
 

 

UNIVERSITY OF CALIFORNIA, 

IRVINE 

 

 

Novel Side-Channel Attack Model for Cyber-Physical Additive Manufacturing Systems 

 

THESIS 

 

submitted in partial satisfaction of the requirements 

for the degree of 

 

MASTER OF SCIENCE 

in Electrical and Computer Engineering 

 

by 

 

Sujit Rokka Chhetri 

 

                                                                

Thesis Committee: 

                               Assistant Professor Mohammad Al Faruque, Chair 

Professor Pai H. Chou 

Assistant Professor Aparna Chandramowlishwaran 

 

 

2016 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2016, IEEE 

© 2016 Sujit Rokka Chhetri 



ii 

 

DEDICATION 

 

To my parents and my brother 

 for their remarkable  

belief, support, and love. 

 

 

 

 

 

 

 

  



iii 

 

TABLE OF CONTENTS 

                                    Page 

LIST OF FIGURES v 

LIST OF TABLES vii 

ACKNOWLEDGMENTS viii 

ABSTRACT OF THE THESIS ix 

CHAPTER 1: INTRODUCTION 1 

CHAPTER 2: BACKGROUND & RELATED WORK 5 

CHAPTER 3: MATHEMATICAL MODEL OF THE SYSTEM 8 

3.1 System Description 8 

3.2 Electrical Model 9 

3.3 Mechanical Model 10 

3.4 Equation of Motion 11 

3.5 Equation of Radiated Sound 11 

CHAPTER 4: LEAKAGE MODELING & ANALYSIS 13 

4.1 Side-Channel Model 13 

4.2 Natural Rotor Oscillation Frequency 14 

4.3 Stator Natural Frequency 15 

4.4 Source of Vibration 15 

4.5 Acoustic Leakage Analysis 17 

4.6 Success Rate Calculation 19 

CHAPTER 5: ATTACK MODEL DESCRIPTION 20 

5.1 Attack Model 20 



iv 

 

5.2 Leakage Exploitation 21 

5.3 Components of the Attack Model 22 

5.4 Attack Model Training and Evaluation 34 

CHAPTER 6: RESULTS FOR TEST OBJECTS 42 

6.1 Reconstruction of a Square 44 

6.2 Reconstruction of a Triangle 45 

6.3 Complex Test Object 46 

CHAPTER 7: DISCUSSION 48 

7.1 Limitations of the Attack Methodology 48 

7.2 3D Printer Variation 49 

7.3 Multiple Side-Channel Analysis 50 

7.4 Counter Measures 50 

CHAPTER 8: CONCLUSION 52 

REFERENCE 53 

 

  



v 

 

LIST OF FIGURES 

                                         Page 

Figure 1: Confidentiality Breach during Printing Process of 3D Printers 5 

Figure 2: Energy Conversion in FDM based 3D Printer System 8 

Figure 3: Electric Circuit of Phase A of a Stator Coil 9 

Figure 4: Outer Mechanical Structure of a Stepper Motor 11 

Figure 5: Acoustic Side-Channel Attack Model 20 

Figure 6: Components of the Attack Model 22 

Figure 7: Regression Model for Nozzle Speed Prediction in X and Y Axis 26 

Figure 8: Classification Model for Axis Prediction 28 

Figure 9: Direction Prediction Model 30 

Figure 10: Experimental Setup for Training and Testing the Attack Model 34 

Figure 11: Confusion Matrix for Different Classifiers 36 

Figure 12: Receiver Operating Characteristic Curve for 1D|2D Classifier 37 

Figure 13: Receiver Operating Characteristic Curve for X|Y Classifier 38 

Figure 14: Receiver Operating Characteristic Curve for XYsame|XYdiff Classifier 38 

Figure 15: Receiver Operating Characteristic Curve for Z|Z’ Classifier 39 

Figure 16: Prediction Results for regression Models in Single Axis 40 

Figure 17: Feature Segmentation and Direction Prediction 41 

Figure 18: Reconstruction of Square 44 

Figure 19: Reconstruction of Triangle 45 

Figure 20: Partial Reconstructed G-code for Triangle 46 



vi 

 

Figure 21: Reconstruction of a Key as a Case Study 47 

 

  



vii 

 

LIST OF TABLES 

                                         Page 

 

Table 1: Accuracy of the Classification Models 36 

Table 2: Accuracy of the Regression Models 39 

Table 3: Test Results for Square and Triangle 43 

Table 4: 3D Printers Available in the Market 49 

 

 

 

 

 

 

 

 

 

 

  



viii 

 

ACKNOWLEDGMENTS 

 

I would like to thank my committee chair, Professor Mohammad Abdullah Al Faruque, for 

constantly guiding me through the research and providing me his valuable insights.  Without 

his excellent supervision and persistent mentoring, I would not have been able to complete 

this thesis. 

 

I would also like to thank my committee members Professor Pai H. Chou and Professor 

Aparna Chandramowlishwaran, for providing me guidance, and giving me critical feedback 

when I needed the most. 

 

I would like to thank all my colleagues with whom I have had intellectually stimulating 

discussions about the research matter, and my families for always providing me their 

unconditional love and support.  

 

I thank IEEE for the permission to include content of my thesis, which was originally 

published in ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS). 

 

I would also like to thank NSF for partially funding the project under CPS grant CNS-

1546993. 

 

 

 



ix 

 

 

ABSTRACT OF THE THESIS 

 

Novel Side-Channel Attack Model for Cyber-Physical Additive Manufacturing Systems 
 

By 
 

Sujit Rokka Chhetri 
 

Master of Science in Electrical and Computer Engineering 
 

 University of California, Irvine, 2016 
 

Assistant Professor Mohammad Abdullah Al Faruque, Chair 
 

Cyber-physical systems consists of tight integration of cyber and physical domain 

components. Due to this, they are prone to various cross-domain attacks. One form of such 

attacks can take place in the form of physical-to-cyber domain attacks, which can cause 

confidentiality breach of the system. This is due to the fact that some of the cyber-domain 

information manifest in terms of physical actions such as motion, temperature change, etc. 

These physical actions may unintentionally leak information about the cyber-domain 

through the side-channels. Up until now there has been no study highlighting how these form 

of cross-domain attack can affect the cyber-physical additive manufacturing systems. Hence, 

in this thesis we present the analysis of acoustic side-channel to demonstrate how it can be 

leverage to build novel attack model and breach the confidentiality of the additive 

manufacturing system (such as 3D printers).  Side-channels such as acoustic, thermal, and 

power allow attackers to acquire the information without actually leveraging the 

vulnerability of the algorithms implemented in the system.  In 3D printers, geometry, 
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process, and machine information are the intellectual properties, which are stored in the 

cyber domain (G-code). We have designed an attack model that consists of digital signal 

processing, machine learning algorithms, and context-based post processing to steal the 

intellectual property by reconstructing the G-code and thus the test objects. We have 

successfully reconstructed various test objects with an average axis prediction accuracy of 

78.35% and an average length prediction error of 17.82%.  

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1: INTRODUCTION 

Cyber-Physical Systems (CPS) consist of the integration of computation, physical, and 

networking components [1]. The synergy of these components results in a new form of 

vulnerabilities, which cannot be addressed by traditional security solutions designed for the 

individual components. Additive manufacturing is an example of CPS, where 3D objects are 

created layer by layer [2]. Fused Deposition Modeling (FDM) is one of the technologies used 

in additive manufacturing, where plastic or metal filaments, heated slightly above their 

melting point, are deposited to construct a 3D object [3].  Several sectors, such as medical, 

automotive, and aerospace, are increasingly adopting the use of these additive 

manufacturing systems [4] [5] [6] [7]. In addition, agencies like the U.S. Air Force [8] , Navy 

[9], and NASA [10] are also incorporating additive manufacturing into their manufacturing 

processes. The revenue of the additive manufacturing industry is expected to exceed $21B 

by 2020 [11]. In fact cyber-physical additive manufacturing has been termed as one of the 

proponents of the next industrial revolution [12]. It is estimated that with cyber-physical 

system as the foundation, the industrial internet of things will create a global GDP of $15 

trillion by 2030 [13], and additive manufacturing will be a major part of this fourth industrial 

revolution. 

