AEROSPACE

Assuring Space Mission Success

University/Industry Collaborations:

Challenges and Strategies
for Success

Eric M. Dashofy
The Aerospace Corporation

ASEE&T 2010
March 12, 2010

© The Aerospace Corporation 2010

Outline

* Advantages of university / industry collaborations in software
architecture

— As well as challenges

* Finding and achieving common goals
— Examples of software architecture in industry
* Diversion: standards and artifacts most often encountered

* Strategies for success
* Pitfalls and caveats

— Personal reflections on projects: what worked, what didn’t

* Classroom strategies

A Historical Metaphor

* The golden spike joined the two halves of the transcontinental
railroad in Promontory, Utah in 1869

- 3
=
=
5
5
s
=
=
=
S
=
=
=
<=
S =
=

Central Pacific

Union Pacific
Added later

Why Collaborate?

* From Academic Perspective
— Validate and evaluate new approaches and techniques
— Gain insight about industry problems and domains
— Gain advocates and supporters for new approaches

* From Industry Perspective
— Evaluate new methods and techniques for solving their own problems
— (Occasionally) solve critical problems
— Increased knowledge of the cutting edge
* Also inspiration

* From both perspectives
— Funding opportunities
— Networking opportunities

Another Historical Metaphor

* The “chunnel” (channel-tunnel) provides a way to travel under the
English Channel by rail.

Key Challenges
Different Goals and Constraints

* University

— Create and disseminate
(publish) research results

— Do something new

— Invent novel approaches

— Create general solutions

— Teach students

— Softer deadlines

— More tolerant of risk of failure

— Disseminate results widely (e.qg.,
At conferences, journals, on the
Internet)

Industry

— Create products that satisfy
customer requirements

— Do something that works

— Use best practices

— Solve immediate problems

— Increase competitive advantage
— Harder deadlines

— Less tolerant of risk of failure

— Dissemination restricted (e.g.,
proprietary, classified)

Finding Common Ground

* Start Small
— Look for small opportunities to make a connection

— Researchers: Shouldn’t expect practitioners to reorient their entire
operation around the latest ideas

— Practitioners: Shouldn’t expect research ideas to be fully formed and
productized

* Prepare for growth
— Look for and develop approaches that facilitate incremental adoption

— Both parties should prepare to capitalize on successful efforts and be
thinking of longer-term collaborations

— Be proactive in looking for win-win funding opportunities

Finding Common Ground (cont.)

* Focus on integrating novel approaches with approaches and
technologies used in industry

* Perpetually look for research areas that satisfy common and
disparate goals
— Areas where there are important, open research questions

— Areas where (incremental) improvements will make an immediate
difference

— Areas where there’s a lot of future potential
— Areas close to, but not necessarily on, the critical path

What can Architecture Research Offer Industry?

* Inindustry, design above the level of classes and modules occurs
— May not be principled or adequately supported
— Often, resulting artifacts are MS Office documents (MS Word,
PowerPoint)
* Lots of room for improvement
— Better ability to communicate (about) designs
* New visualizations, new models of systems
— Better ability to understand implications of designs and design decisions
early
— Better management of software evolution (both at development and run-
time)
— Better ability to understand and explore tradeoffs

— Better ability to understand the relationships between products (e.g.,
product-lines)

A Spectrum of “Architecture”

More Abstract, A People, processes
More Social Social-Science

Projects

Quality Attributes and
Trade-offs

Semi-rigorous
models

Rigorous Models

Technology-centric

Formal Analysis, Projects

Mapping to Code,
Tie to Lifecycle

More Concrete,
More Technical

Different kinds of projects at different points on the spectrum

10

A Spectrum of Projects

Projects with
Pedagogical Aims

Projects with
Research Aims

» Class projects (10-16 weeks?)
* Mostly undergrads (free!)

