UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE

BENG (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

GROUND AND WATER STUDIES 2

MODULE NO: CIE5005

Date: Tuesday 28th May 2019 Time: 10.00am - 1.00pm

INSTRUCTIONS TO CANDIDATES:

There are SIX questions on this paper.

Answer ANY FIVE questions.

Answer SECTION A and SECTION B on separate answer books.

All questions carry equal marks. Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet/supplementary information is provided at the end of each section or along with it.

Graph paper will be provided in the examination hall.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

SECTION A

Question 1

Consolidated drained triaxial tests were carried out on three identical specimens (each 38mm diameter and 76mm long) of the same soil sample (saturated clay) and the following data was recorded as shown in Table 1

Table 1

Specimen		1	2	3
Cell Pressure	(kPa)	100	200	400
Ultimate Axial Load	(kN)	0.168	0.344	0.696
Change in length	(mm)	1)	
During consolidation,	ΔHc	0.73	1.77	2.82
During axial loading,	ΔНа	9.38	12.24	15.38
Change in Volume	(ml)	7		
During consolidation,	ΔVc	2.48	6.02	9.90
During axial loading,	ΔVa	5.93	6.05	6.07

Using the Mohr-Coulomb failure criterion, determine the **drained shear strength** parameters.

Note:

- (i) To draw the Mohr circle, use the graph paper provided.
- (ii) The cross sectional area at failure,

$$A = A_0 \frac{1 - \left(\frac{\Delta V}{V_0}\right)}{1 - \left(\frac{\Delta h}{h_0}\right)}$$

Total 20 marks

Please turn the page

Question 2

- (a) A flexible raft foundation of length 36m and breadth 12m imposes a contact pressure of 155kN/m² on the surface of the foundation soil. Determine the vertical stress at a depth of 12m:
 - i. Below one corner of the foundation
 - ii. Below the centre of the foundation.

(8 marks)

Question 2 is continued over to the next page

Please turn the page

Question 2 continued.

- (b) A sediment settling lagoon has a depth of water of 4m above the saturated sand base. The sand layer is 3m thick and this overlies 5m thick clay, which in turn overlies impermeable rock as shown in **Figure Q2(b)**.
 - i. Calculate the effective stress, pore water pressure and total stress at each layer and sketch the stress profiles with respect to the depth.
 - ii. Calculate the total stress and effective stress after draining the lagoon and the water table remains <u>at</u> the surface of the soil. Comment on how the depth of water above the soil affects the effective stress of soil.

Figure Q2(b)

Total 20 marks

END OF SECTION A

Please turn the page for Section B

Please turn the page

SECTION B

Question 3

(a) State the basic hydraulic principles which apply in water network analysis.

(4 marks)

- (b) A pipe network System A is shown below in **Figure Q3**. Water flows from reservoir A to two service reservoirs B and C as shown. Using the information given in **Table Q3-1**,
 - i. Make a sensible first estimate for the head at the pipe junction J in the given system. Briefly explain the reasons for your selections.

(2 marks)

ii. Using Flow balancing method, ascertain a first estimate of the level of error in your initial assumption using Table Q3-2. Explain how you have determined the errors.

(12 marks)

iii. Determine the correction factor for pipe junction height and the new head at the pipe junction.

(2 marks)

Candidates should complete **Table Q3-2 provided** on page 12 and hand in with the answer. HRS tables are provided.

Figure Q3. Pipe Network system A

Question 3 is continued over to the next page

Please turn the page

Question 3 continued.

Table Q3-1

Reservoir	Pipe	Diameter	Length (m)	Ks(mm)	Water
		(mm)	·		Level
					AOD (m)
Α	A - J	300	800	0.03	200
В	B-J	250	1000	0.03	175
С	C - J	150	400	0.03	185

Total 20 marks

Question 4

- (a) Explain what is meant by the term "separate sewerage system" and outline its operational benefits and drawbacks as compared to other sewerage systems.