The promising forecast of the additive manufacturing, its application, and the revenue 

generated, however, hides a major challenge for its adoption in the next industrial 

revolution. One of the major challenge will be in securing the cyber-physical additive 

manufacturing system [14]. Analyzing the economic forecast for additive manufacturing, a 

security breach can have large financial impact on the manufacturing industry [15] [16].  In 
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this thesis, out of the three security requirements of a cyber-physical system, integrity, 

confidentiality, and availability [17], we will focus in the issues regarding the confidentiality 

breach. Attackers who target additive manufacturing systems will often be motivated by 

industrial espionage of Intellectual Property (IP) [18] [19]. The world economy relies heavily 

on IP-based industries, which produce and protect their designs through IP rights. In the U.S. 

alone, the IP-intensive industries have been known to account for 34.8% of the gross 

domestic product [20], and they are bound to face security issues. In fact, it has been 

estimated that, by 2018, 3D printing of pirated designs will result in annual IP losses of $100 

billion [21].  

IP in additive manufacturing consists of the internal and external structure of the 

object, the process parameters, and the machine specific tuning parameters [22]. To produce 

a 3D object, design information (which contains IP) is supplied to the manufacturing system 

in the form of G-code. G-code, a programming language, is primarily used in FDM to control 

the system components and parameters such as speed, temperature, and extrusion amount 

[23]. If these designs are stolen, they can be manipulated to harm the image of the company, 

or even worse, can cause the company to lose its IP (as it is stolen before production) [24]. 

Currently, IP theft mainly occurs through the cyber domain (e.g., Operation Aurora [25], 

GhostNet [26]) but IP information can also be leaked through the physical domain (side-

channels). A common example of this is to use side-channel information (e.g., timing data, 

acoustics, power dissipation, and electromagnetic emission) from devices performing 

cryptographic computation to determine their secret keys [27].  
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In this thesis we highlight the possibility of physical-to-cyber domain attacks on 

cyber-physical additive manufacturing system, and motivate a general research interest in 

novel ways to minimize the side-channel leakage during design and run time.  It is probably 

not possible to make a system completely secure [17]. This is because many vulnerabilities 

are not known during design time. Hence, it is always necessary to continue the investigation 

for finding novel threats that can arise in the system.  In order to aid the security research to 

protect the confidentiality of additive manufacturing system, first of all we will present an 

analysis on the mathematical model of the fused deposition modeling based 3D printer. 

Where we, in detail, describe the components of the FDM based 3D printers, and provide 

various models and equations to enhance the knowledge about 3D printer systems, to design 

our novel attack model. Then we work on the leakage model, where we provide the side-

channel model, vibration source analysis, acoustic leakage analysis, and leakage 

quantification to understand the relation between the cyber-data and acoustics. Then, finally 

we will present our novel acoustic side-channel attack model to breach the confidentiality of 

the system. It will consists of exploration of time and frequency domain features, learning 

algorithms trained to acquire specific information (axis of movement, speed of the nozzle) 

about the G-code, context-based post processing, and algorithms used to reconstruct the G-

code by reverse engineering.  

The rest of the thesis is organized as follows: Background and related work is 

presented in Chapter 2. Mathematical model of the system is described in Chapter 3. Leakage 

modeling and analysis are presented in Chapter 4. Attack model description is provided in 
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Chapter 5. Results are provided in Chapter 6. Challenges and future work are discussed in 

Chapter 7 before concluding this paper in Chapter 8. 
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CHAPTER 2: BACKGROUND & RELATED WORK 

 

Figure 1: Confidentiality Breach during Printing Process of 3D Printers 

A typical digital process chain in cyber-physical additive manufacturing systems is 

presented in Figure 1. Designers, first, start their design of 3D objects with 3D Computer-

Aided Design (CAD) modeling tools such as Sketchup [28] and the extended version of 

Photoshop Adobe Photoshop CC [29]. Next, the CAD tool generates a standard 

STereoLithography (STL) for the manufacturing purpose. This STL file consists of 

description of triangulated surface, which make up the 3D model, using the unit normal and 

the vertices of the triangle [30]. The vertices of the triangles are expressed using three-

dimensional Cartesian coordinate system. Computer Aided Manufacturing (CAM) process is 

then required to slice the STL file into layer-by-layer description file (e.g., G/M-code). Then, 

the layer description file is sent to the manufacturing system (e.g., 3D printer) for production. 

The 3D printer has a firmware which translates the G/M-codes into specific signals required 

to actuate the physical components of the system. G-code are responsible for the moving the 

various physical components, whereas the M-code are responsible for determining the 

machining parameters (such as temperature, coolant fan speed, etc.).  In this thesis we focus 

our work on analyzing the G-code, as they describe the geometry of the 3D object, which 

encompasses the intellectual property in terms of the structural parameters of the 3D object. 
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In the physical domain of the additive manufacturing, components such as a stepper 

motor, fan, extruder, base plate etc., carry out operations on the basis of information 

provided by the cyber domain (G-code). In carrying out the operation, these physical 

components leak cyber domain information (G-code) from the side-channels, such as 

acoustic and power, which may be used to steal IP by performing physical-to-cyber domain 

attack. The issues regarding the theft of IP and the framework for preventing IP theft have 

been studied in [31] and [22]. The study of attack in the process chain, starting from the 3D 

object design to its creation, along with a case study of cyber-attacks in STL file, is presented 

in [32]. However, physical domain attacks are not well studied by the existing works. There 

are several publications utilizing the side-channel information to gather data related to the 

cyber domain in other systems.  [33] has used the acoustics emanated from the dot matrix 

printer while printing to recover the text it was sent to print. Authors in [34] have been able 

to decode the keys pressed in the Enigma machine by analyzing the sound made by the 

device while pressing the keys. However, these methodologies are not applicable to 3D 

printers since, unlike printed words on paper, a 3D printer’s movement has infinite 

possibilities. Recently, researchers from MIT have found that even the minor movement of 

physical devices can leak information about the cyber domain. In [35], they have successfully 

retrieved digital audio being played by capturing the vibration of objects near a sound source 

by a high speed camera. However, in a 3D printer, there are multiple sources of sound and 

vibration. Therefore, the task of analyzing sound for G-code reconstruction requires a 

completely new approach. Authors in [36] have considered using side-channel for providing 

security, but they have not demonstrated any methodology for using it to steal the IP. In 
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summary, the related work is focused on retrieving the text being printed (either in keyboard 

or dot matrix printer), analyzing acoustic emissions for observing mechanical degradation 

of the physical components in a manufacturing plant, etc. However, the possibility of using 

the acoustic emissions for reconstruction of a 3D object has not been considered. Hence, in 

this thesis, we have designed a novel acoustic side-channel attack model to breach the 

confidentiality of cyber-physical additive manufacturing systems. 
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CHAPTER 3: MATHEMATICAL MODEL OF THE SYSTEM 

3.1 System Description 

Additive manufacturing systems can be classified on the basis of the process and raw 

materials used [37]. State-of-the-art FDM based additive manufacturing systems consist of 

four to five two-phase stepper motors depending upon their structural design and number 

of filaments available for extrusion. Due to high torque/size ratio, and comparatively lower 

resonance and noise emission, hybrid stepper motors have been widely used in these 3D 

printers, and they are the main source of noise and vibration. Hence, our system model 

consists of four two-phase bi-polar hybrid stepper motors working in conjunction. Hybrid 

stepper motors use micro-stepping to make the transition of stator flux smooth. This in 

return reduces the vibration, and allows for smaller step angles [38]. The two-phase bi-polar 

hybrid stepper motors have eight poles for generating the stator flux. The fundamental law 

of energy conversion for stepper motors is shown in Figure 2. Here, the electrical energy 

(current i) is first converted to electric and magnetic field (Fem), which in turn guides the 

rotors. The electromagnetic field acting upon the various components produces force, which 

causes them to vibrate and produce sound (P). 

 

Figure 2: Energy Conversion in FDM based 3D Printer System 
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3.2 Electrical Model 

The single winding circuit of a two-phase bi-polar hybrid stepper motor is shown in Figure 

3. vA is the terminal voltage, R is the stator winding resistance, LA is the coil inductance, the 

mutual inductance between the coil of phase A and phase B is M, and eA is the back 

electromotive force (emf). 