Do not have to break new
ground

« Many teams may do same
assignment

 May have a desired outcome
(i.e., for grading)

Different kinds of projects at different points on the spectrum

11

Research projects (longer)
Mostly grad students (paid)

Generally do have to break
new ground

Duplication is unlikely
Outcome unknown in advance

Examples of Potential Projects

Pedagogical and Abstract

« Observe and evaluate design
meetings

« Evaluate quality trade-offs based
on documentation

« Tie architecture to business goals

Pedagogical and Technical

* (Re-)develop various
views/models of a system

« Given arealistic problem,
develop one or more designs

* Reverse-engineer architecture
from code

 Evaluate architectural artifacts

Relationships horizontally: often related to scope and novelty

12

Research and Abstract

New techniques for gathering
stakeholder input

New approach for evaluating
quality trade-offs

Ethnography of software
architects and designers

Research and Technical

Develop novel views/models of a
system

New approach for architectural
recovery

New approach for modeling,
analysis, or simulation

New approach for product-lines

Why is Doing Architecture Projects with Industry
Challenging?

* Proprietary Nature of Architectural Information
— Architectural information is high-value and practitioners want to protect it
— May also be under other restrictions (e.g., ITAR)
— May only be available inconveniently (e.g., at company site)
* With no network access for visitors

* Lack of Mature Architectural Practices in Industry
— Not everything may be documented
— Documents may be incomplete or evolving
— Documents may answer the wrong questions

* Complexity of Architecture
— Documents may be hundreds or thousands of pages
— “Big picture” may live in the heads of project team

13

Why is Doing Architecture Projects with Industry
Challenging? (cont.)

* Design is Hard to Access and Influence
— Practitioners generally skeptical of outsiders meddling in design

— Most of project lifecycle is not spent designing, but dealing with
ramifications of design
— Best way to understand design is to talk to designers
* Designers and “big picture” people are often the most oversubscribed

* Architects doubly so

14

The State of Architecture in Industry

project
count

15

maturity

Architecture is a clear focus in most big projects

— However, the state of that architecture varies

Maturity tends to be “medium rare”

— Focus in lifecycle on architecture and design

— Development of (often extensive) documentation

— Prose and UML (often ambiguous) are dominant forms of models
— Rationale capture can be an issue

Few projects that aren’t doing anything about architecture

Very few projects that are pioneering architecture approaches

What do you tend to see in industry architecture?

* Personnel
— Many implementers working on very specific portions of the project
— A few designers and “big picture” people
* Find by looking for the cubicles/offices with lines outside them

* Organizations
— Customer organizations (acquiring products)
— Developer organizations (developing products)
— Qversight organizations (oversee acquisition and development

16

What do you tend to see in industry architecture?
(cont.)

* Artifacts
— Often
* Design documents mostly separate from the system implementation
* Word documents containing many box-and-arrow diagrams

— A few diagrams may be very semantically-rich and well-thought-
out but these can be hard to find

* UML
— Some use of profiles and consistency rules across diagram types
— Sometimes

* Framework-compliant diagrams/documents (e.g., DoDAF, SysML,
RM-ODP)

* Decent simulators
— Rarely

* Artifacts with strong traceability / that are part of the implementation

* Rigorous or formal models

17

A Diversion: “Industry Standard”

* Standards and frameworks are huge drivers of:
— What kinds of artifacts get generated
— How architecture is conceived by various stakeholders
— Contract deliverables (sometimes)

* A quick tour through standards you're most likely to encounter
— IEEE 1471
— UML
— SysML
— DoDAF
— RM-ODP

18

IEEE 1471

19

Recommended practice for architecture description
— Often mandated for use in government projects

Scope is limited to architecture descriptions (as opposed to
processes, etc.)