 (5 marks)
- (b) Details of an existing surface water drainage system are given in Table Q4-1. Using the Rational Method of design, check the suitability of the drainage design and select a suitable pipe diameter for pipe 1.2. Use Table Q4-2 on page 13. The rainfall return period is 1 in 10 years, the time of entry is 5.0 minutes and the pipe roughness k_s is 1.5mm.Rainfall Table and HRS tables are provided. (15 marks)

Table Q4-1

Pipe Ref No	Pipe	Pipe	Imp.	Pipe
	Length, L	gradient	Area	dia.
	(m)	(1 in)	(ha)	(mm)
1.00	50	56	0.025	100
1.01	60	105	0.20	250
2.00	125	83	0.04	125

1 02	75	125	0.08	
1.02	75	123	0.06	

Total 20 marks

Please turn the Page

Question 5

- (a) Water flows from reservoir A to reservoir B through a 300 mm dia, 2500 m long pipe and λ = 0.02.
 - i. Calculate the discharge through the pipe if the top water level in the reservoir A is 400.0m AOD and level at Reservoir B is 335.0m AOD.

(5 marks)

- ii. If the discharge is to be increased to 250 litres/s, what will be diameter of a parallel pipeline of length 1500m to be provided to accommodate the flow if the frictional head loss remains the same? Take λ = 0.02 for both pipes. Neglect all minor losses. (10 marks)
- (b) A 200mm diameter sewer ($k_s = 0.03$ mm) is required to deliver 0.045m 3 /s from a residential area. Determine the minimum gradient at which the sewer should be laid for it not to be surcharged. Comment on the velocity of flow for the same (**HRS Tables is provided.**) (5 marks)

Total 20 marks

Question 6

- (a) An old water main, having a k_s value of 1.5mm, has a diameter of 150mm and is 800m in length with a flow rate of 27 litres/sec. Find the value of friction factor using Barr's Equation. Also determine the difference in the pipe levels at the inlet and outlet, if the pressure recorded at the inlet is 2.5 bar and the pressure recorded at the outlet is 1.851 bar. Take the coefficient of dynamic viscosity μ for water as 1.14 x 10⁻³ kg/ms. (13 marks)
- (b) With the aid of sketches explain what is meant by the laminar sub-layer and

Page 8 of 14

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Semester 2 Examination 2018/2019 Ground and Water Studies 2 Module No. CIE5005

and how it varies with Reynolds Number. Use suitable diagrams and equations to support your findings. (7 marks)

Total 20 marks

END OF QUESTIONS

Please turn the page for supplementary information for SECTION B

Please turn the page

Formulae Sheet

$$h_f = S_0.L$$

$$\Delta H = \frac{2\Delta Q}{\sum_{h_f} Q/h_f}$$

$$z_1 + \frac{v_1^2}{2g} + \frac{P_1}{\rho g} = z_2 + \frac{v_2^2}{2g} + \frac{P_2}{\rho g} + h_f$$

$$Q = AV$$

$$h_f = \frac{\lambda L Q^2}{12.1.d^5} = \frac{\lambda L v^2}{2gd}$$

$$R_e = \frac{\rho v D}{\mu} = \frac{v D}{v}$$

$$\upsilon = \frac{\mu}{\rho}$$

$$\frac{1}{\sqrt{\lambda}} = -2\log\left[\frac{k_s}{3.7d} + \frac{5.1286}{R_e^{0.89}}\right]$$

$$Q = 2.78.A_p.i$$

Supplementary information continued over the page.

Please turn the page

Supplementary information continued.

Page 10 of 14

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Semester 2 Examination 2018/2019 Ground and Water Studies 2 Module No. CIE5005

TABLE 7

Rates of Rainfall in mm/h for a range of duration and return period for a specified location in the United Kingdom National Grid Reference 4833E 1633N

