2013, pp. 102–107.

[S20] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “In-
teractive and guided architectural refactoring with search-based
recommendation,” in Proc. 24th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2016, pp. 535–546.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 21

[S21] M. W. Mkaouer, “Interactive Code Smells Detection: An Initial
Investigation,” in Proc. 8th Int. Symp. Search-Based Software Engi-
neering, 2016, pp. 281–287.

[S22] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said,
“On the Use of Machine Learning and Search-Based Software
Engineering for Ill-Defined Fitness Function: A Case Study on
Software Refactoring,” in Proc. 6th Int. Symp. Search Based Software
Engineering, 2014, pp. 31–45.

[S23] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “Recommendation System for Software Refactor-
ing Using Innovization and Interactive Dynamic Optimization,”
in Proc. 29th ACM/IEEE Int. Conf. Automat. Softw. Eng. ACM,
2014, pp. 331–336.

[S24] A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model Refac-
toring Using Interactive Genetic Algorithm,” in Proc. 5th Int. Symp.
Search Based Software Engineering, 2013, pp. 96–110.

[S25] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving Feature
Location Practice with Multi-faceted Interactive Exploration,” in
Proc. Int. Conf. Softw. Eng., 2013, pp. 762–771.

[S26] G. Bavota, F. Carnevale, A. De Lucia, M. Di Penta, and R. Oliveto,
“Putting the Developer in-the-Loop: An Interactive GA for Soft-
ware Re-modularization,” in Proc. 4th Int. Symp. Search Based
Software Engineering, 2012, pp. 75–89.

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineering,”
Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, 2001.

[2] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput.
Surv., vol. 45, no. 1, p. 11, 2012.

[3] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud,
“A review and taxonomy of interactive optimization methods in
operations research,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 3,
p. 17, 2015.

[4] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software
design process for large systems,” Communications of the ACM,
vol. 31, no. 11, pp. 1268–1287, 1988.

[5] R. Guindon, “Designing the design process: Exploiting oppor-
tunistic thoughts,” Human-Comp. Interact., vol. 5, no. 2, pp. 305–
344, 1990.

[6] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
2nd ed. Springer, 2015.

[7] G. Klien, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J.
Feltovich, “Ten challenges for making automation a ”team player”
in joint human-agent activity,” IEEE Intell. Syst., vol. 19, no. 6, pp.
91–95, 2004.

[8] D. Jones, “Programming using genetic algorithms: isnt
that what humans already do,” accessed 8 November
2016. [Online]. Available: http://shape-of-code.coding-
guidelines.com/2013/10/18/programming-using-genetic-
algorithms-isnt-that-what-humans-already-do/

[9] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Qual. J., vol. 21, no. 3, pp.
421–443, 2013.

[10] R. Dawkins, “The blind watchmaker,” Harlow: Longman, 1986.
[11] K. Sims, “Evolving virtual creatures,” in Proc. 21st Ann. Conf.

Computer graphics and interactive techniques, 1994, pp. 15–22.
[12] H. Takagi, “Interactive evolutionary computation: Fusion of the

capabilities of EC optimization and human evaluation,” Proc.
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[13] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, Multiobjective
optimization: Interactive and evolutionary approaches. Springer, 2008,
vol. LCNS 5252.

[14] H. J. Aljawawdeh, C. L. Simons, and M. Odeh, “Metaheuristic
Design Pattern: Preference,” in Proc. Companion Publication Ann.
Conf. Genetic and Evolutionary Computation, 2015, pp. 1257–1260.

[15] D. Lyell and E. Coiera, “Automation bias and verification com-
plexity: a systematic review,” J. Am. Med. Inform. Assoc., p. ocw105,
2016.

[16] R. Parasuraman and V. Riley, “Humans and automation: Use,
misuse, disuse, abuse,” Hum. Fac.: J. Hum. Fac. Erg. Soc., vol. 39,
no. 2, pp. 230–253, 1997.