Useful as a starting point for thinking about architecture description
— Defines key terms

— Identifies the importance of stakeholders and advocates models that are
tailored to stakeholder needs

Does not prescribe a particular notation for models

— Does prescribe a minimal amount of content that should be contained in
models

Reasonable definitions of views and viewpoints
Being compliant does not say much about quality

The Unified Modeling Language (UML)

-
Bootstrapper =

Fourteen (14) types of diagrams

— Addressing structural and behavioral aspects
As a standard, primarily prescribes a syntax

Some semantics with purposeful ambiguity
— Also some implicit and explicit consistency rules across diagrams

Encourages specialization of the standard through the use of profiles

— Profiles are “mini-standards”

— Profiles can customize existing diagrams but cannot define new ones

&

Application Al
Component

\i/
) |

Header Files

Runtime $:

Environment

20

&5

Bootstrapper

<<p|ug$—into >>

Library

1
Off-the-shelf E '

Runtime
Environment

g]

Application E
Component

< <<is-instantiated-by>>

<<calls>>

<<needs-to-build>>

i/

Header Files

<<needs-to-build>>

Off-the-shelf g]
Library

SysML

* An extended version of UML

* Developed by a large consortium of organizations (mainly large
system integrators and developers)

* Intended to mitigate UML’s “software bias”

* SysML developers found UML insufficient
— Initially decided profiles were not enough to resolve this

— Developed new diagram types to capture system-engineering specific
Views

— Limited momentum among tool vendors; focus shifting to more heavily
use UML profiles

21

SysML

SysML
Requirement
Diagram

Req [package] LunarLanderRequirements [Requirement Derivation] |

<<requirement>>
TrackRemainingFuel

7 T

Sensor
Requirements

F7

par LunarLander J r.em» L
— nRate
<<deriveReqt>>
/ \.\" fuel [3
]] , .
altitude fuel - ~
L] altitude u ()
Next State velocity Lander newBumRate L
Equation L el State User Input
4 burnRate velocity newBurnRate r_
\ G \ ; SysML
: S --/" Nl S .
raviy Parametric
gravity .
IO 4 Diagram
time currentTime
Environment Clock [| currentTime
A /'I l"\ I:"

22

DisplayStatus

<<deriveReqt>>

<<requirement>>
CalculateNextState

<<deriveR.eqt>>
' ‘ <<requirement>> <<requirement>>
DetectCurrentVelocity DetectCurrentAltitude
! <<rationale>> \ A =7
<<r.eqU|rement>> Burn rate must not <<deriveReqt>> !
ValidateBurnRate d ining fuel J .
exceed remaining fue <<deriveReqt>> <<deriveReqt>> <<requirement>>
{ . T TrackTime
<<deriveReqt>>
e 7
<<deriveReqt>> <<requirement>>

<<deriveRéqt>>

Department of Defense Architecture Framework

* DoDAF, evolved from C4ISR

— Has some other international analogs (MoDAF)

— ‘Framework’ here refers to a process or set of viewpoints that should be
used in capturing an architecture

* Not necessarily an architecture implementation framework

* |dentifies specific viewpoints that should be captured

— Includes what kinds of information should be captured
— Does not prescribe a particular notation for doing the capture

* Some vocabulary inconsistency with, e.g., IEEE 1471

23

A set of perspectives from which descriptions are developed Viewpoint set View

Perspective from which descriptions are developed Viewpoint (Kind of) Product

Artifact describing a system from a particular perspective View Product

Department of Defense Architecture Framework (cont.)

* Three views (common: viewpoint sets)
— Operational View (OV)
* “Identifies what needs to be accomplished, and who does it”

* Defines processes and activities, the operational elements that
participate in those activities, and the information exchanges that
occur between the elements

— Systems View (SV)

* Describe the systems that provide or support operational functions
and the interconnections between them

* Systems in SV associated with elements in OV
— Technical Standards View (TV)

* |dentify standards, (engineering) guidelines, rules, conventions, and
other documents

— Cross-cutting products — ‘All Views’ (AV)
* E.g., dictionary/glossary of terms

24

DoDAF OV-1 Product
“High-Level Operational Concept Graphic”

l Lunar Lander Concept I

Relay

Satellite

Ground System

Network (o] y
Satellite

Comm

I
I

25

Lunar Lander

DoDAF OV-4 Product
“Organizational Relationships”