RETURN PERIOD (YEARS) 100 DURATION 10 20 50 120.5 138.3 158 187 213 93.4 20 MINS 25.6 130.4 177 B7.5 113.4 2.5 MINS 76.5 SUMINS 66.3 107.2 123.4 141 168 192 82.3 3.5 MINS 62.B 77.8 101.7 117.3 135 161 184 128 154 176 4.0 MINS 69.6 73.8 96.B 111B 127 73.1 95.9 110.8 152 69.1 4.1 MINS 42 MINS 68.5 95.0 109.8 151 173 72.3 4.3 MINS 57.9 71.6 94.1 108.8 125 150 172 149 170 93.2 92.4 **4.4 MINS** 57.4 71.0 107.9 124 106.9 123 148 4.5 MINS 4.6 MINS 66.9 70.3 66.3 106.0 122 146 168 69.6 91.6 °69.0 8.08 105.1 121 145 166 4.7 MINS 65.8 165 144 4.8 MINS 55.3 68.3 90.0 1042 120 103.4 143 119 164 4.9 MINS 54.8 67.7 89.2 142 163 88.5 102.5 5.0 MINS 54.3 67.1 141 162 160 53.9 101.7 117 5.1 MINS 66.5 87.7 116 5.2 MINS 63.4 65.9 87.0 100.9 100.1 139 159 115 5.3 MINS 53.0 65.4 86.3 138 158 64.B 85.6 5.4 MINS 52.5 5.5 MINS 52.1 64.3 84.9 98.5 114 137 157 5.6 MINS 51.7 63.7 84.2 83.5 97.B 113 136 156 97.0 135 155 5.7 MINS 512 63.2 112 62.7 82.9 96.3 134 154 50.8 5.8 MINS S.9 MINS 50.4 62.2 82.3 95.6 110 133 153 132 6.0 MINS 50.0 61.7 **B1.6** 94.9 110 152 93.5 150 108 130 6.2 MINS 49.3 60.7 80.4 79.2 59.B 92.2 107 48.5 64 MINS 202 105 127 146 6.6 MINS 47.B 58.9 6.8 MINS 47.1 58.0 77.0 89.6 104 125 144 102 124 143 57.2 56.4 88.4 7.0 MINS 46.4 75 9 101 122 141 87.3 7.2 MINS 45.B 74.9 55.6 739 139 7.4 MINS 45.2 7.6 MINS 44.5 54.B 85.0 119 138 7.8 MINS 44.0 64.1 71,9 84.0 97 118 136 82.9 96 53.4 52.7 71.0 117 135 8.0 MINS 43.4 81.9 95 115 133 42B 70.1 8.2 MINS B.4 MINS 52.0 114 132 42.3 69.3 41.8 51.4 68.4 80.0 83 113 131 8.6 MINS 92 112 110 SAIM &8 41.2 50.7 67.6 79.1 129 91 66.8 78.2 128 9.0 MINS 9.2 MINS 50.1 40.B 49.5 77.3 109 40.3 66.0 9.4 MINS 39,9 49.0 65.3 76.4 89 108 125 9.6 MINS 39.4 48.4 64.6 75.6 88 107 124 106 SAIM & 8 39 0 47.9 63.8 748 87 123 86 121 47.4 63.1 74.0 105 38.6 46.1 72.1 102 10.5 MINS 37.6 11.0 MINS 36.7 44,9 59.9 70.2 82 100 116 80 43.8 58.4 68.5 97 11.5 MINS 35.B 42.8 78 111 12.0 MINS 35.0 57.0 66.9 12.5 MINS 41 B 55.7 65.4 76 93 108 34.2 54.4 53.3 75 73 **91 8**9 13.0 MINS 33.4 40.B 64.0 106 62.6 39.9 104 13.5 MINS 32.7 32.0 72 39.1 52.1 61.3 102 14.0 MINS 31.4 38.3 51.0 60.0 70 86 100 14.5 MINS **6**9 15.0 MINS 30.8 37.5 50.0 58 B 84 98 56.6 81 94 36.1 48.1 16.0 MINS 29.6 34.B 46.3 64 28.6 78 17.0 MINS 18.0 MINS 33.5 44.7 52.7 62 76 88 27.6 201M 0.81 26.7 32.4 432 610 60 73 85 20.0 MINS 25.9 31.4 41B 49.3

Please turn the page

Supplementary information continued.

Page 11 of 14

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Semester 2 Examination 2018/2019 Ground and Water Studies 2 Module No. CIE5005

> 3 continued

ks = 0.030 mm i = 0.004 to 0.1ie hydraulic gradient =

1 in 250 to 1 in 10

Water (or sewage) at 15°C full bore conditions. velocities in m/s discharges in l/s