[17] L. J. Skitka, K. L. Mosier, and M. Burdick, “Does automation bias
decision-making?” Int. J. Hum.-Comp. Stud., vol. 51, no. 5, pp. 991–
1006, 1999.

[18] J. E. Bahner, A.-D. Hüper, and D. Manzey, “Misuse of automated
decision aids: Complacency, automation bias and the impact of
training experience,” Int. J. Hum.-Comp. Stud., vol. 66, no. 9, pp.
688–699, 2008.

[19] M. Shackelford, “Implementation issues for an interactive evolu-
tionary computation system,” in Proc. Companion Publication Ann.
Conf. Genetic and Evolutionary Computation, 2007, pp. 2933–2936.

[20] C. Alexander, A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, 1977.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley Pear-
son, 1995.

[22] M. Harman, “The role of artificial intelligence in software engi-
neering,” in Proc. 1st Int. Workshop on Realizing AI Synergies in
Software Engineering. IEEE Press, 2012, pp. 1–6.

[23] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based
Software Engineering and Systematic Reviews. CRC Press, 2016.

[24] A. M. Pitangueira, R. S. P. Maciel, and M. Barros, “Software
requirements selection and prioritization using SBSE approaches:
A systematic review and mapping of the literature,” J. Syst. Softw.,
vol. 103, pp. 267–280, 2015.

[25] O. Räihä, “A survey on search-based software design,” Comput.
Sci. Rev., vol. 4, no. 4, pp. 203–249, 2010.

[26] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software Architecture Optimization Methods: A Systematic Lit-
erature Review,” IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 658–683,
2013.

[27] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Inf. Softw.
Technol., vol. 51, no. 6, pp. 957–976, 2009.

[28] G. Bavota, M. Di Penta, and R. Oliveto, Search Based Software
Maintenance: Methods and Tools. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 103–137.

[29] T. Mariani and S. R. Vergilio, “A systematic review on search-
based refactoring,” Inf. Softw. Technol., vol. 83, pp. 14–34, 2017.

[30] A. S. Sayyad and H. Ammar, “Pareto-optimal search-based soft-
ware engineering (POSBSE): A literature survey,” in Proc. 2nd
Int. Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, 2013, pp. 21–27.

[31] M. Harman, “SBSE: Introduction, Motivation, Results and Direc-
tions (keynote),” in 6th Int. Symp. Search Based Software Engineering
(SSBSE’14), 2014.

[32] M. Harman, Y. Jia, and Y. Zhang, “Achievements, Open Problems
and Challenges for Search Based Software Testing,” in 8th IEEE
Int. Conf. Software Testing, Verification and Validation (ICST), 2015,
pp. 1–12.

[33] C. Simons, J. Singer, and D. R. White, “Search-based refactoring:
Metrics are not enough,” in Proc. 7th Int. Symp. Search-Based
Software Engineering (SSBSE’15), 2015, pp. 47–61.

[34] G. R. Santhanam, “Qualitative optimization in software engineer-
ing: A short survey,” J. Syst. Softw., vol. 111, pp. 149–156, 2016.

[35] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 2009, ch. Part II: Problem Solving, pp. 64–202.

[36] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Comput. Surv.,
vol. 35, no. 3, pp. 268–308, 2003.

[37] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Inf. Sci., vol. 237, pp. 82–117, 2013.

[38] B. Li, J. Li, K. Tang, and X. Yao, “Many-Objective Evolutionary
Algorithms: A Survey,” ACM Comput. Surv., vol. 48, no. 1, pp.
13:1–35, 2015.

[39] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and
Q. Zhang, “Multiobjective evolutionary algorithms: A survey of
the state of the art,” Swarm Evol. Comput., vol. 1, no. 1, pp. 32–49,
2011.

[40] I. C. Parmee, “Poor-Definition, Uncertainty, and Human Factors
- Satisfying Multiple Objectives in Real-World Decision-Making
Environments,” in Evolutionary Multi-Criterion Optimization, 2001,
pp. 52–66.