Space
Agency

Oversight
Organization
Ground Satellite Lander Crew
Systems Group Systems Group
Mission Command Lunar Module
Commander Module Pilot Pilot

26

DoDAF SV-1 Product
“Systems Interface Description”

27

Lunar Lander

Satellite Comm

Ground Station

Process Local Commands

Communicate with Ground

4
7’
/

,»° Space Link

Encode/Decode

Transmit/Receive

'
P
4

Track Telemetry

Provide Feedback

V4
4

Local Fiber Command Network

Note implied correspondence
with OV-1 entities

DoDAF SV-3 Product
‘Systems-Systems Matrix”

28

to Ground Satellite Comm | Lunar Lander

from Station

Ground
Ground Station Feedback

(TCP/IP)

Lander Ground
Satellite Comm Transmissions Feedback
(TCP/IP) (Space Protocol)
Lander

Lunar Lander

Transmissions
(Space Protocol)

* Note correspondence with SV-1

» One of several “N?"/matrix diagrams in DoDAF

DoDAF TV-1 Product
“Technical Standards Profile”

29

Standards

for SV-1 Ground Satellite | Lunar
Station Comm | Lander

Systems
Service Service Area | Standard

ISO/IEC 9945-1:1996,

Information

: : Technology - Portable o

Information Operating : Baseline: :
Technology System Operating System 1 January | Baseline Baseline +
Standards Standard Interface (POSIX) - 2007 3 mos

Part 1: System

Application Program

Interface (API)

Extensible Markup
Information Language (XML) 1.0 . .
Transfer | 22 M | (Fourth Edition) W3C | paseln® ™ | Baselne
Standards Recommendation 16

August 2006

FDDI / ANSI X3.148-

Physical 1988, Physical Layer Baseline + | Baseline
Layer Protocol (PHY) -- also | 3 mos + 3 mos

ISO 9314-1

« Somewhat non-traditional for an architecture view

RM-ODP

* Another standard for viewpoints, similar to DoDAF but more limited

In scope; resemble DoDAF SV

— Prescribes 5 viewpoints for distributed systems
Layer Protocol

Command
Interface
Application
Layer Protocol

Lunar Module

Ground Station

Mission
Commander

' G d Lu
e e
lieclor Station Comm E . .
ngineering
TCP/IP H TCP/IP
Vl eW Protocol

Enterprise View

Space Packet
Radio

30

Diversion: Takeaways

31

These standards tend to be abstract and do not provide specific
design guidance

— Provide specific guidance about what to capture, but not how to capture
it

— Diagrammatic notations improve communications
* But generally need additional prose documentation for semantics
— Consistency across views is generally an exercise for the user

Additional standards

— Standard tools (Rose, Rhapsody, System Architect)

— Analysis and Evaluation Approaches (ATAM)

— Process and documentation standards (ISO 9000; CMM/CMMI)

Strategies, Caveats, and Personal Reflections

* Given all these constraints, the interests of architecture research,
and the state of architecture in industry, what can we do to make
collaborative projects successful?

— And what are some things to watch out for?

* Four key strategies

* Afew example projects
— What worked, what didn’t, and why?

32

Key #1: Start Small
Academic/Research Perspective

* All-or-nothing solutions are hard to adopt

— Industrial partners will work in an environment where they are highly
constrained by numerous factors

* Contractual obligations, momentum, skill mix, corporate culture
* For any new

approach, a A _

step-by-step - Semantics-based Tools
. @)

adoption D ,

: Q CM Implementation
plan is S Concepts| Mapping
critical to < Type System
success § vPE =

©
)
| -
O
=

33

Key #1: Start Small
Industry Perspective

* All-or-nothing problem domains are hard to learn and get involved
with

* Applying new technologies or techniques to complete, huge
systems over multiple dimensions is infeasible