 

Figure 3: Electric Circuit of Phase A of a Stator Coil 

The standard electrical model, as commonly found in many literature, e.g.,[39], for phase A 

of the hybrid stepper motor may be written as follows:  

𝑣𝐴 = 𝑖𝐴𝑅 + 𝐿𝐴
𝑑𝑖𝐴

𝑑𝑡
+𝑀

𝑑𝑖𝐵

𝑑𝑡
+ 𝑒𝐴                                                      (1)  

For simplicity, lower case letters represent time varying variables, and capital letters denote 

time invariant variables. The permanent magnetic flux linkage ΨA is dependent on the 

mechanical rotational angle θ, and is given as follows:             

          𝛹𝐴 = 𝛹𝑚𝑐𝑜𝑠⁡(𝑝𝜃)                                                               (2) 

Where 𝚿𝐦⁡is the maximum stator flux linkage, and p is the number of rotor pole pairs. Then 

the back emf induced in phase A may be written as follows: 
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𝑒𝐴 =
𝑑𝛹𝐴

𝑑𝑡
= −𝑝𝛹𝑚𝑠𝑖𝑛⁡(𝑝𝜃)

𝑑𝜃

𝑑𝑡
                                          (3) 

Similarly, the back emf induced in phase B of the stator winding may be written as follows:  

𝑒𝐴 =
𝑑𝛹𝐵

𝑑𝑡
= −𝑝𝛹𝑚𝑠𝑖𝑛⁡(𝑝(𝜃 − 𝜆))

𝑑(𝜃−𝜆)

𝑑𝑡
                             (4) 

Where λ is the angle between the two stator windings, i.e. phase A and phase B. From this 

electrical model, we can see that the time varying current passing through the stator core 

affects the magnetic field as well as the back emf produced in the circuit. The time varying 

current however is dependent on the supplied G-code to the 3D printer, which is in fact 

dependent on the structure of the 3D object. Hence, hence there is direct correlation between 

cyber-domain data and the current being supplied in the stepper motor.  

3.3 Mechanical Model 

The torque produced by current iA for the given flux linkage Ψm may be written as follows 

[40]:  

𝑇𝐴 = −𝑝𝛹𝑚𝑖𝐴𝑠𝑖𝑛⁡(𝑝𝜃)                                                            (5) 

Similarly torque produced by current iB may be written as follows: 

𝑇𝐵 = −𝑝𝛹𝑚𝑖𝐵𝑠𝑖𝑛⁡(𝑝(𝜃 − 𝜆))                                                   (6) 

The Equations (5) and (6) explains that the torque production in stepper motor is dependent 

on the time varying current, which also happens to determine the magnetic flux linkage. This 

torque in turn determines the various kinds of vibration in the 3D printer, such as torque 
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ripple. However, the current is again determined by the cyber-domain data (G-code). Hence 

the system vibration in turn is dependent in the cyber-domain data.   

3.4 Equation of Motion 

The equation of motion for hybrid stepper based on Equations (3), (4), (5), and (6) is written 

as follows [40]: 

𝐽
𝑑2𝜃

𝑑𝑡2
+ 𝐷

𝑑𝜃

𝑑𝑡
+ 𝑝𝛹𝑚𝑖𝐴 𝑠𝑖𝑛(𝑝𝜃) + 𝑝𝛹𝑚𝑖𝐵 𝑠𝑖𝑛(𝑝(𝜃 − 𝜆)) = 0                            (7) 

Where J is the moment of inertia of the rotor and the load combined, J = JM +JL, and D is the 

damping coefficient based on eddy current, air friction, hysteresis effects, etc.  From Equation 

(7), we can observe that the load attached to the stepper motor plays an important role in 

determining the system resonant frequency. This is an important observation, because even 

though same stepper motor might be used in the 3D printer to the printer nozzle in different 

axis, its resonant frequency varies when the load is different. Using Equation (7), we can 

determine the resonant frequency of the individual stepper motor in the 3D printer.  

3.5 Equation of Radiated Sound 

 

Figure 4: Outer Mechanical Structure of a Stepper Motor 
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For simplicity, we assume that the structure of the stator of the hybrid-stepper motor is 

cylindrical (as shown in Figure 4). With this, we may express the total sound power radiated 

by the electric machine due to the varying radial force acting upon the stator as follows [41]: 

𝑃 = 4𝜌𝑐𝜋3𝑓2𝐴𝑟𝑑
2 𝑟𝑙𝐼𝑟𝑒𝑙                                                               (8) 

Where P is the radiated sound power (W), ρ is the density of the medium (kg/m3), c is the 

speed of the sound in the medium (m/s), f is the excitation frequency of the vibration with 

multiple harmonics (Hz), Ard is the surface vibratory displacement (m), r is the radius of the 

cylindrical stator (m), l is the length of the stepper motor (m), and Irel is the relative sound 

intensity. Irel depends on the mode of stator vibration R, the radius, and the length-diameter 

ratio. Hence, stepper motors with different geometry and design in the 3D printer will emit 

different sound power. The attacker will have to consider this fact for designing successful 

attack models. Since the intensity of sound will degrade according to the inverse square law, 

placement and position of the audio recorder will affect the quality of sound acquired, and 

eventually the accuracy of the attack models. Equation (8) explains the power of radiated 

sound by a single stepper motor. However, in a 3D printer system, there are multiple stepper 

motors, each producing unique acoustic sound depending upon the cyber-domain data. 

Modeling this complex interaction is non-trivial. We have to first consider the various 

mediums through which the vibration will spread across the system, and analyze each source 

of vibration. To ease this task, in this thesis, based on the preliminary understanding of the 

mathematical model of the system based on the physical nature of stepper motors, we model 

the relation between the acoustic leakage from the system and the cyber-domain data, using 

a data-driven modeling approach.  
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CHAPTER 4: LEAKAGE MODELING & ANALYSIS 

4.1 Side-Channel Model 

Using an acoustic data acquisition device, an attacker may physically observe the vector Oi = 

[o1, o2, o3, …, oi]. This is in fact the measurement of the acoustic power radiated by the 

stepper motor, which for a single stepper motor is given in Equation 8. Physically observable 

signal O corresponds to the side-channel leakage function L as follows: 

𝑂 = 𝐿 + 𝑁                                                                                   (9) 

Where N represents the Gaussian noise added to the side-channel leakage function L. 

Leakage function L depends on the G-code instruction G. For each G-code instruction Gi, the 

acoustic leakage vector l(i,k) acquired is of length k, and gi = [g(i,1), g(i,2), g(i,3), …, g(i,k)]. The 

length k depends on the sampling frequency of the audio device used. The side-channel 

consists of two channels, where G L channel leaks information about G in L, and L O 

channel leaks information about L in O. O, L, and G are modeled as random variables on 

samples o(i,k), l(i,k), and gi, respectively. The fundamental information contained in gi are 

speeds vi={v(x,i), v(y,i), v(z,i)}, axis movements ai={a(x,i), a(y,i), a(z,i)}, positive or negative distance 

moved in each axis di={d(x,i), d(y,i), d(z,i), d(e,i)}, where d(e,i) is the extrusion amount measured 

in length of plastic deposited. Hence, the leakage function L is a function of all these 

parameters, given as follows: 

𝑜𝑖 = 𝑙(𝑓(𝑣𝑖, 𝑎𝑖 , 𝑑𝑖)) + 𝑛𝑖                                                                (10) 

Due to the efficiency of the profiled attacks, the estimation of leakage function L may be done 

using profiling acoustic traces Oi collected for parameters {vi, ai, di }during the training phase. 
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We argue that any G-code instruction gi can be broken down to its corresponding 

parameters, such that gi={vi, ai, di}. Moreover, a data-driven modeling approach using 

machine learning algorithms will be used to estimate the mapping function gi = �̇̂�(oi, αn). 

Where αn is the tuning parameter for the function. Due to the presence of multiple 

parameters, classification and regression machine learning algorithms will be used to 

estimate the functions. In the consequent sections, we will describe the relation between the 

various parameters {vi, ai, di } and the equations described in the Chapter 3.  This will allow 

us to determine specific machine learning algorithms to estimate the corresponding 

parameters from the leakage signal, and design the overall attack model. 

