
© The Aerospace Corporation 2010

University/Industry Collaborations:

Challenges and Strategies

for Success

Eric M. Dashofy

The Aerospace Corporation

ASEE&T 2010

March 12, 2010

2

Outline

• Advantages of university / industry collaborations in software

architecture

– As well as challenges

• Finding and achieving common goals

– Examples of software architecture in industry

• Diversion: standards and artifacts most often encountered

• Strategies for success

• Pitfalls and caveats

– Personal reflections on projects: what worked, what didn‟t

• Classroom strategies

3

A Historical Metaphor

• The golden spike joined the two halves of the transcontinental

railroad in Promontory, Utah in 1869

4

Why Collaborate?

• From Academic Perspective

– Validate and evaluate new approaches and techniques

– Gain insight about industry problems and domains

– Gain advocates and supporters for new approaches

• From Industry Perspective

– Evaluate new methods and techniques for solving their own problems

– (Occasionally) solve critical problems

– Increased knowledge of the cutting edge

• Also inspiration

• From both perspectives

– Funding opportunities

– Networking opportunities

5

Another Historical Metaphor

• The ―chunnel‖ (channel-tunnel) provides a way to travel under the

English Channel by rail.

Artist‟s Rendering of the Chunnel Effort

6

Key Challenges
Different Goals and Constraints

• University

– Create and disseminate

(publish) research results

– Do something new

– Invent novel approaches

– Create general solutions

– Teach students

– Softer deadlines

– More tolerant of risk of failure

– Disseminate results widely (e.g.,

At conferences, journals, on the

Internet)

• Industry

– Create products that satisfy

customer requirements

– Do something that works

– Use best practices

– Solve immediate problems

– Increase competitive advantage

– Harder deadlines

– Less tolerant of risk of failure

– Dissemination restricted (e.g.,

proprietary, classified)

7

Finding Common Ground

• Start Small

– Look for small opportunities to make a connection

– Researchers: Shouldn‟t expect practitioners to reorient their entire

operation around the latest ideas

– Practitioners: Shouldn‟t expect research ideas to be fully formed and

productized

• Prepare for growth

– Look for and develop approaches that facilitate incremental adoption

– Both parties should prepare to capitalize on successful efforts and be

thinking of longer-term collaborations

– Be proactive in looking for win-win funding opportunities

8

Finding Common Ground (cont.)

• Focus on integrating novel approaches with approaches and

technologies used in industry

• Perpetually look for research areas that satisfy common and

disparate goals

– Areas where there are important, open research questions

– Areas where (incremental) improvements will make an immediate

difference

– Areas where there‟s a lot of future potential

– Areas close to, but not necessarily on, the critical path

9

What can Architecture Research Offer Industry?

• In industry, design above the level of classes and modules occurs

– May not be principled or adequately supported

– Often, resulting artifacts are MS Office documents (MS Word,

PowerPoint)

• Lots of room for improvement

– Better ability to communicate (about) designs

• New visualizations, new models of systems

– Better ability to understand implications of designs and design decisions

early

– Better management of software evolution (both at development and run-

time)

– Better ability to understand and explore tradeoffs

– Better ability to understand the relationships between products (e.g.,

product-lines)

10

A Spectrum of ―Architecture‖

More Abstract,

More Social

More Concrete,

More Technical

People, processes

Formal Analysis,

Mapping to Code,

Tie to Lifecycle

Rigorous Models

Semi-rigorous

models

Quality Attributes and

Trade-offs

Social-Science

Projects

Technology-centric

Projects

Different kinds of projects at different points on the spectrum

11

A Spectrum of Projects

Projects with

Pedagogical Aims

Projects with

Research Aims

Different kinds of projects at different points on the spectrum

• Class projects (10-16 weeks?)

• Mostly undergrads (free!)

• Do not have to break new

ground

• Many teams may do same

assignment

• May have a desired outcome

(i.e., for grading)

• Research projects (longer)

• Mostly grad students (paid)

• Generally do have to break

new ground

• Duplication is unlikely

• Outcome unknown in advance

12

Examples of Potential Projects

Relationships horizontally: often related to scope and novelty

Pedagogical and Abstract

• Observe and evaluate design

meetings

• Evaluate quality trade-offs based

on documentation

• Tie architecture to business goals

Research and Abstract

• New techniques for gathering

stakeholder input

• New approach for evaluating

quality trade-offs

• Ethnography of software

architects and designers

Pedagogical and Technical

• (Re-)develop various

views/models of a system

• Given a realistic problem,

develop one or more designs

• Reverse-engineer architecture

from code

• Evaluate architectural artifacts

Research and Technical

• Develop novel views/models of a

system

• New approach for architectural

recovery

• New approach for modeling,

analysis, or simulation

• New approach for product-lines

13

Why is Doing Architecture Projects with Industry

Challenging?