* The full details of huge systems are often proprietary

34

Key #2:. Grow Big with Extensibility
Academic/Research Perspective

* Many projects are not built with a plan for extensibility in mind

* Extensibility mechanisms are difficult to “bolt on”—they must be
“built in”

* Extensibility is especially helpful in industry collaborations to adapt
to project-specific needs or incorporate project-specific components

* Architects should focus on extensibility naturally

Run-Time Modeling

Design-time
Modeling

(Future Ex pans ion S) \i@ . -n- TR T TIIET

35

Key #3: Play Nice with Other Kids

* Academic/Research Perspective

— Generally a goal to find deficiencies in existing technologies
and techniques and remedy them

— Compromise between building a better
mousetrap and adapting an existing one

* Industry Perspective

— Wil continue using off-the-shelf
technologies, but should be open to
augmenting them with research

— With the understanding that research
techniques and tools (especially)
will not have evolved to the point
of some of these well-seated
standards

f IEEE 1471
{ DoDAF

36

Key #4:. Incremental Value

* The ideal area is one that
— Contains lots of interesting, “big” research questions
— Is valuable to practitioners in the short-term
— Is important to practitioners in the long-term
— Provides incremental opportunities for success

* Look for problems that
— Can be understood by students/researchers with a modicum of effort

— Align with research interests of students and have identifiable research
guestions

* Are suitable for inclusion in the “evaluation” section of a paper/thesis
— Are nearby, but not necessarily on, the critical path
— Provide an obvious “value-add” story for the practitioners

* Establish periodic milestones with incremental value at each

37

Key #C: The Cross-Cutting Key

* Collaborations are ultimately about people
* Ultimately there needs to be a point of contact/primary person
responsible for the collaboration on both sides
— Academic side
* Primary person responsible is likely a professor
* POC may be a professor or student project lead
— Industry side

* Primary person responsible must be an evangelist for the
collaboration

— Often a ‘tech fellow’ or similar
* POC may be a member of the project on the industry side

38

A Typical Project: Software-Defined Radio

* Large industrial project to develop a software-defined radio

* Ageneral-purpose platform for digital communications
that can be configured for different applications

using software

SBC/ 1 Channel
BC/ 1 Channel
SBC/ 1 Channel

SBC/ 1 Channel

oY
Q
0o
ok
=2
m
-
®

39

SBC / 1 Channel

Black
Side FPGA

GPP

Crypto

R.Ed Audio
Side Control
GPP

DSP

Black Side GPP

Proci

» Proc2

/,

Crypto

S~

Crypto Alg 1

VAN

~

| /
Red SVP /

Audio
Proc

Packet
Proc

Video

.

Proc

METAC
Proc

Software-Defined Radio Project

* Governing specification was the Software Communications

Architecture (SCA)
— http://sca.jpeojtrs.mil/

* How architectural is the SCA?

— Based on CORBA and POSIX
standards

— Primarily defines APIs (CORBA IDL
interfaces) that are found in common
components

* Filesystem, resource managetr,
device driver, application main
component...

— Does not provide specific guidance
for how to define or connect components
to make a software-defined radio

40

SOFTW;
TWARE COMug NS AR
SPECIHICoTIgy IMECTURE

http://sca.jpeojtrs.mil/

Software Defined Radio Project: Artifacts

* Many Word and PowerPoint documents with diagrams
Some UML

SCA “Appendix D”-compliant XML files

— These define
* Components in operating environment or waveform
* How they are implemented, and
* How they are connected
— But
* Deployment of components on hosts is often ill-specified
* Built by hand
* Lack of visualizations
* Lack of ability to analyze for even simple correctness

* They were doing architecture but saw it as implementation

41

First Collaborative Project

Hardware
Descriptions
(XML)

Waveform
Descriptions

(XML)

.