[41] M. Ware, E. Frank, G. Holmes, M. Hall, and I. H. Witten, “In-
teractive machine learning: letting users build classifiers,” Int. J.
Hum.-Comp. Stud., vol. 55, no. 3, pp. 281–292, 2001.

[42] B. Kitchenham and S. Charters, “Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering,” Keele Uni-
versity and Durham University, Tech. Rep., 2007.

[43] N. Salleh, E. Mendes, and J. Grundy, “Empirical studies of pair
programming for CS/SE teaching in higher education: A system-

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2803055, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 22

atic literature review,” IEEE Trans. Softw. Eng., vol. 37, no. 4, pp.
509–525, 2011.

[44] A. M. Pitangueira, R. S. P. Maciel, M. de Oliveira Barros, and A. S.
Andrade, “A systematic review of software requirements selection
and prioritization using SBSE approaches,” in 5th Int. Symp. Search
Based Software Engineering. Springer, 2013, pp. 188–208.

[45] R. S. Pressman and B. R. Maxim, Software Engineering: A Practi-
tioner’s Approach, 8th ed. McGraw-Hill Education, 2014.

[46] D. Zhang and J. J. Tsai, “Machine Learning and Software Engi-
neering,” Software Qual. J., vol. 11, no. 2, pp. 87–119, 2003.

[47] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Test. Verif. Rel., vol. 24, no. 3, pp. 219–250, 2014.

[48] A. A. Araújo and M. Paixão, “Machine Learning for User Mod-
eling in an Interactive Genetic Algorithm for the Next Release
Problem,” in 6th Int. Symp. Search-Based Software Engineering, 2014,
pp. 228–233.

[49] B. Marculescu, R. Feldt, and R. Torkar, “Practitioner-Oriented Vi-
sualization in an Interactive Search-Based Software Test Creation
Tool,” in 20th Asia-Pacific Software Engineering Conf., vol. 2, 2013,
pp. 87–92.

[50] ——, “A Concept for an Interactive Search-based Software Testing
System,” in 4th Int. Symp. Search Based Software Engineering, 2012,
pp. 273–278.

[51] P. Tonella, A. Susi, and F. Palma, “Using Interactive GA for Re-
quirements Prioritization,” in 2nd Int. Symp.Search Based Software
Engineering, 2010, pp. 57–66.

[52] L. Troiano, C. Birtolo, and G. Cirillo, “Interactive Genetic Al-
gorithm for choosing suitable colors in User Interface,” in Proc.
Learning and Intelligent OptimizatioN, 2009, pp. 14–18.

[53] C. L. Simons and I. C. Parmee, “Agent-based Support for Interac-
tive Search in Conceptual Software Engineering Design,” in Proc.
2008 Ann. Conf. Genetic and Evolutionary Computation, 2008, pp.
1785–1786.

[54] C. Simons and I. Parmee, “User-centered, evolutionary search in
conceptual software design,” in IEEE Congr. Evolutionary Computa-
tion, 2008, pp. 869–876.

[55] N. Monmarché, G. Nocent, G. Venturini, and P. Santini, “On Gen-
erating HTML Style Sheets with an Interactive Genetic Algorithm
Based on Gene Frequencies,” in 4th Eur. Conf. Artificial Evolution,
1999, pp. 99–110.

[56] M. Jackson, “Automated software engineering: supporting under-
standing,” Automat. Softw. Eng., vol. 15, no. 3, pp. 275–281, 2008.

[57] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research,” Adv.
Psychol., vol. 52, pp. 139–183, 1988.

[58] A. Bryant and K. Charmaz, The Sage Handbook of Grounded Theory.
Sage, 2007.

[59] M. Myers, “Qualitative research in information systems,” Manag.
Inf. Syst. Q., vol. 21, no. 2, pp. 241–242, 1997.

[60] A. Strauss and J. Corbin, Basics of Qualitative Research, 3rd ed.
Newbury Park, CA: Sage, 1990.

[61] A. Kosorukoff, “Human based genetic algorithm,” in IEEE Int.
Conf. on Syst., Man, Cybern, vol. 5, 2001, pp. 3464–3469.