• Proprietary Nature of Architectural Information

– Architectural information is high-value and practitioners want to protect it

– May also be under other restrictions (e.g., ITAR)

– May only be available inconveniently (e.g., at company site)

• With no network access for visitors

• Lack of Mature Architectural Practices in Industry

– Not everything may be documented

– Documents may be incomplete or evolving

– Documents may answer the wrong questions

• Complexity of Architecture

– Documents may be hundreds or thousands of pages

– “Big picture” may live in the heads of project team

14

Why is Doing Architecture Projects with Industry

Challenging? (cont.)

• Design is Hard to Access and Influence

– Practitioners generally skeptical of outsiders meddling in design

– Most of project lifecycle is not spent designing, but dealing with

ramifications of design

– Best way to understand design is to talk to designers

• Designers and ―big picture‖ people are often the most oversubscribed

• Architects doubly so

15

The State of Architecture in Industry

• Architecture is a clear focus in most big projects

– However, the state of that architecture varies

• Maturity tends to be ―medium rare‖

– Focus in lifecycle on architecture and design

– Development of (often extensive) documentation

– Prose and UML (often ambiguous) are dominant forms of models

– Rationale capture can be an issue

• Few projects that aren‘t doing anything about architecture

• Very few projects that are pioneering architecture approaches

maturity

project

count

16

What do you tend to see in industry architecture?

• Personnel

– Many implementers working on very specific portions of the project

– A few designers and “big picture” people

• Find by looking for the cubicles/offices with lines outside them

• Organizations

– Customer organizations (acquiring products)

– Developer organizations (developing products)

– Oversight organizations (oversee acquisition and development

17

What do you tend to see in industry architecture?

(cont.)

• Artifacts

– Often

• Design documents mostly separate from the system implementation

• Word documents containing many box-and-arrow diagrams

– A few diagrams may be very semantically-rich and well-thought-

out but these can be hard to find

• UML

– Some use of profiles and consistency rules across diagram types

– Sometimes

• Framework-compliant diagrams/documents (e.g., DoDAF, SysML,

RM-ODP)

• Decent simulators

– Rarely

• Artifacts with strong traceability / that are part of the implementation

• Rigorous or formal models

18

A Diversion: ―Industry Standard‖

• Standards and frameworks are huge drivers of:

– What kinds of artifacts get generated

– How architecture is conceived by various stakeholders

– Contract deliverables (sometimes)

• A quick tour through standards you‘re most likely to encounter

– IEEE 1471

– UML

– SysML

– DoDAF

– RM-ODP

19

IEEE 1471

• Recommended practice for architecture description

– Often mandated for use in government projects

• Scope is limited to architecture descriptions (as opposed to

processes, etc.)

• Useful as a starting point for thinking about architecture description

– Defines key terms

– Identifies the importance of stakeholders and advocates models that are

tailored to stakeholder needs

• Does not prescribe a particular notation for models

– Does prescribe a minimal amount of content that should be contained in

models

• Reasonable definitions of views and viewpoints

• Being compliant does not say much about quality

20

The Unified Modeling Language (UML)

• Fourteen (14) types of diagrams

– Addressing structural and behavioral aspects

• As a standard, primarily prescribes a syntax

• Some semantics with purposeful ambiguity

– Also some implicit and explicit consistency rules across diagrams

• Encourages specialization of the standard through the use of profiles

– Profiles are “mini-standards”

– Profiles can customize existing diagrams but cannot define new ones

21

SysML

• An extended version of UML

• Developed by a large consortium of organizations (mainly large

system integrators and developers)

• Intended to mitigate UML‘s ―software bias‖

• SysML developers found UML insufficient

– Initially decided profiles were not enough to resolve this

– Developed new diagram types to capture system-engineering specific

views

– Limited momentum among tool vendors; focus shifting to more heavily

use UML profiles

22

SysML

SysML

Requirement

Diagram

SysML

Parametric

Diagram

23

Department of Defense Architecture Framework

• DoDAF, evolved from C4ISR

– Has some other international analogs (MoDAF)

– „Framework‟ here refers to a process or set of viewpoints that should be

used in capturing an architecture

• Not necessarily an architecture implementation framework

• Identifies specific viewpoints that should be captured

– Includes what kinds of information should be captured

– Does not prescribe a particular notation for doing the capture

• Some vocabulary inconsistency with, e.g., IEEE 1471

Concept Common Term DoDAF Term

A set of perspectives from which descriptions are developed Viewpoint set View

Perspective from which descriptions are developed Viewpoint (Kind of) Product

Artifact describing a system from a particular perspective View Product

24

Department of Defense Architecture Framework (cont.)