4.2 Natural Rotor Oscillation Frequency 

The radiated sound power is higher when the stepper motor vibrates with the rotor’s natural 

oscillation frequency. Using Equations 1, 3, 4, and 7, we may calculate the natural frequency 

of rotor oscillation as follows [39]: 

𝜔𝑛𝑝
2 =

2𝑝2𝛹𝑚𝐼𝑜𝑐𝑜𝑠⁡(
𝑝𝜆

2
)

𝐽
                                                                                                (11) 

Where Io is the stationary current flowing in the two phases A and B. When the stepper motor 

is rotating with the harmonic frequency of the natural frequency such as …,
𝜔𝑛𝑝

4
,⁡
𝜔𝑛𝑝

3
, 
𝜔𝑛𝑝

2
,⁡2𝜔𝑛𝑝 

,⁡⁡3𝜔𝑛𝑝, ⁡4𝜔𝑛𝑝,… the vibration is more prominent due to resonance. Equation (11), describes 

the natural frequency of a single stepper motor when it is not attached to any mechanical 

structure. In a complex system such as 3D printer, the natural rotor oscillation frequency will 

vary according to the amount and type of load handled by each of the stepper motor. 
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4.3 Stator Natural Frequency 

The natural frequency of the stator depends on the vibration modes. Due to the prominence 

of the radial force acting on the stator, we will consider only the circumferential radial 

vibration modes and the corresponding stator natural frequencies. The structure of the 

stator is complex and many attempts have been made to calculate the natural frequencies of 

the stator with various considerations, an example being single-ring type stator [42][43]. 

Since the external structure connected to the stator also influences its mass and stiffness, the 

natural frequency of the stator with circumferential vibration mode m and axial vibration 

mode n of the frame may be calculated as follows [44]: 

𝜔𝑠𝑡𝑎𝑡𝑜𝑟⁡𝑛𝑝
2 ≈

𝐾𝑚
(𝑐)
+𝐾𝑚𝑛

(𝑓)

𝑀𝑐+𝑀𝑓
                                                                                            (12) 

Where 𝑲𝒎
(𝒄)

is the lumped stiffness of the stator core, 𝑲𝒎𝒏
(𝒇)
⁡is the lumped stiffness of the frame, 

and 𝑴𝒄⁡and 𝑴𝒇 are the mass of the stator and the frame, respectively. Equation 12 has been 

derived by assuming that the lumped stiffness of the core and the frame are in parallel. 

Equation 12 states that the stator natural frequency depends on the frame structure to which 

the stepper motor is connected.  

4.4 Source of Vibration 

The main sources of vibration in stepper motors are electromagnetic, mechanical, and 

aerodynamic [41]. These vibrations help in radiating sound from the stepper motor stator 

surface and the frame to which the motor is connected. In this thesis, we will consider the 

electromagnetic and mechanical sources as they are the major sources of leakage. 
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1.1.1 Electromagnetic Source 

The fundamental source of vibration in hybrid stepper motors is due to the fluctuation of 

electromagnetic force produced by the winding of the stator. The two types of vibration 

produced by the electromagnetic force are: 

i) Radial Stator Vibration: In a hybrid stepper motor, both stator and the rotor are 

responsible for exciting the magnetic flux density in the air gap between the rotor and the 

stator. These magnetic flux contribute in generating the radial force. If σ(l,k) be the radial 

force at pole l for kth harmonic then the total radial force acting on the stepper motor may be 

calculated as follows [45]: 

𝜎𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜎(𝑙,𝑘)𝑐𝑜𝑠⁡(𝑘𝜔𝑡 + 𝜑(𝑙,𝑘))
∞
𝑘=1                                                          (13) 

Where 𝝋(𝒍,𝒌) is the phase angle of the radial force at pole l for kth harmonic,⁡𝝎 = 𝟐𝝅𝒇, and f 

is the frequency determined by the stepping rate of the motor. This radial force acts on the 

stator and rotor surface and deforms its structure. This produces vibration and eventually 

sound in the stepper motor. When the radial force excites the harmonics of the natural 

frequencies of the stator/frame structure and the rotor oscillation, vibration is more 

prominent due to resonance. 

ii) Torque Ripple:  Even though torque ripple is substantially reduced by using the micro-

stepping for driving the stator windings, micro-stepping position ripple is still produced due 

to non-conformity to the ideal sine/cosine waves required for absolute removal of the torque 

ripple. However, the vibration produced by the torque ripple is less compared to the radial 

stator vibration. 



17 

 

4.4.1 Mechanical Source 

The rotor and load connected to the stepper motor may also produce vibration and sound at 

various frequencies due to friction, rotor unbalance, shaft misalignment, loose stator 

laminations, etc. These vibrations produce a loud noise due to resonance. 

4.5 Acoustic Leakage Analysis 

We have so far modeled the source of vibration and noise in hybrid stepper motors. In this 

section, we will analyze the leakage channel G  L to demonstrate the relation between the 

G-code parameters {vi, ai, di } and the acoustic leakage. 

 

LEMMA 1. Given the acoustic leakage L in the channel G  L, the frequency of the radiated 

sound varies according to the speed of the nozzle in X and Y axis, respectively. 

PROOF: The radial force generated in Equation 13 in each pole depends on the magnetic flux 

density, stator tooth width, and rotor cap thickness. The magnetic flux density depends on 

the current passing through the each winding. To increase the angular speed of the stepper 

motor, the stepping rate is increased. From Equation 13, we can see that this increases the 

frequency of the radial force acting on the stepper motor. From Equation 8, we also can see 

that the radiated power increases with the excitation frequency of the vibration.  

 

LEMMA 2. Given the acoustic leakage L in the channel G  L, the power frequency spectrum 

of the radiated sound from the stepper motors X, Y, Z, and the one for the extruder are different.  
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PROOF: The natural rotor oscillation frequency in Equation 11 is inversely proportional to 

the moment of inertia of the load and the motor (JL + JM). The load moved by each stepper 

motors X, Y, Z, and E are different in state-of-the-art stepper motors. The natural frequency 

in Equation 12 also depends on the mechanical structure of the frame to which the stepper 

motor is connected. Due to the mechanical structure of the 3D printers, stepper motors are 

placed in various locations and are connected to different frame structures. Therefore, the 

natural frequencies of the stepper motors vary according to the load and the frame to which 

they are attached. This means that the resonance can occur at different frequencies of the 

vibration for different stepper motors and the frame structure. This causes the power 

spectrum of the radiated sound to vary according to the source of sound, i.e., the stator motor 

and the frame structure. 

 

LEMMA 3. Given the acoustic leakage L in the channel G  L, the intensity of the radiated 

power will vary according to the direction of the nozzle movement in different directions from 

the audio device. 

PROOF. According to the inverse square law, the intensity of the sound decreases drastically 

with the square of the distance from the sound source. If P is the power of the sound source 

and r be the distance from the sound source, then we have:  

𝐼 =
𝑃

4𝜋𝑟2
                                                                                 (14) 

Hence, for analyzing the direction of movement, the intensity of the sound radiated by each 

motor and frame structure may be measured. 
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4.6 Success Rate Calculation 

 In our attack model, the reconstruction of the G-code depends on the separability of the 

different parameters such as axis of movement of the nozzle, i.e. X, Y , and Z. Apart from this, 

the capability of the attacker to predict the speed of the nozzle movement (vx, vy, vz) in each 

of the axes, will determine the success rate of the attack model. Hence, success can simply be 

quantified by measuring the separability of the nozzle movement and prediction accuracy of 

the nozzle speeds in each axis. The separability is specifically measured using the Area Under 

the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, whereas the speed 

prediction accuracy can be measured using the Mean Square Error (MSE). We also calculate 

the accuracy of the classifiers as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙⁡𝑆𝑎𝑚𝑝𝑙𝑒
                                                               (15) 

 Where True Negative (TN) and True Negative (TN) are the total number of right 

classifications made by the classifiers. 
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CHAPTER 5: ATTACK MODEL DESCRIPTION 

5.1 Attack Model 

 

Figure 5: Acoustic Side-Channel Attack Model 

In our attack model (shown in Figure 5), we implemented a novel way of leveraging the 

stochastic dependency of the acoustic leakage O to L in channel GL and eventually 

dependency of L to G in channel L O. However, in order to extract the information about G, 

we developed multiple classification and regression models using known machine learning 

algorithms to estimate the parameters {vi, ai, di}. Instead of estimating single function gi = 

�̇̂�(oi, αn), we further break it down to the problem of estimating the functions ai = �̇̂�(oi, αn), 

vi = �̇̂�(oi, αn), and di = �̇̂�(oi, αn). We have ai={a(x,i), a(y,i), a(z,i)}, as random variables denoting 

the presence of the nozzle movement in X,Y, and Z axis, respectively. Where {a(x,i), a(y,i), 

a(z,i)}∈ {0,1}𝐵, where binary value 0 represents the absence of nozzle movement and 1 

represents the presence of the nozzle movement. We have vi={v(x,i), v(y,i), v(z,i)}⁡∈ ℝ+, and 

{d(x,i), d(y,i), d(z,i)}∈ ℝ.  The attack consists of two phases. In the first phase, a training cyber-

data (G-code) is designed to collect range of acoustic emissions from a device which is same 
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or at least similar to the target device. Based on the data collected, various functions are 

estimated using the data-driven modeling approach. Then during the second phase, the 

attack phase, attackers collects the acoustic emissions when a real 3D object is being printed 

by the target device. Using the estimated functions, various parameters of the G-code are 

predicted, and then combined to reverse-engineer the full G-code, and hence the 3D object, 

effectively stealing the intellectual property hidden in the geometry of the object.  