ADL Description

* Translate “SCA Appendix D” Domain Profiles to an ADL

* Use ADL-translated descriptions for visualization and analysis

42

First Collaborative Project

ADL Description

| y 4
|
Hardware —
Descriptions 8
(XML) —
| -
(@]
. S
| [
c
(©
Waveform =
Descriptions
(XML)

Node 1 _
Devicel

|
Device2

Node 2 _
Device3

|
Device4

* Translate “SCA Appendix D” Domain Profiles to an ADL

* Use ADL-translated descriptions for visualization and analysis

43

First Collaborative Project

Hardware
Descriptions
(XML)

-anslator Tool

Waveform

i

Descriptions

(XML)

.

ADL Description

Node 1 _
Compl| | Devicel

Comp2 Device2

Node 2

Comp3— Device3

Comp4 Device4d

* Translate “SCA Appendix D” Domain Profiles to an ADL

* Use ADL-translated descriptions for visualization and analysis

44

First Collaborative Project

uuuuuuuuuuuuuuuuuuuu

¥} IV v—v—v— ¥} nodetAudioDevice
nodel DeviceManager nade | Executalile Device node1AudioDevice
hd ¥}

eeeeeeeeeeeee

nodellLogger_DCE: —
FD381958-5357- - - o

domainManager -
>

4981-8053-
2CBCE17E65TA

* Translate “SCA Appendix D” Domain Profiles to an ADL
* Use ADL-translated descriptions for visualization and analysis

45

Evaluation of First Collaboration

* What Worked

— Start Small: start with basic structural modeling; ignore temporal
aspects and behavior for now

— Grow Big: needed to add support for “Appendix D’ files to ADL

— Play Nice: Translator tool took advantage of ADL libraries, but also
integrated ADL with existing project standard

— Incrementality: Provided additional views that added value but were off
the critical path

— Found reference model to work on open data offsite
— Fostered use on another project by practitioners exclusively
* What Didn’t
— Lots of uncertainty at the beginning before finding the problem

— Strict constraint: can’t “fix” practitioner files, must process with errors if
possible

— Practitioner-only project had much more limited data exchange possible

46

Second Collaborative Project

* Practitioner had little insight into temporal aspects of system

Y} b ¥
nodel DeviceManager nade | Executahle Device nodelAudioDevice domainManager
" ==
Init
(\ -

47

— Not all components are present at all times
— Map statecharts to configurations using product-line tools

-7

Load
OE

-

— nodellogger_DCE:
FD381958-5357-
4881-8053-
2CBCE17BBATA

v

Load
Drivers

v

-

Load

Waveform

J

Evaluation of Second Collaboration

* What Worked
— Start Small: Use basis from first collaboration and add on
— Grow Big: Incorporate statecharts and product-line capabilities
— Play Nice: Still use “Appendix D” files; incorporate UML statecharts

— Incrementality: Provided more views that added value but were off the
critical path

* \What Didn’t

— Basic statecharts got reimplemented in the ADL’s environment rather
than incorporating off-the-shelf models

— Results (in both this and first collaboration) were primarily used as
additional documentation artifacts

48

Evaluation of SDR Project

* Value for Academia
— Got to evaluate ADL and tool set in real-world domain
— Increased knowledge about a new domain

* Value for Industry
— Generated first graphical visualizations of configurations
* Provide “visceral insight” into configurations

— Generated novel temporal views that inspired some reconsideration on
designers’ part

— Enumerated errors and inconsistencies in configurations
— Learn about new techniques

49

Another Project: Mission Data System

* Practitioners defining an architectural style and model-driven
approach that tied architectural models to implementation

* Wanted to use research ADL as the basis for models

* Generated lots of interesting discussion but no full collaboration
— No funding match ever made

— Proprietary info
constraints made Kno g

informal collaboration
difficult

— Practitioners incorporated
concepts/ideas but did not
adopt technology

Control System

50

Evaluation of Mission Data System Collaboration

* What Worked
— Start Small: Focus on structural modeling for one particular domain
— Grow Big: Extensibility mechanisms attracted practitioners