radient	Pipe 50	diameters 75	in mm : 80	100	125	150	175	200	225	250	275	300
0.00400 1/ 250	0.372	0.494	0.516	0.601	0.699 8.578	0.790 13.952	0.874	0.955	1,031	1.104	1.175 69.782	1.243
0.00420 1/ 238	0.382	0.507	0.530	0.618 4.851	0.718 8.811	0.811	0.898	0.980 30.798	1.059	1.134 55.661	1.206 71.639	1.276
0.00440 1/ 227	0.392	0.521	0.544	0.634	0.736 9.038	0.832 14.697	0.921	1.005 31.584	1.086 43.170	1.163 57.074	1.237 73.454	1.308
0.00460 1/ 217	0.402	0.534 2.357	0.558	0.649 5.100	0.755 9.260	0.852 15.057	0.943	1.030 32.353	1.112	1.191 58.457	1.267 75.230	1.340
0.00480 1/ 208	0.412	0.546	0.571 2.870	0.665 5.221	0.772 9.478	0.872 15.410	0.965 23.222	1.054 33.107	1.138 45.246	1.218 59.812	1.296 76.970	1.37
0.00500 1/ 200	0.421	0.559 2.469	0.584 2.936	0.680 5.339	0.790 9.692	0.892 15.756	0.987 23.742	1.077 33.845	1.163 46.253	1.246 61.140	1.325 78.675	1.40° 99.02
0.00550 1/ 182	0.445	0.589 2.602	0.616 3.095	0.716 5.626	0.832 10.210	0.939 16.594	1.039	1.134 35.633	1.225 48.689	1.311	1.394 82.802	1.474
0.00600 1/ 167	0.467	0.618	0.646	0.751 5.901	0.872 10.706	0.984 17.397	1.089	1.189 37.345	1.283 51.023	1.374 67.431	1.461 86.753	1.544
0.00650 1/ 154	0.488	0.646 2.854	0.675 3.393	0.785 6.165	0.911 11.183	1.028 18.168	1.138 27.363	1.241 38.991	1.340 53.265	1.434 70.388	1.525 90.550	1.612
0.00700 1/ 143	0.509	0.673 2.973	0.703 3.534	0.817 6.420	0.949	1.070 18.913	1.184 28.479	1.292 40.578	1.394 55.427	1.492 73.238	1.586 94.210	1.677
0.00750 1/ 133	0.529	0.699	0.730 3.671	0.849 6.667	0.985 12.088	1.111 19.632	1.229	1.340 42.111	1.447 57.517	1.548 75.992	1.646 97.746	1.740
0.00800 1/ 125	0.548	0.724 3.200	0.757 3.803	0.879 6.906	1.020 12.519	1.150 20.329	1.272 30.605	1.388 43.596	1.497 59.540	1.602 78.660	1.703 101.170	1.80
0.00850 1/ 118	0.567	0.749 3.308	0.782 3.932	0.909 7.138	1.054 12.938	1.189 21.006	1.315 31.620	1.434 45.038	1.547 61.504	1.655 81.249	1.759 104.493	1.860
0.00900	0.585	0.773 3.413	0.807 4.057	0.938 7.364	1.087 13.345	1.226	1.356	1.478	1.595 63.414	1.706 83.766	1.814	1.91
0.00950 1/ 105	0.603	0.796 3.516	0.831 4.179	0.966 7.584	1.120 13.741	1.262 22.305	1.396 33.568	1.522 47.805	1.642 65.273	1.756 86.217	1.867 110.869	1.97
0.01000	0.620	0.819 3.616	0.855 4.298	0.993 7.799	1.151 14.128	1.298 22.930	1.435 34.506	1.564 49.136	1.687 67.086	1.805 88.606	1.918 113.936	2.02
0.01100	0.654	0.862 3.810	0.901 4.528	1.046	1.212 14.875	1.366 24.137	1.510 36.316	1.646 51.706	1.775 70.586	1.899 93.218	2.018 119.855	2.13
0.01200 1/ 83	0.686	0.904 3.996	0.945 4.748	1.096 8.611	1.270 15.590	1.431 25.293	1.582 38.049	1.724 54.166	1.860 73.935	1.989 97.632	2.113 125.519	2.23
0.01300 1/ 77	0.717	0.945 4.174	0.987 4.960	1.145 8.993	1.326 16.278	1.494 26.403	1.651 39.714	1.799 56.529	1.940 77.153	2.075 101.872	2.205 130.959	2.33
0.01400 1/ 71	0.747	0.984 4.346	1.027 5.164	1.192 9.361	1.380 16.940	1.555 27.474	1.718 41.318	1.872 58.807	2.018 80.254	2.159 105.957	2.293 136.201	2.42 171.25
0.01500 1/ 67	0.776	1.022 4.513	1.067 5.361	1.237 9.717	1.433 17.581	1.613 28.508	1.782 42.869	1.942 61.007	2.094 83.249	2.239 109.903	2.378 141.264	2.513 177.61
0.01600	0.804	1.058 4.674	1.105 5.553	1.281	1.483 18.201	1.670 29.510	1.845 44.370	2.010 63.138	2.167 86.149	2.317 113.724	2.461 146.165	2.60
0.01700 1/ 59	0.831	1.093 4.831	1.142 5.738	1.324 10.396	1.532 18.804	1.725 30.483	1.905 45.827	2.076 65.205	2.237 88.963	2.392 117.430	2.541 150.920	2.684 189.73
0.01800 1/ 56	0.858	1.128 4.983	1.178 5.919	1.365 10.721	1.580 19.389	1.778 31.428	1.964 47.243	2.140 67.214	2.306 91.698	2.466 121.033	2.619 155.541	2.76 195.53
0.01900 1/ 53	0.883	1.162 5.131	1.213 6.095	1.405 11.038	1.626 19.959	1.831 32.348	2.021 48.622	2.202 69.171	2.373 94.360	2.537 124.539	2.694 160.039	2.84
	Coeff	icient for	part-f	ull pip	es:			jë				
	35	50	60	70	90	110	130	150	150	200	200	20