[62] B. J. Bush and H. Sayama, “Hyperinteractive Evolutionary Com-
putation,” IEEE Trans. Evol. Comput., vol. 15, no. 3, pp. 424–433,
2011.

[63] J. Byrne, E. Hemberg, M. ONeill, and A. Brabazon, “A method-
ology for user directed search in evolutionary design,” Genet.
Program. Evol. M., vol. 14, no. 3, pp. 287–314, 2013.

[64] M. Shackelford and C. L. Simons, “Metaheuristic design pattern:
interactive solution presentation,” in Proc. Companion Publication
Ann. Conf. on Genetic and Evolutionary Computation, 2014, pp. 1431–
1434.

[65] A. Ramı́rez, J. R. Romero, and S. Ventura, “A comparative study
of many-objective evolutionary algorithms for the discovery of
software architectures,” Empir. Software Eng., vol. 21, no. 6, pp.
2546–2600, 2016.

[66] R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng, “SIP:
Optimal Product Selection from Feature Models Using Many-
Objective Evolutionary Optimization,” ACM Trans. Softw. Eng.
Methodol., vol. 25, no. 2, pp. 17:1–17:39, 2016.

[67] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, and
K. Deb, “On the use of many quality attributes for software
refactoring: a many-objective search-based software engineering
approach,” Empir. Software Eng., vol. 21, no. 6, pp. 2503–2545, 2016.

[68] A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski, and
P. M. Rowinski, “Swarm intelligence and evolutionary algorithms:
performance versus speed,” Inf. Sci., vol. 384, pp. 34–85, 2017.

[69] C. Simons and J. Smith, “A comparison of meta-heuristic search
for interactive software design,” Soft Comput., vol. 17, no. 11, pp.
2147–2162, 2013.

[70] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-
objective optimization,” Adv. Eng. Softw., vol. 42, no. 10, pp. 760–
771, 2011.

[71] A. Ramı́rez, J. R. Romero, and S. Ventura, “An extensible jclec-
based solution for the implementation of multi-objective evo-
lutionary algorithms,” in Proc. Companion Publication Ann. Conf.
Genetic and Evolutionary Computation, 2015, pp. 1085–1092.

[72] G. Neumann, J. Swan, M. Harman, and J. A. Clark, “The exe-
cutable experimental template pattern for the systematic compar-
ison of metaheuristics,” in Proc. Companion Publication Ann. Conf.
Genetic and Evolutionary Computation, 2014, pp. 1427–1430.

[73] A. Aleti and I. Meedeniya, “Component deployment optimisation
with bayesian learning,” in Proc. 14th Int. Symp. Component-Based
Software Engineering, 2011, pp. 11–20.

[74] M. Shackelford and D. Corne, “Collaborative evolutionary multi-
project resource scheduling,” in Proc. IEEE Congr. Evolutionary
Computation, vol. 2, 2001, pp. 1131–1138.

Aurora Ramı́rez received a M.Sc. degree in Computer Science from the
University of Córdoba, Spain, in 2012. Since 2012, she has been with
the Knowledge Discovery and Intelligent Systems Research Laboratory
of the University of Córdoba, where she is currently working towards
obtaining a Ph.D. Her research interests include search-based software
engineering, metaheuristics and data mining.

José Raúl Romero is Associate Professor at the University of Córdoba,
Spain. Prior to receiving the PhD degree from the University of Málaga in
2007, he was an IT consultant. His current research interests include the
the development of intelligent systems for industrial use, search-based
software engineering and data science. He is a member of IEEE, ACM,
and the Spanish Technical Normalization Committee AEN/CTN 71/SC7
of AENOR. He can also be reached at http://www.jrromero.net.

Christopher L. Simons is Senior Lecturer at the University of the West
of England (UWE), Bristol, UK, from where he received the PhD degree
in Interactive Evolutionary Computation. Prior to joining UWE in 2002,
Chris practiced as a software engineer, architect and consultant. He
is a member of the British Computer Society. His research interests
center on interaction and mutual learning between software engineers
and interactive computational intelligence.