• Three views (common: viewpoint sets)

– Operational View (OV)

• ―Identifies what needs to be accomplished, and who does it‖

• Defines processes and activities, the operational elements that

participate in those activities, and the information exchanges that

occur between the elements

– Systems View (SV)

• Describe the systems that provide or support operational functions

and the interconnections between them

• Systems in SV associated with elements in OV

– Technical Standards View (TV)

• Identify standards, (engineering) guidelines, rules, conventions, and

other documents

– Cross-cutting products – „All Views‟ (AV)

• E.g., dictionary/glossary of terms

25

DoDAF OV-1 Product
“High-Level Operational Concept Graphic”

26

DoDAF OV-4 Product
“Organizational Relationships”

27

DoDAF SV-1 Product
“Systems Interface Description”

Note implied correspondence

with OV-1 entities

28

DoDAF SV-3 Product
“Systems-Systems Matrix”

• Note correspondence with SV-1

• One of several “N2”/matrix diagrams in DoDAF

29

DoDAF TV-1 Product
“Technical Standards Profile”

• Somewhat non-traditional for an architecture view

30

RM-ODP

• Another standard for viewpoints, similar to DoDAF but more limited

in scope; resemble DoDAF SV

– Prescribes 5 viewpoints for distributed systems

Engineering

view

Enterprise View

31

Diversion: Takeaways

• These standards tend to be abstract and do not provide specific

design guidance

– Provide specific guidance about what to capture, but not how to capture

it

– Diagrammatic notations improve communications

• But generally need additional prose documentation for semantics

– Consistency across views is generally an exercise for the user

• Additional standards

– Standard tools (Rose, Rhapsody, System Architect)

– Analysis and Evaluation Approaches (ATAM)

– Process and documentation standards (ISO 9000; CMM/CMMI)

32

Strategies, Caveats, and Personal Reflections

• Given all these constraints, the interests of architecture research,

and the state of architecture in industry, what can we do to make

collaborative projects successful?

– And what are some things to watch out for?

• Four key strategies

• A few example projects

– What worked, what didn‟t, and why?

33

Key #1: Start Small
Academic/Research Perspective

• All-or-nothing solutions are hard to adopt

– Industrial partners will work in an environment where they are highly

constrained by numerous factors

• Contractual obligations, momentum, skill mix, corporate culture

• For any new

approach, a

step-by-step

adoption

plan is

critical to

success

XML

Structural Modeling

Type System

CM
Concepts

Implementation
Mapping

Syntax-directed
Tools

Semantics-based Tools

In
c
re

a
s
e
d
 A

d
o
p
ti
o
n

34

Key #1: Start Small
Industry Perspective

• All-or-nothing problem domains are hard to learn and get involved

with

• Applying new technologies or techniques to complete, huge

systems over multiple dimensions is infeasible

• The full details of huge systems are often proprietary

35

Key #2: Grow Big with Extensibility
Academic/Research Perspective

• Many projects are not built with a plan for extensibility in mind

• Extensibility mechanisms are difficult to ―bolt on‖—they must be

―built in‖

• Extensibility is especially helpful in industry collaborations to adapt

to project-specific needs or incorporate project-specific components

• Architects should focus on extensibility naturally

Design-time
Modeling

Run-Time Modeling Product Families

Implementation
Mappings

(Future Expansions)

36

Key #3: Play Nice with Other Kids

• Academic/Research Perspective

– Generally a goal to find deficiencies in existing technologies

and techniques and remedy them

– Compromise between building a better

mousetrap and adapting an existing one

• Industry Perspective

– Will continue using off-the-shelf

technologies, but should be open to

augmenting them with research

– With the understanding that research

techniques and tools (especially)