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Semester 2 Examination 2018/2019 Ground and Water Studies 2 Module No. CIE5005 Supplementary information continued.

8

ks = 1.500mm i = 0.004 to 0.1

continued ie hydraulic gradient = velocities in m/s discharges in l/s

Water (or sewage) at 15°C full bore conditions.

radient	Pipe d	iameters 75	in mm : 80	100	125	150	175	200	225	250	275	300
0.00400 / 250	0.256	0.342	0.358	0.418	0.487	0.551	0.612	0.669	0.723	0.776	0.826	0.875
.00420	0.503 0.263 0.516	0.351 1.549	1.799 0.367 1.844	0.428 3.365	5.978 0.499 6.127	9.743 0.565 9.986	0.627 15.080	0.686 21.536	0.741 29.478	0.795 39.021	0.846 50.277	0.896 63.353
.00440	0.269	0.359	0.376	0.439	0.511	0.579	0.642	0.702	0.759	0.814	0.867	0.917
.00460	0.275	0.367	0.384	0.449	0.523	0.592 10.456	0.656 15.788	0.718	0.776 30.860	0.832 40.850	0.886 52.633	0.938
.00480	0.281	0.375 1.658	0.393 1.973	0.458	0.534 6.555	0.605 10.683	0.671 16.130	0.733 23.035	0.793 31.529	0.850 41.735	0.905 53.773	0.959
.00500 / 200	0.287 0.564	0.383 1.692	0.401 2.014	0.468 3.675	0.545 6.692	0.617 10.905	0.685 16.466	0.748 23.514	0.809 32.184	0.868 42.602	0.924 54.889	0.978
.00550	0.301 0.592	0.402 1.776	0.421 2.114	0.491 3.857	0.572 7.022	0.648 11.443	0.718 17.276	0.785 24.671	0.849 33.766	0.911 44.695	0.970 57.585	1.026 72.558
.00600 / 167	0.315	0.420 1.856	0.440	0.513 4.030	0.598 7.337	0.677 11.956	0.750 18.051	0.820 25.776	0.887 35.278	0.951 46.695	1.013 60.161	1.072 75.802
.00650 / 154	0.328	0.438 1.933	0.458 2.301	0.534 4.197	0.623 7.640	0.704 12.448	0.781 18.794	0.854 26.836	0.924 36.728	0.990 48.614	1.054 62.632	1.116 78.91
.00700 / 143	0.341	0.454	0.475	0.555 4.357	0.646 7.931	0.731 12.922	0.811 19.508	0.887 27.856	0.959 38.123	1.028	1.095 65.009	1.159 81.910
.00750	0.353	0.470 2.078	0.492	0.574 4.511	0.669 8.212	0.757 13.379	0.840 20.198	0.918 28.840	0.993 39.470	1.064 52.241	1.133 67.303	1.200 84.79
.00800	0.365	0.486	0.508 2.556	0.593 4.661	0.691 8.484	0.782 13.822	0.867	0.948	1.025 40.772	1.099 53.964	1.170 69.522	1.239 87.59
.00850	0.376 0.738	0.501	0.524 2.635	0.612 4.806	0.713 8.747	0.806 14.250	0.894 21.512	0.978 30.715	1.057 42.034	1.133 55.634	1.207 71.673	1.278 90.30
.00900	0.387 0.760	0.516	0.540 2.712	0.630 4.946	0.734 9.002	0.830 14.666	0.920 22.139	1.006 31.611	1.088 43.259	1.166 57.255	1.242 73.761	1.315 92.93