8
Conference publications

8.1. International conferences and workshops

1. A. Ramı́rez, J.R. Romero, S. Ventura. On the Performance of Multiple Objec-

tive Evolutionary Algorithms for Software Architecture Discovery. In Proceed-

ings of the 16th Genetic and Evolutionary Computation Conference (GECCO),

pp. 1287-1294. Vancouver (Canada). July 2014. ACM. Best paper of

the SBSE track and nominated to best paper of GECCO’14 . DOI:

10.1145/2576768.2598310. CORE(2014): A.

2. A. Ramı́rez, J.R. Romero, S. Ventura. An Extensible JCLEC-based Solution

for the Implementation of Multi-Objective Evolutionary Algorithms. Evolu-

tionary Computation Software Systems (EvoSoft) Workshop. In Proceedings

of the Companion Publication of the 17th Genetic and Evolutionary Com-

putation Conference (GECCO Companion), pp. 1085-1092. Madrid (Spain).

July 2015. ACM. DOI: 10.1145/2739482.2768461. GGS(2015): Class 2 (A).

3. A. Ramı́rez, R. Barbudo, J.R. Romero, S. Ventura. Memetic Algorithms for

the Automatic Discovery of Software Architectures. In Proceedings of the

16th International Conference on Intelligent Systems Design and Applications

245

https://doi.org/10.1145/2576768.2598310
https://doi.org/10.1145/2739482.2768461

Chapter 8. Conference publications

(ISDA), vol. 557 AISC, pp. 437-447. Porto (Portugal). December 2016.

Springer. DOI: 10.1007/978-3-319-53480-0 43. GGS(2015): Work in progress.

4. A. Ramı́rez, J.R. Romero, S. Ventura. On the Effect of Local Search in the

Multi-objective Evolutionary Discovery of Software Architectures. In Proceed-

ings of the Congress on Evolutionary Computation (CEC), pp. 2038-2045.

San Sebastián (Spain). June 2017. IEEE. DOI: 10.1109/CEC.2017.7969551.

GGS(2017): Class 2 (A-).

8.2. National conferences

1. A. Ramı́rez, J.R. Romero, S. Ventura. Modelos metaheuŕısticos para el soporte

a la decisión en la construcción de software. Proceedings of the I Doctoral

Consortium de la Sociedad de Ingenieŕıa del Software y Tecnoloǵıas de Desar-

rollo de Software (SISTEDES), pp. 10-14. Cádiz (Spain). September 2014.

Thesis proposal awarded a second prize.

2. A. Ramı́rez, J.R. Romero, S. Ventura. Análisis de la aplicabilidad de medi-

das software para el diseño semi-automático de arquitecturas. Proceedings of

the XIX Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD), pp.

307-320. Cádiz (Spain). September 2014. Available from SISTEDES digital

library: 11705/JISBD/2014/050.

3. A. Ramı́rez, J.R. Romero, S. Ventura. Estudio preliminar del rendimiento

de familias de algoritmos multiobjetivo en diseño arquitectónico. Proceedings

of the X Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y

Bioinspirados (MAEB), pp. 173-180. Mérida (Spain). February 2015.

4. A. Ramı́rez, J.R. Romero, S. Ventura. Interactividad en el descubrimiento

evolutivo de arquitecturas. Proceedings of the XX Jornadas en Ingenieŕıa del

Software y Bases de Datos (JISBD). Santander (Spain). September 2015.

Available from SISTEDES digital library: 11705/JISBD/2015/029.

5. A. Ramı́rez, J.A. Molina, J.R. Romero, S. Ventura. Estudio de mecanismos

de hibridación para el descubrimiento evolutivo de arquitecturas. Proceedings

of the XXI Jornadas en Ingenieŕıa del Software y Bases de Datos (JISBD), pp.