5.2 Leakage Exploitation 

The accuracy with which an adversary is able to exploit the acoustic leakage depends on their 

ability to estimate the functions �̇̂�(.). Breaking the process for estimating gi = �̇̂�(oi, αn) into 

multiple estimation functions improves the adversarial attack model by focusing on only 

those parameters in G that are required for breaching the confidentiality of the system. 

However, the accuracy of the attack model now becomes a function of successful estimation 

of individual functions. 

 

LEMMA 4. The observable leakage vector Oj = [o1, o2, …, oj ] sampled from the channel L O 

correspond to Gi = [g(i,1), g(i,2), …, g(i,k)] such that k = ∆𝒕 × 𝒇 and j÷ 𝒌 = 𝒊, where ∆𝒕 is the length 

in time Gi leaks analog emissions in the acoustic side-channel. 

PROOF: The Sequence of G-codes supplied to the 3D printer is discrete. However, the 

duration of the sound power radiated by the printer for the corresponding G-code varies. 

Hence, the leakage O observed in channel L O corresponds to the duration of each of the 

G-code instructions and the sampling frequency of the data acquisition device. Hence, for 
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each k length for Gi, we have [o(i,1), o(i,2), …, o(i,k)] as the vector of observable physical 

emissions. 

ASSUMPTION 1. The direction of dz during the printing is always in either positive or negative 

Z-axis. 

In additive manufacturing systems, materials are extruded layer wise. Hence, direction in Z-

axis should always be in one direction. This allows us to exclude the estimation of direction 

motor in Z-axis.  

ASSUMPTION 2. For the given vectors Gi, we have acoustic observable traces [o(i,1), o(i,2), …, 

o(i,k)], and all the observable traces with length k are similar.  

Since a single G-code instruction actuates similar physical behavior for certain amount of 

time (e.g., moving the nozzle in X-axis with 500 mm/min speed for 10 mm) the acoustic 

emission will be similar. 

5.3 Components of the Attack Model 

 

Figure 6: Components of the Attack Model 
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Components of the acoustic attack model is presented in Figure 6. As explained in Section 

5.1, the attack process consists of two phases, training and the attack phase. We will now go 

through each of the components of the attack model. 

5.3.1 Data Acquisition 

The first step in acquiring the observable leakage trace, Oi=[o1, o2, …, oi], is to place an audio 

recording device such as a mobile phone near the 3D printer. The sampling frequency of the 

recording device must be higher than 40 kHz to capture the sound in the audible range to 

avoid aliasing effect [46]. The distance of the audio device from the 3D printer and the angle 

to the different sources of sound (stepper motor X and stepper motor Y) will also determine 

the accuracy of leakage exploitation. Hence, brute force may be used to find the optimal 

position of the recorder to acquire the best possible acoustic analog emissions. However, 

exploration of the position of the audio recorder for optimal emission acquisition is beyond 

the scope of this thesis. 

5.3.2 Noise Filtering 

We use a digital finite impulse response band pass filter to eliminate the noise from low 

frequency alternating current from the power source, and the high frequency noise 

generated by the hybrid stepper motor winding when it is in charged and in idle state. The 

passband frequency for the noise removal is between 100 Hz and 20 kHz. 

5.3.3 Feature Extraction 

We use features commonly used in speech pattern recognition [47] in the time and frequency 

domains to train our learning algorithms. In the time domain, the features extracted are 

frame energy, Zero Crossing Rate (ZCR), energy entropy. The features extracted from the 
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frequency domain are spectral entropy, spectral flux, Mel-Frequency Cepstral Coefficients 

(MFFC), and energy of Short-Time Fourier Transform (STFT) divided linearly into frequency 

intervals. The features are extracted from a set of frames with fixed frame size of 50ms. 

However, better timing resolution can be obtained by making the frame size smaller, and for 

frequency resolution, larger frame size is required. Thus, the size of the frame is subjective 

to the type of features being extracted, and exploration of the window size is beyond the 

scope of this thesis.  From each frame, we extract features and create a feature vector to 

supply the training algorithm. For a given frame of length FL with audio signals x(i) = 1, 2...FL, 

different features are extracted as follows: 

𝐹𝑟𝑎𝑚𝑒⁡𝐸𝑛𝑒𝑟𝑔𝑦⁡(𝐸) = ∑ |𝑥(𝑖)2|
𝐹𝐿
𝑖=1                                                      (16) 

Frame energy is enough to predict direction when the printer is only printing in one axis, 

however spectral energy is required while predicting the direction in multiple axes 

movement.  ZCR is calculated as follows: 

𝑍𝐶𝑅 =
1

2𝐹𝐿
∑ |𝑠𝑖𝑔𝑛[𝑥(𝑖)] − 𝑠𝑖𝑔𝑛[𝑥(𝑖 − 1)]|2
𝐹𝐿
𝑖=2                                                (17) 

ZCR is high when the printer is not making any sound, due to the noise, and low when it is 

printing. For energy entropy, we divide the frame into short frames of length K. If Ej is the 

energy of the jth short frame, then we have: 

𝐸𝑛𝑒𝑟𝑔𝑦⁡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑒𝑗𝑙𝑜𝑔2(𝑒𝑗)
𝐾
𝑗=1                                            (18) 

𝑤ℎ𝑒𝑟𝑒⁡𝑒𝑗 =
𝐸𝑗

∑ 𝐸𝑖
𝐾
𝑖=1

                                                                  (19) 
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Energy entropy measures the abrupt change in the energy of the signal, and may be used to 

detect the change of motion. For frequency domain data, let Xi(k), k = 1, 2...FL be the 

magnitude of the Fast Fourier Transform (FFT) coefficient of the given frame. For spectral 

entropy, we divide the spectrum into L sub bands. Let Ef be the energy of the fth sub band 

then we have: 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙⁡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑛𝑓𝑙𝑜𝑔2(𝑛𝑓)
𝐿−1
𝑓=1                                            (20) 

𝑤ℎ𝑒𝑟𝑒⁡𝑛𝑓 =
𝐸𝑓

∑ 𝐸𝑗
𝐿−1
𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

Spectral flux measures spectral change between two successive frames, and can be used to 

detect the change of speed of the nozzle while printing within each layer. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙⁡𝐹𝑙𝑢𝑥𝑖,𝑖−1 = ∑ (𝐸𝑁𝑖(𝑘) − 𝐸𝑁𝑖−1(𝑘))
2𝐹𝐿

𝑘=1                                    (22) 

𝑤ℎ𝑒𝑟𝑒⁡𝐸𝑁𝑖(𝑘) =
𝑋𝑖(𝑘)

∑ 𝑋𝑖(𝑗)
𝐹𝐿−1

𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   (23) 

To gather more information from the spectral data, we have calculated cepstrum (inverse 

FFT of the log magnitude of the FFT of a signal) features. MFFC, which uses non-linear 

separation of frequency intervals (perceived as equally spaced by human ears), are more 

efficient in audible sound pattern recognition [48], hence we have incorporated MFFC in our 

feature vector. We have also computed features by linearly dividing the STFT of the audio 

signals in an interval of 100 Hz, and placing the average of the energy in this interval in one 

bin. These features are more efficient to implement than the MFFC while performing spectral 

subtraction when two motors are running simultaneously. 
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5.3.4 Regression Model 

 

Figure 7: Regression Model for Nozzle Speed Prediction in X and Y Axis 

The regression model consists of a collection of models, each using a supervised learning 

algorithm for regression as shown in Figure 7. These models are used for estimating the 

functions v(x,i) = �̇̂�(oi, αn) and v(y,i) = �̇̂�(oi, αn). These functions are used to extract information 

about speed in X direction given only one axis movement, and speed in X direction given the 

motion in two axis. Similarly, this is done for speed in Y direction as well. Hence, we have 

four regression model to predict the nozzle speed in XY-plane.  