.00950	0.398 0.781	0.530 2.342	0.555 2.788	0.647 5.083	0.754 9.251	0.853 15.071	0.946 22.750	1.034 32.482	1.118 44.451	1.199 58.832	1.276 75.792	1.351 95.49
.01000	0.408	0.544 2.404	0.569 2.861	0.664 5.216	0.774 9.493	0.875 15.465	0.971 23.345	1.061 33.331	1.147 45.612	1.230 60.368	1.309 77.770	1.386 97.98
.01100	0.429	0.571 2.522	0.597 3.002	0.697 5.473	0.812 9.960	0.918 16.225	1.018	1.113 34.967	1.203 47.850	1.290 63.329	1.374 81.583	1.454
.01200	0.448	0.597 2.636	0.624 3.137	0.728 5.718	0.848	0.959 16.951	1.064 25.586	1.163 36.530	1.257 49.988 •	1.348 66.158	1.435 85.226	1.519
.01300	0.466	0.621 2.744	0.650 3.266	0.758 5.954	0.883 10.834	0.999 17.648	1.107 26.637	1.210 38.029	1.309 52.039	1.403 68.871	1.494 88.721	1.58
.01400	0.484	0.645 2.849	0.674 3.390	0.787 6.180	0.916 11.246	1.037 18.318	1.149 27.648	1.256 39.472	1.358 54.012	1.456 71.482	1.550 92.083	1.64° 116.01
.01500	0.501	0.668 2.950	0.698 3.510	0.815 6.399	0.949	1.073 18.964	1.190 28.623	1.301 40.864	1.406 55.916	1.508 74.001	1.605 95.328	1.699
.01600	0.518 1.017	0.690 3.047	0.721 3.626	0.842 6.610	0.980 12.027	1.109 19.590	1.229 29.567	1.344	1.453 57.758	1.557 76.437	1.658 98.466	1.755 124.05
.01700	0.534 1.049	0.711 3.142	0.744 3.739	0.868 6.815	1.010	1.143 20.196	1.267 30.481	1.385 43.515	1.498 59.543	1.605 78.799	1.709 101.507	1.809
.01800	0.550 1.079	0.732 3.234	0.766 3.848	0.893 7.014	1.040 12.761	1.176 20.784	1.304 31.369	1.425 44.782	1.541 61.276	1.652 81.092	1.759 104.460	1.862
.01900	0.565 1.109	0.752 3.323	0.787 3.954	0.918 7.208	1.069 13.113	1.209 21.357	1.340 32.232	1.465 46.014	1.584 62.961	1.697 83.322	1.807 107.332	1.913 135.22
	Coeffi	cient for	r part-f	ull pipo	2 S :							

Table Q3-2. Flow balancing Method

				AAY	
		1 st estimate	OY		
	I	$\mathbf{H}_{\mathbf{j}} = 1$			
Pipe	h _f across	So	Q	Q	Q/hf
	Pipe (m)	(1 in)	(litre/s)	(m^3/s)	
A					
В					
С					
2	Δ Q =	m ³ /s	ΔΗ=		m

TO BE HANDED IN WITH ANSWER BOOK

Candidates ID No.....

Please turn the page

Table Q4-2.

Pipe length ref No	Pipe length (m)	Pipe gradient (1 in)	Velocity (m/s)	Time of flow (min)	Time of Conc. (min)	Rate of rainfall i (mm/hr)	Imp. Area (ha)	Cumulative Imp. Area A _P (ha)	Flow Q (I/s)	Pipe dia. (mm)
1.00	50	56					0.025			100
1.01	60	105					0.20			250
2.00	125	83			A	,	0.04			125
1.02	75	125					0.08			

TO BE HANDED IN WITH ANSWER BOOK

Candidates ID No.....

END OF SECTION B

END OF PAPER