246

https://doi.org/10.1007/978-3-319-53480-0_43
https://doi.org/10.1109/CEC.2017.7969551
https://hdl.handle.net/11705/JISBD/2014/050
https://hdl.handle.net/11705/JISBD/2015/029

8.2. National conferences

481-494. Salamanca (Spain). September 2016. Available from SISTEDES

digital library: 11705/JISBD/2016/043.

6. J.A. Parejo, A. Ramı́rez, J.R. Romero, S. Segura, A. Ruiz-Cortés. Config-

uración guiada por búsqueda de aplicaciones basadas en microservicios en la

nube. Proceedings of the XXI Jornadas en Ingenieŕıa del Software y Bases de

Datos (JISBD), pp. 499-502. Salamanca (Spain). September 2016. Available

from SISTEDES digital library: 11705/JISBD/2016/045.

7. A. Ramı́rez, R. Barbudo, J.R. Romero, S. Ventura. Herramienta basada en

computación evolutiva interactiva para arquitectos software. Proceedings of

the XVII Conferencia de la Asociación Española para la Inteligencia Artificial

- XI Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioin-

spirados (CAEPIA-MAEB), pp. 387-396. Salamanca (Spain). September

2016.

8. A. Ramı́rez, J.R. Romero, S. Ventura. Búsqueda coevolutiva interactiva apli-

cada al diseño de software. Proceedings of the XXII Jornadas en Ingenieŕıa

del Software y Bases de Datos (JISBD). La Laguna, Tenerife (Spain). July

2017. Available from SISTEDES digital library: 11705/JISBD/2017/034.

9. A. Ramı́rez, J.R. Romero, S. Ventura. API para el desarrollo de algoritmos

interactivos en ingenieŕıa del software basada en búsqueda. XXIII Jornadas en

Ingenieŕıa del Software y Bases de Datos (JISBD). Sevilla (Spain). September

2018. Available from SISTEDES digital library: 11705/JISBD/2018/073.

247

https://hdl.handle.net/11705/JISBD/2016/043
https://hdl.handle.net/11705/JISBD/2016/045
https://hdl.handle.net/11705/JISBD/2017/034
https://hdl.handle.net/11705/JISBD/2018/073

	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	1 Background
	1.1 Software architectures
	1.1.1 Foundations and definitions
	1.1.2 The architecting process
	1.1.3 Decision support for architecture design

	1.2 Search techniques
	1.2.1 Search and optimisation
	1.2.2 Metaheuristics
	1.2.3 Optimisation with multiple objectives
	1.2.4 Interactive optimisation

	1.3 Search-based software engineering
	1.3.1 Origin and characteristics
	1.3.2 Search-based software design
	1.3.3 Software architecture optimisation

	2 Motivation and objectives
	2.1 Objectives
	2.2 Research questions
	2.3 Relation between objectives and publications

	3 Methodology
	3.1 Literature analysis
	3.2 Experimental framework
	3.2.1 Implementation and execution environments
	3.2.2 Problem instances
	3.2.3 Performance evaluation

	3.3 Threats to validity

	4 Results
	4.1 Evolutionary discovery of architectures
	4.1.1 Proposed approach
	4.1.2 Discussion of results
	4.1.3 Associated publications

	4.2 The multi- and many-objective perspectives
	4.2.1 Proposed approach
	4.2.2 Discussion of results
	4.2.3 Associated publications

	4.3 The human-in-the-loop approach
	4.3.1 Proposed approach
	4.3.2 Discussion of results
	4.3.3 Associated publications

	5 Conclusions and future work
	5.1 Concluding remarks
	5.2 Future lines of research

	Bibliography

	II Scientific Publications
	6 Compendium of publications
	6.1 An approach for the evolutionary discovery of software architectures
	6.2 A comparative study of many-objective evolutionary algorithms for the discovery of software architectures
	6.3 Interactive multi-objective optimisation of software architectures

	7 Other publications associated to this Ph.D. Thesis
	7.1 Evolutionary composition of QoS-aware web services: a many-objective perspective
	7.2 A systematic literature review of interaction in search-based software engineering

	8 Conference publications
	8.1 International conferences and workshops
	8.2 National conferences