— Willingness of both sides to informally collaborate without a specific
mandate

* Required some extra flexibility on practitioner side
* What Didn’t
— Play Nice: Possibly too much novel technology here

— Incrementality: Project would have been on the critical path; likely even
with funding would have been difficult for it to keep pace with practitioner
needs

— Artifacts being generated by practitioner were considered “proprietary;”
without funded mandate it was difficult for researchers to get access or
publish about them

51

Third Project: Tools for Reference Architecture for
Space Data System (RASDS)

* Practitioners defining a domain-specific modeling notation for space
data systems based on RM-ODP

* Wanted a toolset for modeling, visualization, and analysis

* Capabilities matched research environment well

— Various types of components and connectors, links, hierarchical
composition

* Sticking point: what should the semantics be?
— Researchers thought practitioners should define and vice-versa

OO0

52

Evaluation of Mission Data System Collaboration

* What Worked

53

— Grow Big: Extensibility mechanisms attracted practitioners
— Play Nice: Reuse of RM-ODP concepts
— All relevant artifacts were available in the open; no restrictions

What Didn’t

— Start Small: Notational mapping and tool development worked OK, but
was not enough to “prime the pump” without semantics

— Incrementality: Level of funding and collaboration was not enough for
ambitious environment development; practitioners eventually fell back to
UML profile

— Not enough access to domain experts; not enough communication

An Atypical Project: Koala idotace

ICwmelogic

ICamelogic

* Complete marriage of architecture {H ﬂ
M

research and industrial practice —

* Spearheaded by Rob van Ommering
at Philips Electronics in Eindhoven,

Netherlands s S
* A form of model-driven architecture L o

— Models are both documentation and
implementation artifacts

— Each element of the model maps to some implementation construct

— Use of product-line techniques (explicit options, variants) in the
architecture to generate product architectures for a family of consumer
electronics devices

54

Why Does Koala Work so Well?

* Not a ‘collaboration,’ per se:
— Researcher(s) ARE the practitioner(s)

— Rob works at Philips but also attended academic conferences and was
getting his Ph.D. at the same time (advisor: Jan Bosch, who is now both
a professor and an architect at Intuit)

— Major cultural shift at the company toward horizontal thinking
— Straightforward to understand how the approach adds technical value

* Direct mapping to specific implementation techniques used to build
software for embedded devices

* Clear mapping between business goals and technical goals

— The business product line of consumer electronics is also a
technological product line

55

Another Atypical Project: AADL
The Architecture Analysis and Design Language

56

Society of Automotive Engineers (SAE) standard
— Key personnel are strong research/practice mix
— Extensive industry participation in the standardization process

A complex, domain-specific architecture description language
tailored for:

— Specifying both software and hardware/system elements

— Specifying systems with embedded or real-time constraints
Coordinate with UML through UML 2.0 profile

High-complexity but high-value

Supported by an open-source environment (OSATE) and several
novel analysis tools

Extensibility through a mechanism called “annexes” which add sub-
notations to the core

Diverse array of projects underway in different areas

Why is AADL so successful?

57

Big “human surface” between researchers/academia and
practitioners/industry

— Cross-cutting Key #C writ large

— Lots of communication bandwidth and buy-in

— The key personnel are also domain experts

Focus on a specific domain and set of problems

— Very much not a ‘least common denominator’ standard
“Enough” extensibility through annex mechanism

— Allows external participants, explorations into other domains slightly off
the critical path

Has hit “critical mass” so users are evangelizing in many places
— Multiple major funding streams now established

Strategies in the Classroom
How can we prepare students for industry collaborations?

* Teach students about common standards
— Make scope clear: what are they good for, what aren'’t they?

* ‘Capstone’ project courses that involve industry teams are very
useful

— Keys to success: keep practitioner expectations realistic; keep both
sides engaged with each other

* Increase focus on “reading,” not “writing”
— Few industry projects are ‘green field’ development
— Students/academics will inevitably be coming in ‘in medias res’

— Assignments that focus on architectural recovery, reading and
understanding standards or industrial specifications, etc.