will not have evolved to the point

of some of these well-seated

standards

37

Key #4: Incremental Value

• The ideal area is one that

– Contains lots of interesting, “big” research questions

– Is valuable to practitioners in the short-term

– Is important to practitioners in the long-term

– Provides incremental opportunities for success

• Look for problems that

– Can be understood by students/researchers with a modicum of effort

– Align with research interests of students and have identifiable research

questions

• Are suitable for inclusion in the ―evaluation‖ section of a paper/thesis

– Are nearby, but not necessarily on, the critical path

– Provide an obvious “value-add” story for the practitioners

• Establish periodic milestones with incremental value at each

38

Key #C: The Cross-Cutting Key

• Collaborations are ultimately about people

• Ultimately there needs to be a point of contact/primary person

responsible for the collaboration on both sides

– Academic side

• Primary person responsible is likely a professor

• POC may be a professor or student project lead

– Industry side

• Primary person responsible must be an evangelist for the

collaboration

– Often a „tech fellow‟ or similar

• POC may be a member of the project on the industry side

39

A Typical Project: Software-Defined Radio

• Large industrial project to develop a software-defined radio

• A general-purpose platform for digital communications

that can be configured for different applications

using software

Backplane

SBC / 1 Channel

DSP

FPGA
Black
Side
GPP

Crypto

Red
Side
GPP

Audio
Control

Black Side GPP

Crypto

Red Side GPP

Proc1 Proc2

Crypto Alg 1

Audio

Proc

Video

Proc METAC

Proc

Packet

Proc

40

Software-Defined Radio Project

• Governing specification was the Software Communications

Architecture (SCA)

– http://sca.jpeojtrs.mil/

• How architectural is the SCA?

– Based on CORBA and POSIX

standards

– Primarily defines APIs (CORBA IDL

interfaces) that are found in common

components

• Filesystem, resource manager,

device driver, application main

component…

– Does not provide specific guidance

for how to define or connect components

to make a software-defined radio

http://sca.jpeojtrs.mil/

41

Software Defined Radio Project: Artifacts

• Many Word and PowerPoint documents with diagrams

• Some UML

• SCA ―Appendix D‖-compliant XML files

– These define

• Components in operating environment or waveform

• How they are implemented, and

• How they are connected

– But

• Deployment of components on hosts is often ill-specified

• Built by hand

• Lack of visualizations

• Lack of ability to analyze for even simple correctness

• They were doing architecture but saw it as implementation

42

First Collaborative Project

• Translate ―SCA Appendix D‖ Domain Profiles to an ADL

• Use ADL-translated descriptions for visualization and analysis

Waveform
Descriptions

(XML)

Hardware
Descriptions

(XML)

T
ra

n
sl

a
to

r
T
o
o
l

ADL Description

43

First Collaborative Project

• Translate ―SCA Appendix D‖ Domain Profiles to an ADL

• Use ADL-translated descriptions for visualization and analysis

Waveform
Descriptions

(XML)

Hardware
Descriptions

(XML)

T
ra

n
sl

a
to

r
T
o
o
l

Node 1

Node 2

ADL Description

Device1

Device2

Device3

Device4

44

First Collaborative Project

• Translate ―SCA Appendix D‖ Domain Profiles to an ADL

• Use ADL-translated descriptions for visualization and analysis

Waveform
Descriptions

(XML)

Hardware
Descriptions

(XML)

T
ra

n
sl

a
to

r
T
o
o
l

Node 1

Node 2

ADL Description

Device1

Device2

Device3

Device4

Comp2

Comp4

Comp1

Comp3

45

First Collaborative Project

• Translate ―SCA Appendix D‖ Domain Profiles to an ADL

• Use ADL-translated descriptions for visualization and analysis

46

Evaluation of First Collaboration

• What Worked

– Start Small: start with basic structural modeling; ignore temporal

aspects and behavior for now

– Grow Big: needed to add support for “Appendix D” files to ADL

– Play Nice: Translator tool took advantage of ADL libraries, but also

integrated ADL with existing project standard

– Incrementality: Provided additional views that added value but were off

the critical path

– Found reference model to work on open data offsite

– Fostered use on another project by practitioners exclusively

• What Didn‘t

– Lots of uncertainty at the beginning before finding the problem

– Strict constraint: can‟t “fix” practitioner files, must process with errors if

possible

– Practitioner-only project had much more limited data exchange possible

47

Second Collaborative Project

• Practitioner had little insight into temporal aspects of system

– Not all components are present at all times

– Map statecharts to configurations using product-line tools

Init

Load

OE

Load

Drivers

Load

Waveform

(…)

(…)