 

ASSUMPTION 3. The speed in the Z direction while printing the given model with the given 

printer is fixed and the speed of extrusion can be calculated as a function of layer height and 

nozzle diameter. 

For a given 3D printer, the layer height is assumed to be fixed. This relaxes the complexity 

for leakage exploitation by reducing the need for estimating speeds vx and ve. The speed of 

the printing, also known as the travel feed-rate is determined by training these regression 

algorithms [49]. After gaining the information about the travel feed-rate, we may calculate 

the distance moved by the nozzle as follows: 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐹𝑟𝑎𝑚𝑒𝑠𝑖𝑧𝑒⁡ × 𝑆𝑝𝑒𝑒𝑑                                                                (24) 

Where Framesize is measure in millisecond, and the Speed is measured in millimeter per 

millisecond. When the nozzle is moving in only one axis, the regression model may just take 

the features directly without further processing, however, when the nozzle is moving in two 

or more axes, the audio signal from one motor is combined with the others. Hence, it 

becomes imperative to separate these signals before the regression model can be used to 

predict the speed.  

 

Algorithm 1 provides the pseudo code for performing the spectral subtraction necessary 

when motion is involved in both the X and Y axes. It takes features, extracted from the audio 

when both the X and Y motors are running, and the features from the training phase for 

individual motor X and Y as the input. Spectral subtraction is not performed for Z motor 

because it only moves one layer at a time and the distance it moves is normally fixed for a 

given object. While training, n number of speeds, in incremental number is taken to train the 

regression models. For each of these speeds, lines 1 and 2 calculate the average magnitude 
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of spectral features. Then, for each of the speeds, line 6 assumes the speed of the Y motor and 

the spectral components are subtracted from the combined spectral features of X and Y. By 

subtraction, we remove the spectral components present in Y from the combination of these 

features. Line 7 gives the predicted speed for the given value of speed in Y direction. We use 

this speed to subtract the spectral features of X in the particular speed and again use this 

value to predict the speed for motion in Y-axis. In lines 11 and 12, the speed of X and Y that 

gives the minimum difference in the predicted speed and output speed in Y-axis is chosen as 

an output. 

5.3.5 Classification Model 

 

Figure 8: Classification Model for Axis Prediction 

As shown in Figure 8, to determine the axis in which the nozzle is moving, the classification 

model consists of collection of classifiers to convert the classification problem into two-class 

separation model. On top level, this in fact will estimate the functions a(x,i) = �̇̂�(oi, αn), a(y,i) = 

�̇̂�(oi, αn), and a(z,i) = �̇̂�(oi, αn). However, we have four classifiers that classify whether the Z-

axis movement is present or not, if the nozzle movement is in single axis (just X or Y Axis) or 
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two axis (both in X and Y Axis), if the nozzle movement is just in X axis or just Y axis, and 

finally, when the movement is in both X and Y axis, if they have same speed or different speed 

in each of the axes. We have found that this model gives us better prediction results than 

multi-class classifier models. Each of these classifiers consists of supervised learning 

algorithms for classification.  

 

Algorithm 2 gives the pseudo code which takes the output from the classifiers to determine 

the axis of movement. It also gives information such as whether the layer has changed or not, 

and whether the nozzle is moving in X and Y axis with the same or different speed.  

5.3.6 Direction Prediction Model 

Most of the 3D printers have motors in a fixed location. However, the base plate, the nozzle 

or combination of both are always in motion while printing. Therefore, vibration is 
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conducted from the motor to the nozzle and the base plate of the printer. This means that 

the audio source physically gets closer or away from the recording device while printing.  

 

Figure 9: Direction Prediction Model 

As shown in Figure 9, we can use the frame energy of the audio signal to check the direction 

of motion. For multiple motor movements, we utilize the difference of feature in frequency 

domain to calculate the energy of only those spectral components that represent the specific 

motor. In order to suppress the high fluctuation, median filtering is applied to the sequence 

of frame energies to smooth the curve of frame energies. The prediction model will output 1 

if the frame energy is increasing and 0 if the frame energy is decreasing. In order to aid the 

direction prediction model and the post-processing, a feature comparison block measures 

the distance (Euclidean distance) between consecutive frame features. If the motion of 

direction changes, then there is a large difference in the features between the consecutive 

frames. We use this spike to detect the change in direction of motion of the nozzle. 

5.3.7 Model Reconstruction 

For reconstructing the G-code, we need to determine whether the 3D printer nozzle is 

actually extruding the filament or not. From our analysis, we have found that the printer 

nozzle moves at a higher speed when it is not extruding the filament. Hence, determining 

whether it is printing or not printing becomes a task of finding out the speed at which the 
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nozzle is moving. This information is acquired from the regression model. The extrusion 

amount for a given segment is machine-specific, and can be calculated as a function of the 

layer height, and the nozzle diameter. After acquiring the output from the regression model, 

classification model, and direction prediction model, Algorithm 3 calculates the positive or 

negative distance movement. 

 

Finally, Algorithm 4 reconstructs the G code for the printed object. It takes the input such as 

the distance moved in each of the axis, extrusion length, and the window size, and calculates 

the travel feed-rate (line 2).  
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And finally combines all the information (line 7) to construct each line of G-code necessary 

to reconstruct the object.  

5.3.8 Post-Processing for Model Reconstruction 

We have found a high mutual information between the G-code and the sound retrieved from 

the physical medium. For G-codes, let G be a discrete random variable with f(g) as its 

probability distribution function at g. Let O be a discrete random variable representing the 

feature extracted from the acoustics with f(o) as its probability distribution function. Then 

the entropy of each of these random variables may be given as: 

𝐻(𝐺) = −∑ 𝑓(𝑔) 𝑙𝑜𝑔2 𝑓(𝑔)𝑔∈𝐺 ⁡⁡⁡⁡⁡⁡                                                       (25) 

𝐻(𝑂) = −∑ 𝑓(𝑜) 𝑙𝑜𝑔2 𝑓(𝑜)𝑜∈𝑂 ⁡⁡⁡⁡⁡⁡                                                       (26) 

If f(g,o) and f(g|o) are the joint and conditional probabilities of the random variables, 

respectively, then the conditional entropy H(G|O) is calculated as: 

𝐻(𝐺) = −∑ ∑ 𝑓(𝑔, 𝑜) 𝑙𝑜𝑔2 𝑓(𝑔|𝑜)𝑔∈𝐺𝑜∈𝑂 ⁡⁡⁡⁡⁡⁡                                  (27) 

The conditional entropy measures the amount of information required to describe outcome 

of a random variable G, given the information about a random variable O. In this context, in 

addition to the information gathered from O, the amount of additional additive 

manufacturing context-based information required to reconstruct the G-code is directly 

related to the mutual information. This is calculated as: 

𝐼(𝐺; 𝑂) = 𝐻(𝐺) − 𝐻(𝐺|𝑂)                                                                     (28) 

We have found that the uncertainty of reconstruction of G-code or the entropy H(G|O) 

increases when the distance of the microphone is further away from the printer or when 
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there is added noise in the environment. It also increases when the speed of the printer is 

high and there are more short and rapid movements. During these scenarios, we can use the 

properties of additive manufacturing to post-process the data achieved from the learning 

algorithms. Specifically, we have used two post-processing stages which utilizes specific 

additive manufacturing context-based information. 

 

Post-Processing Stage I: In this stage, we reduce H(G|O) by utilizing the fact that until the 

change of motion occurs, the nozzle moving in one particular dimension with a particular 

speed has a similar feature vector. By taking the output from the feature comparison model, 

we segment the acquired acoustic data into sections with similar movement. In this post-

processing stage, we then choose the output of the classifiers to be the highest occurring 

value in the given segment, and for regression, we average the speed obtained within the 

same section. This is similar to averaging used in digital signal processing to increase the 

Signal-to-Noise Ratio (SNR). 

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑜𝑤𝑒𝑟𝑁𝑜𝑖𝑠𝑒
)                                                         (29) 

When we increase the SNR, the entropy of the signal is reduced. As there is high correlation 

among the features extracted from successive frames of the audio collected from the 3D 

printer, averaging the output of the classification and the regression model increases the SNR 

and thus reduces H(G|O). 