* Use the classroom as an opportunity to network and ‘socialize’

— Invite practitioners to present (but give them time to get material
cleared!)

— Host one-day workshops and invite industry

58

Conclusions

59

Differing goals will always cause tension between academia and
Industry when collaborating

Successful collaborations can be achieved if goals are kept in mind
and expectations are realistic

Keys to success

— Start small

— Grow big

— Play nice

— Add value incrementally

Person-to-person communication, mutual understanding, and
evangelism is the backbone of collaboration

Successful collaboration is an art — train students early!

References

60

Material on standards adapted from Chapter 16 of Software Architecture:
Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and
Eric M. Dashofy; John Wiley & Sons, Inc., 2008.

Software Communications Architecture

— http://sca.jpeojtrs.mil/

Mission Data System

— http://mds.jpl.nasa.gov/public/index.shtml

— See also http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf

Consultative Committee for Space Data Systems (CCSDS) Reference Architecture
for Space Data Systems (RASDS)

— http://trs-new.|pl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf

The Koala Component Model for Consumer Electronics Software

— http://portal.acm.org/citation.cfm?id=621436

The SAE Architecture Analysis and Design Language (AADL) Standard

— http://www.aadl.info/

http://sca.jpeojtrs.mil/
http://mds.jpl.nasa.gov/public/index.shtml
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://portal.acm.org/citation.cfm?id=621436
http://www.aadl.info/

References (cont.)

* |EEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems -Description
— http://standards.ieee.org/reading/ieee/std _public/description/se/1471-2000_desc.html
* The Unified Modeling Language (UML)
— http://www.uml.org/
* The Department of Defense Architecture Framework (DoDAF)
— http://cio-nii.defense.gov/docs/DoDAF _volume_|.pdf
— http://cio-nii.defense.gov/docs/DoDAF_Volume Il.pdf
* SysML
— http://www.sysml.org/
* Reference Model of Open Distributed Processing (RM-ODP)
— http://www.rm-odp.net/

61

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://www.uml.org/
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://www.sysml.org/
http://www.rm-odp.net/
http://www.rm-odp.net/
http://www.rm-odp.net/

Backup Charts and Credits

Questions for Discussion

63

What collaboration stories do you have?

— What worked, and what didn’t for you?

— What were the “make it or break it” factors?

— What parts of the collaborations were the most frustrating?

How do researchers perceive industrial software architecture?
How do researchers perceive popular standards?

What are the biggest gaps in understanding between students,
researchers, and practitioners?

How can you find or cultivate industrial evangelists in projects?

Are there any good strategies for making the “proprietary info”
constraint easier to deal with?

How can designated academic/industry affiliates be used most
effectively?

Photo Credits

* By DanMS, based on a public-domain map; m
released under GFDL 5

* Image in the public domain; copyright
has expired

* Released under CC-BY-SA-2.5 license
by user Americasroof; it is incorporated
unmodified here and as such does not
create a new derivative work.

64

Photo Credits (continued)

65

Released under CC-BY-2.5 license
by user Xtrememachineuk

The SCA is a U.S. Government document
approved for unlimited distribution.

All UML, DoDAF, RM-ODP, SysML & Koala
diagrams from Software Architecture:
Foundations, Theory, and Practice;
Richard N. Taylor, Nenad Medvidovic,

and Eric M. Dashofy; © 2008 John Wiley

& Sons, Inc. Used with permission.

E
zs
) |-
32

Photo Credits (continued)

* Released under CC-Attribution
license by Thomas Duesing

* Released into the public domain
by user Booyabazooka

* Released into the public domain
because it is a NASA image

66

Photo Credits (continued)

* Used in accordance with JPL image use
policy. Image courtesy NASA/JPL-Caltech.

67