48

Evaluation of Second Collaboration

• What Worked

– Start Small: Use basis from first collaboration and add on

– Grow Big: Incorporate statecharts and product-line capabilities

– Play Nice: Still use “Appendix D” files; incorporate UML statecharts

– Incrementality: Provided more views that added value but were off the

critical path

• What Didn‘t

– Basic statecharts got reimplemented in the ADL‟s environment rather

than incorporating off-the-shelf models

– Results (in both this and first collaboration) were primarily used as

additional documentation artifacts

49

Evaluation of SDR Project

• Value for Academia

– Got to evaluate ADL and tool set in real-world domain

– Increased knowledge about a new domain

• Value for Industry

– Generated first graphical visualizations of configurations

• Provide ―visceral insight‖ into configurations

– Generated novel temporal views that inspired some reconsideration on

designers‟ part

– Enumerated errors and inconsistencies in configurations

– Learn about new techniques

50

Another Project: Mission Data System

• Practitioners defining an architectural style and model-driven

approach that tied architectural models to implementation

• Wanted to use research ADL as the basis for models

• Generated lots of interesting discussion but no full collaboration

– No funding match ever made

– Proprietary info

constraints made

informal collaboration

difficult

– Practitioners incorporated

concepts/ideas but did not

adopt technology

51

Evaluation of Mission Data System Collaboration

• What Worked

– Start Small: Focus on structural modeling for one particular domain

– Grow Big: Extensibility mechanisms attracted practitioners

– Willingness of both sides to informally collaborate without a specific

mandate

• Required some extra flexibility on practitioner side

• What Didn‘t

– Play Nice: Possibly too much novel technology here

– Incrementality: Project would have been on the critical path; likely even

with funding would have been difficult for it to keep pace with practitioner

needs

– Artifacts being generated by practitioner were considered “proprietary;”

without funded mandate it was difficult for researchers to get access or

publish about them

52

Third Project: Tools for Reference Architecture for

Space Data System (RASDS)

• Practitioners defining a domain-specific modeling notation for space

data systems based on RM-ODP

• Wanted a toolset for modeling, visualization, and analysis

• Capabilities matched research environment well

– Various types of components and connectors, links, hierarchical

composition

• Sticking point: what should the semantics be?

– Researchers thought practitioners should define and vice-versa

N1 N2

53

Evaluation of Mission Data System Collaboration

• What Worked

– Grow Big: Extensibility mechanisms attracted practitioners

– Play Nice: Reuse of RM-ODP concepts

– All relevant artifacts were available in the open; no restrictions

• What Didn‘t

– Start Small: Notational mapping and tool development worked OK, but

was not enough to “prime the pump” without semantics

– Incrementality: Level of funding and collaboration was not enough for

ambitious environment development; practitioners eventually fell back to

UML profile

– Not enough access to domain experts; not enough communication

54

An Atypical Project: Koala

• Complete marriage of architecture

research and industrial practice

• Spearheaded by Rob van Ommering

at Philips Electronics in Eindhoven,

Netherlands

• A form of model-driven architecture

– Models are both documentation and

implementation artifacts

– Each element of the model maps to some implementation construct

– Use of product-line techniques (explicit options, variants) in the

architecture to generate product architectures for a family of consumer

electronics devices

55

Why Does Koala Work so Well?

• Not a ‗collaboration,‘ per se:

– Researcher(s) ARE the practitioner(s)

– Rob works at Philips but also attended academic conferences and was

getting his Ph.D. at the same time (advisor: Jan Bosch, who is now both

a professor and an architect at Intuit)

– Major cultural shift at the company toward horizontal thinking

– Straightforward to understand how the approach adds technical value

• Direct mapping to specific implementation techniques used to build

software for embedded devices

• Clear mapping between business goals and technical goals

– The business product line of consumer electronics is also a

technological product line

56

Another Atypical Project: AADL

• Society of Automotive Engineers (SAE) standard

– Key personnel are strong research/practice mix

– Extensive industry participation in the standardization process

• A complex, domain-specific architecture description language

tailored for:

– Specifying both software and hardware/system elements

– Specifying systems with embedded or real-time constraints

• Coordinate with UML through UML 2.0 profile

• High-complexity but high-value

• Supported by an open-source environment (OSATE) and several

novel analysis tools

• Extensibility through a mechanism called ―annexes‖ which add sub-

notations to the core

• Diverse array of projects underway in different areas

The Architecture Analysis and Design Language

57

Why is AADL so successful?