 

Post-Processing Stage II: After applying post-processing stage I, the second stage measures 

the similarity between the two layers. The similarity of two layers is measured in terms of 
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number of segments, the sequence of motions in each layers, and the length of each segment. 

This post-processing stage helps the attack model in reducing the error due to miscalculated 

direction and fluctuating lengths by taking the average of segment lengths and direction 

among the similar layers of the 3D object. 

5.4 Attack Model Training and Evaluation 

 

Figure 10: Experimental Setup for Training and Testing the Attack Model 

Our testbed, shown in Figure 10, consists of a Printrbot 3D printer [50] with open source 

marlin firmware. It has four stepper motors. Motion in the X-axis is achieved by moving the 

base plate, whereas the nozzle itself can be moved in the Y and Z directions. The audio is 

recorded using a cardiod condenser microphone (Zoom H6) [51], which has a sampling 

frequency of 96 kHz and stores the data at 24 bit per sample. We have placed the audio 

recorder within 20 cm of the 3D printer. From our experiments, we have analyzed that for 

the direction prediction model to work efficiently, the audio device has to be placed at 45o 

angle to both the X and the Y-axis as shown in Figure 10. This allows the audio device to 

capture the variation of sound in both X and Y directions. The digital signal processing, 
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feature extraction, and post-processing are performed in MATLAB [52], whereas the training 

of learning algorithms, their evaluation and testing is done using Python [49]. The attack 

model consists of supervised learning algorithms. For training these algorithms, initial 

training data has to be determined. The training data consists of G-code to move the printer 

nozzle at different speeds (500 mm/min to 4500 mm/min) and different axes. The speed 

range chosen is specific to the 3D printer. The G-code for training phase consists of 

movement in just one axis (X, Y, and Z), two axes (XY, XZ, and YZ), and all three axes (XYZ). 

The audio signal corresponding to each of these G-codes is pre-processed and labeled for 

training the learning algorithms. The total length of audio recorded for training is 1 hour 48 

minutes. The total numbers of features extracted is 109 with the window size of 50 ms. For 

spectral subtraction using STFT, we used the frequency range of 70 Hz to 10 kHz to extract 

the features. We found that this range is sufficient for the given printer. For regression model, 

we have used Decision Trees, boosted using Gradient Boosting algorithm, whereas for the 

classification model we have used Decision Tree Classifier, boosted using AdaBoost algorithm. 

We have trained the learning algorithms and have performed K-fold cross validation, with k 

= 3, to test the efficiency of the learners as well as to avoid over or under fitting of the learning 

algorithms. In our experiment, regression model is trained only for the nozzle movements in 

the X and Y directions. This is because the Z motor moves one layer at a time, and the amount 

it moves is always fixed (the layer height) for a given object.  

5.4.1 Classification Models: 

Table 1 shows the accuracy of the various classifiers. We can see that the classification 

accuracy is higher for simple single axis movement classification compared to complex two 
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axis movements.  The accuracy of the classifiers are calculated by observing the confusion 

matrix which is shown in Figure 11.   

Table 1: Accuracy of the Classification Models 

Classifier Classifying Accuracy 

Ф1 Z|Z' 99.86% 

Ф2 1D|2D 99.88% 

Ф3 X|Y 99.93% 

Ф4 XYsame|XYDiff 98.89 % 

 

Using Equation (15), we take the true negative and true positive rates and calculate the 

accuracy of the classifiers.   

 

Figure 11: Confusion Matrix for Different Classifiers 
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For measuring the accuracy of the classifiers, Receiver Operating Characteristics (ROC) 

curves are also analyzed. The classifiers capability to separate the two classes is high if the 

graph lies closer to the upper right corner. This region corresponds to 100% sensitivity (zero 

false negatives) and 100% specificity (zero false positives).  As the collection of classifiers 

are arranged in a hierarchy, the bottleneck in terms of accuracy is the longest path followed 

while making the decision. In this case, the longest path involves all the classifiers.  

 

Figure 12: Receiver Operating Characteristic Curve for 1D|2D Classifier 

In Figure 12, ROC curve for classifying the movement in either one dimensional (just X or Y 

axis) or two dimensional (both X and Y together) axis is presented. This classification will 

allow us to determine if we need to use single axis classifier (X or Y) or the classifier that 

determines movement of nozzle in both XY axis together with either same speed or different 

speed. We can see that the curve has quite high Area under the Curve (AUC).  
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Figure 13: Receiver Operating Characteristic Curve for X|Y Classifier 

In Figure 13, the ROC curve for the classifier that separates the movement in either X or Y 

axis is presented. Compared to two axis separation like Figure 12 and Figure 14 (see below), 

 

Figure 14: Receiver Operating Characteristic Curve for XYsame|XYdiff Classifier 

the AUC for  X or Y movement classification is much higher. 
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Figure 15: Receiver Operating Characteristic Curve for Z|Z’ Classifier 

From Figures 12-15, it can be observed that the classifiers have a high sensitivity and 

specificity with a high Area under the Curve.  It means the different classes can be accurately 

classified based on the observed leakage from the channel L O. The AUC for the classifier 

classifying whether the movement in X and Y axis together with either same speed or 

different speed is comparatively less than other AUCs. This is intuitive as, in multiple axis 

movement, separation of individual movement is difficult. 

5.4.2 Regression Models 

Table 2: Accuracy of the Regression Models 

Regression 
Model 

Movement 
Axis 

MSE 
(Normalized) 

Mean Absolute Error 
(mm/minute) 

X Only X 0.00616 10.1217 

Y Only Y 0.01874 25.5094 

X X and Y 0.16580 150.3374 

Y X and Y 0.42900 314.2519 
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The accuracy of the regression model is measured in terms of Mean Square Error (MSE) with 

the data normalized with zero mean and unit variance. We have also presented the mean 

absolute error to understand how the speed prediction varies from the real speed. From 

Table 2, we can see that the MSE is relatively higher for the value predicted by the regression 

model for the motion in Y axis when the motion is occurring at two axes. However, this error 

can be removed during the post-processing stage as the travel feed rate is generally similar 

between consecutive frames in each layer of printing. Hence, we can determine the speed of 

the Y motor if we know the speed of the X motor. Moreover, while printing, most of the time, 

the range of printing travel feed-rate varies in a narrower range. Hence, we can improve the 

accuracy of the regression model, if we train it around narrower ranges. This can be done by 

using unsupervised learning to separate the group of ranges and then using supervised 

learning algorithms to perform speed prediction in finer resolution.  

 

Figure 16: Prediction Results for regression Models in Single Axis 

In Figure 16, we can see that there is a linear relationship between the real speed and the 

predicted speed computed by the regression model. 
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5.4.3 Direction Prediction Model 

 

Figure 17: Feature Segmentation and Direction Prediction 

Figure 17 shows the feature comparison conducted for the audio recorded while the 3D 

printer is printing an object. We can observe when the nozzle changes its direction by 

analyzing the distance of features between successive frames. Peaks are extracted by 

applying the threshold obtained during the training phase. A value higher than the threshold 

is 1, otherwise 0. Also in Figure 17 (iii), we can see that the magnitude of the features vary 

according to direction of movement of the nozzle.  Direction prediction model uses this 

information to determine the direction in each axis for the given line segment (positive or 

negative direction in X or Y axis). 
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CHAPTER 6: RESULTS FOR TEST OBJECTS 

In order to test our attack model, we define various benchmark parameters which affect the 

accuracy of the attack model as follows:  

Speed of Printing: The fixed frame rate affects the temporal and spectral features extracted 

from the audio. With the increase in the speed, faster rate of change of spectral features will 

not be captured and this can degrade the performance of the attack model. Hence, speed of 

printing is varied to test the accuracy of the attack model.  

Dimension of the Object: With smaller objects, shorter nozzle movements are present. To 

represent these shorter movements, temporal resolution of the features have to be increased 

by making the frame size smaller. To test our attack model with smaller objects, we have 

varied the size of the object being printed. 

 Complexity of the Object: Complex object incorporates movement in more than one axis. 

Hence, to increase the complexity of the object being created, we have tested the acoustic 

model with shapes consisting of simultaneous multiple axis movement, such as triangle. 

 

In order to provide the result in a meaningful manner, instead of calculating the mean error 

square error, in this section, we have calculated the Mean Absolute Percentage Error (MAPE) 

for the distance prediction. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡−𝑃𝑡

𝐴𝑡
|𝑛

𝑡=1                                                                                            (30) 

Where At is the actual speed and Pt is the speed predicted by the attack model. Since the 

frame size (50 ms) is same for all the features, distance calculation error will also be given 
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by equation 30. The classification accuracy is calculated as the total correct prediction made 

out of total data passed to the classifier.  