• Big ―human surface‖ between researchers/academia and

practitioners/industry

– Cross-cutting Key #C writ large

– Lots of communication bandwidth and buy-in

– The key personnel are also domain experts

• Focus on a specific domain and set of problems

– Very much not a „least common denominator‟ standard

• ―Enough‖ extensibility through annex mechanism

– Allows external participants, explorations into other domains slightly off

the critical path

• Has hit ―critical mass‖ so users are evangelizing in many places

– Multiple major funding streams now established

58

Strategies in the Classroom

• Teach students about common standards

– Make scope clear: what are they good for, what aren‟t they?

• ‗Capstone‘ project courses that involve industry teams are very

useful

– Keys to success: keep practitioner expectations realistic; keep both

sides engaged with each other

• Increase focus on ―reading,‖ not ―writing‖

– Few industry projects are „green field‟ development

– Students/academics will inevitably be coming in „in medias res‟

– Assignments that focus on architectural recovery, reading and

understanding standards or industrial specifications, etc.

• Use the classroom as an opportunity to network and ‗socialize‘

– Invite practitioners to present (but give them time to get material

cleared!)

– Host one-day workshops and invite industry

How can we prepare students for industry collaborations?

59

Conclusions

• Differing goals will always cause tension between academia and

industry when collaborating

• Successful collaborations can be achieved if goals are kept in mind

and expectations are realistic

• Keys to success

– Start small

– Grow big

– Play nice

– Add value incrementally

• Person-to-person communication, mutual understanding, and

evangelism is the backbone of collaboration

• Successful collaboration is an art – train students early!

60

References

• Material on standards adapted from Chapter 16 of Software Architecture:

Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and

Eric M. Dashofy; John Wiley & Sons, Inc., 2008.

• Software Communications Architecture

– http://sca.jpeojtrs.mil/

• Mission Data System

– http://mds.jpl.nasa.gov/public/index.shtml

– See also http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf

• Consultative Committee for Space Data Systems (CCSDS) Reference Architecture

for Space Data Systems (RASDS)

– http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf

• The Koala Component Model for Consumer Electronics Software

– http://portal.acm.org/citation.cfm?id=621436

• The SAE Architecture Analysis and Design Language (AADL) Standard

– http://www.aadl.info/

http://sca.jpeojtrs.mil/
http://mds.jpl.nasa.gov/public/index.shtml
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8580/1/02-1118.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/7485/1/03-1372.pdf
http://portal.acm.org/citation.cfm?id=621436
http://www.aadl.info/

61

References (cont.)

• IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems -Description

– http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

• The Unified Modeling Language (UML)

– http://www.uml.org/

• The Department of Defense Architecture Framework (DoDAF)

– http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf

– http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf

• SysML

– http://www.sysml.org/

• Reference Model of Open Distributed Processing (RM-ODP)

– http://www.rm-odp.net/

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://www.uml.org/
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_volume_I.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://cio-nii.defense.gov/docs/DoDAF_Volume_II.pdf
http://www.sysml.org/
http://www.rm-odp.net/
http://www.rm-odp.net/
http://www.rm-odp.net/

62

Backup Charts and Credits

63

Questions for Discussion

• What collaboration stories do you have?

– What worked, and what didn‟t for you?

– What were the “make it or break it” factors?

– What parts of the collaborations were the most frustrating?

• How do researchers perceive industrial software architecture?

• How do researchers perceive popular standards?

• What are the biggest gaps in understanding between students,

researchers, and practitioners?

• How can you find or cultivate industrial evangelists in projects?

• Are there any good strategies for making the ―proprietary info‖

constraint easier to deal with?

• How can designated academic/industry affiliates be used most

effectively?

64

Photo Credits

• By DanMS, based on a public-domain map;

released under GFDL

• Image in the public domain; copyright

has expired

• Released under CC-BY-SA-2.5 license

by user Americasroof; it is incorporated

unmodified here and as such does not

create a new derivative work.

65

Photo Credits (continued)

• Released under CC-BY-2.5 license

by user Xtrememachineuk

• The SCA is a U.S. Government document

approved for unlimited distribution.

• All UML, DoDAF, RM-ODP, SysML & Koala

diagrams from Software Architecture:

Foundations, Theory, and Practice;

Richard N. Taylor, Nenad Medvidovic,

and Eric M. Dashofy; © 2008 John Wiley

& Sons, Inc. Used with permission.

66

Photo Credits (continued)

• Released under CC-Attribution

license by Thomas Duesing

• Released into the public domain

by user Booyabazooka

• Released into the public domain

because it is a NASA image

67

Photo Credits (continued)

• Used in accordance with JPL image use

policy. Image courtesy NASA/JPL-Caltech.