Table 3: Test Results for Square and Triangle 
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For the different parameters used to test the accuracy of the attack model, Table 3 consists 

of the corresponding results. We can see that the average classification accuracy and 

regression MAPE before the post-processing stage are 66.29% and 20.91% respectively. 

Whereas, after post-processing stages, the classification accuracy is 78.35%, and the 

regression MAPE is 17.82%. We can observe that the post-processing stages have improved 

the accuracy for the object reconstruction. 

 

Figure 18: Reconstruction of Square 

6.1  Reconstruction of a Square 

 A square incorporates movements of stepper motors in all axis, however, one at a time. From 

Table 3, we can see that the accuracy of the classifier for reconstructing the G-code is as high 

as 88.57% with MAPE of just 5.69%. After post-processing stages the same accuracy has 
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been increased to 98.55% for the classifier with MAPE of just 3.13%. We can also observe 

that as the travel feed-rate increases to 1700 mm/min, the accuracy of the classifier and the 

regression model decreases. Also for short movements such as 5mm, the accuracy of the 

attack model decreases. Figure 18 shows the square reconstructed by the attack model for a 

side length of 20 mm. 

6.2 Reconstruction of a Triangle 

 

Figure 19: Reconstruction of Triangle 

While constructing a triangle, both the X and Y stepper motors have to move at the same 

time, this affects the reconstruction accuracy of the attack model. From Table 3, we can see 

that the accuracy of the classifier of the attack model is as high as 85.72% with MAPE of just 

6.73% before post-processing and after post-processing they are 97.79% and 3.29% 
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respectively. As expected, the accuracy of the learning algorithms decreases with increasing 

speed and decreasing length of the movement. Also, classification and regression accuracy 

of reconstructing triangle is less compared to square. The G-code reconstructed for one layer 

of the triangle, with travel feed-rate of 900 mm/min and base and height of 20mm each, is 

presented in Figure 20. From Figure 19, we can see that the reconstructed shape of the 

triangle still has some misalignment and wrong direction prediction even after post-

processing. 

 

Figure 20: Partial Reconstructed G-code for Triangle 

6.3 Complex Test Object 

As a test case for combination of shapes, we have printed an object representing the outline 

of a key at 900 mm/min travel feed-rate. The classification accuracy obtained before the 

post-processing is 83.21% and the regression MAPE is 9.15%. After the post-processing, the 

classification accuracy obtained is 92.54% and the regression MAPE obtained is 6.35%. The 

object reconstructed by the attack model is shown in Figure 21. As we can see, before post-

processing stage II, there are some miscalculated direction and non-uniform lengths in each 

of the layers of the object. However, after post-processing stage II, these errors are corrected. 
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In terms of dimension, we can observe that the reconstructed key varies in length and width 

compared to the original object. Nevertheless, the general outline of the key is reconstructed 

accurately. Moreover, the accuracy in terms of the length obtained after the post-processing 

stage is 89.72%, which is calculated by dividing the difference between the original length 

and the predicted length of each segment in each of the layers by the total length of all the 

segments in all the layers. 

 

Figure 21: Reconstruction of a Key as a Case Study 

The test case, a key, consist of five layers. As shown in figure 21, our attack model is capable 

of distinguishing the change in the layer, change in the line segment, determine the length of 

each line segment, and determine the direction of the nozzle movement in each axis.  
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CHAPTER 7: DISCUSSION 

7.1  Limitations of the Attack Methodology 

Although we have shown that the attack model is capable of reconstructing the G-code with 

high accuracy there are some caveat to this methodology described below: 

 

7.1.1 Distance of Microphone 

 In our current experimental setup, microphone should be placed close enough to be able to 

detect the variation of the sound received for determining the direction of the motion. The 

direction prediction model in our attack model relies in the sound/vibration conducted by 

the motor to the moving part of the printer. If enough sound/vibration is not conducted then 

the audio device will not be able to capture the variation. In this case, some other sensors 

can be incorporated along with the audio device, such as proximity sensors, to detect the 

direction. We leave this for our future work. 

 

7.1.2 Short and Rapid Movements 

Due to the fixed frame size incorporated for feature extraction in our experiment, the 

accuracy of the attack model is reduced for higher speed and smaller dimension. In order to 

capture smaller movements, the temporal resolution of the features extracted have to be 

increased by making the frame size smaller. However, for faster speeds, we need larger 

frame size to increase the frequency resolution for better spectral features. This trade-off 
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dictates that we should incorporate adaptive frame size to increase the accuracy of the attack 

model. We will incorporate this in our future work. 

 

7.1.3 Multiple Axis Movement and Noise 

 The separation of sound source from combination of sound is a well-known problem in 

speech processing. In our attack model, we have incorporated spectral subtraction to acquire 

features that are unique to each of the stepper motors. However, there are other methods in 

separating the sources of sound [53][54]. Incorporating them in the attack model may 

increase the accuracy of the G-code being reconstructed. We leave this for our future work. 

7.2 3D Printer Variation 

Table 4: 3D Printers Available in the Market 

 

As we can see in Table 4, most of the Fused Deposition Modeling (FDM) based 3D printers 

available in the market consists of an equal number of stepper motors. These models also 

have Z motor to control the layer height. They only vary in speed and the resolution of 

printing. Our attack methodology can be used on any of these printers. However, this attack 
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methodology needs to be tested against other types of printers based on selective laser 

sintering and selective laser melting, as their structure varies from the FDM based 3D 

printers. We leave this for our future work. 

 

7.3 Multiple Side-Channel Analysis 

In this thesis work, we analyzed the acoustic side-channel, however, as mentioned earlier, 

cyber-physical additive manufacturing system have various side-channels through which 

information leakage is possible. It is possible that combination of these side-channels can 

cumulatively leak more information through the analog emissions.  Hence, it is imperative to 

design more complex attack models that consider multiple side-channels for multivariate 

analysis of information leakage. However, this multivariate analysis can follow the same 

methodology as described in this thesis.  

7.4 Counter Measures 

7.4.1 Similar Loads on Each Motor 

If each of the stepper motor moves equal load, then the acoustic features emanated will be 

similar for all the motors. In this scenario, the attack model will not be able to distinguish the 

movement of one motor from another. However, making loads equal in each motor requires 

restructuring the design of the printers. Hence, printer design methodology has to consider 

impact of structural design on side-channel leakage as a parameter for designing secure 

additive manufacturing system. 
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7.4.2 G-code variation 

To make the G-code reconstruction process harder, randomness in the movements of the 

motors can be incorporated in the G-code. However, this countermeasure will delay the total 

printing time by adding redundancy in the G-code while improving security against the 

acoustic side-channel attack. Further research is required for designing efficient algorithms 

that slice the 3D models to increase the entropy of the signals leaked through the side-

channel. 

7.4.3 Leakage Aware CAD and CAM Tools 

Rather than providing run-time solutions, design time solution can be incorporated by make 

the computer aided design and computer aided manufacturing tools aware about the leakage 

from the side-channels. Designing such tools will require a framework that is capable to 

predict the amount of information leakage from the side-channels given the specific 

mechanical structure of the 3D printer and the structure of the 3D object.  
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CHAPTER 8: CONCLUSION 

 In this thesis, we have presented a novel acoustic side-channel attack model for cyber-

physical additive manufacturing system to reconstruct cyber domain data, which includes 

IP. Additionally, we have tested our attack model with a state-of-the-art 3D printer to 

reconstruct objects with different benchmark parameters such as speed, dimension, and 

complexity. We have successfully performed the acoustic side-channel attack with an 

average axis prediction accuracy of 66.29%, and average length prediction error of 20.91%. 

Furthermore, with post-processing we have achieved a moderately high average axis 

prediction accuracy of 78.35% and average length prediction error of 17.82%. Specifically, 

our attack model has achieved a high axis prediction accuracy of 92.54% and a small length 

prediction error of 6.35%, when testing it with a complex object such as a key. In addition to 

testing and validating our attack model, we also have discussed some of its limitations and 

countermeasures. Nonetheless, our work serves as a proof of concept of a serious physical-

to-cyber domain attack, which acquires and utilizes side-channel information (such as 

acoustic signals) from additive manufacturing systems) to steal the valuable cyber domain 

data. 
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