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Abstract 

Current presumptive tests for illicit drugs can suffer from false positive results and poor selectivity, 

and consequentially there is a need to develop new colour spot tests specifically designed to 

circumvent these existing challenges. In this work, we report on a new fluorescent hybrid 

nanozyme peroxidase-like catalytic colorimetric sensor and demonstrate proof of concept of this 

novel colorimetric-specific presumptive test for cocaine. A novel peroxidase-mimic hybrid 

nanozyme was developed based on the localized surface plasmon resonance-enhanced 

fluorescence interaction between multi-shaped cationic cetyltrimethylammonium bromide 

(CTAB)-functionalized gold nanoparticles (AuNPs) and anionic non-cadmium fluorescent-

emitting L-cysteine-capped ZnSeS alloyed quantum dots (QDs). The affinity-based interaction of 

cocaine with the QDs-CTAB-AuNP surface was induced by its distinct structural conformation 

and this forms the basis for the selective recognition. Thus, the hybrid nanozyme could function 

both as a catalytic affinity-based receptor and as an optical signal transducer based on the catalysed 

oxidation of 3,5,5-tetramethylbenzidine by H2O2. A positive bluish-green colour, specific to 

cocaine recognition, was colorimetrically obtained under optimum catalytic conditions. The 

optimized assay system detected cocaine within two minutes with unique specificity and distinct 

colour reaction. Under the optimum cocaine reaction conditions, the analysis of other substances 

and drugs on the colorimetric response of the QDs-CTAB-AuNP hybrid nanozyme revealed no 

colour interference, thus demonstrating that the developed probe could be utilized as a presumptive 

colour spot test for cocaine. 

 

KEYWORD: Nanozyme; peroxidase; colorimetric; plasmonic nanoparticle; quantum dots; cocaine 

detection 
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1. Introduction 

Forensic laboratories are often called upon to identify tablets, liquids and unknown powders that 

may contain a controlled drug. In an increasingly complex illicit drug market, where a large 

number of new or novel psychoactive substances appear and disappear over time, the search for 

more robust methods for the detection, identification and quantification of analytes of forensic 

interest has placed a burden on forensic science providers to develop new analytical tools and 

methods to meet the demand [1]. Presumptive tests [2-5] and confirmatory tests [6-9] are used by 

forensic drug chemists to analyse unknown substances and illicit drugs. In many cases, it is also 

common place for first responding law enforcement officers to determine whether or not a 

suspected substance contains an illicit drug (e.g. cocaine) using an ‘off the shelf’ presumptive test 

kit with confirmatory testing remaining the responsibility of the laboratory based forensic chemist. 

Colorimetric testing, involving the response of a specific reagent to a drug is the quickest method 

for drug detection and also the means to potentially unravel the drug class to which the substance 

belongs. Commercially available chemical spot test kits are intensively used by law enforcement 

agencies for the detection of drugs of abuse. However, even though many of these tests have been 

in existence for very many decades, their underpinning chemistry in some cases remains 

speculative or unknown and they are increasingly challenged in terms of specificity particularly as 

new drugs emerge onto the illicit market. For example, the Scott test commonly used for cocaine 

[10,11] gives false positive results for other substances [12]. Advances in sensitive and tuneable 

biosensor technology where nanoparticle chemistry is deployed to target specific small molecules 

is a potential pathway forward and this work concentrates on developing a proof of concept for 

this approach using cocaine as the target molecule.   
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After the discovery of iron oxide magnetic nanoparticles (Fe3O4 NPs) as a peroxidase mimic 

[13,14], the term “nanozyme” was coined to describe nanomaterial-based artificial enzyme mimics 

[15]. Since then, other metal oxide-based nanomaterials such as cerium oxide [16], cobalt oxide 

[17], manganese dioxide [18] and vanadium pentoxide [19] have also been reported as peroxidase 

mimics. In addition, metal-based nanomaterials such as plasmonic gold (Au) NPs [20], platinum 

NPs [21], and carbon-based nanomaterials also fulfil this function [22,23]. Apart from the 

published reports on single and bi-metallic AuNP nanozymes, hybrid nanomaterials that combine 

the localized surface plasmon resonance (LSPR) properties of AuNPs and the quantum 

confinement properties of semiconductor quantum dot (QDs) nanocrystals have not previously 

been reported to be peroxidase mimics and their development as reported in this work could 

potentially pave the way for the construction of new generation hybrid nanozymes for biosensing 

applications.  

In this work, we report for the first time on the development of a new hybrid fluorescent nanozyme 

biosensor exhibiting peroxidase mimicking activity for the colorimetric detection of cocaine. 

Electrostatic interaction between cationic cetyltrimethylammonium bromide (CTAB)-

functionalized multi-shaped AuNPs and negatively charged, non-cadmium fluorescent emitting L-

cysteine (L-cyst)-capped ZnSeS alloyed QDs was used to form the hybrid nanozyme. Upon 

binding, LSPR from CTAB-AuNPs induced fluorescence enhancement in the QDs, thus 

influencing the peroxidase mimicking activity of the hybrid nanozyme. The peroxidase mimic 

hybrid nanozyme sensor was used both as a catalytic receptor and as the signal transducer for 

cocaine identification, triggering a positive bluish-greenish colour for cocaine based on the 

catalysed oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2. To the best of our 

knowledge, our work is the first to report on an affinity-based hybrid multi-shaped plasmonic NP-
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QDs fluorescent nanozyme mimic as a colorimetric sensor for forensic analysis of drugs or indeed 

any other target molecule.  

 

2. Experimental 

2.1. Materials 

Citric acid, TMB, ascorbic acid, nicotine, diltiazem (98%), levamisole HCl (99+%) and CTAB 

were purchased from Acros Organics. Silver nitrate (AgNO3), sodium phosphate dibasic 

dodecahydrate, lidocaine hydrochloride (≥ 99 %), benzocaine (≥ 99 %), cocaine hydrochloride (≥ 

97.5 %), sodium acetate, (+) methamphetamine hydrochloride, trioctylyphosphine oxide (TOPO), 

trioctylyphosphine (TOP), hexadecylamine (HDA), octadecene (ODE), selenium (Se), sulphur (S), 

oleic acid, phenacetin (≥ 98%) and H2O2 (30% w/w) in solution with stabilizer were purchased 

from Sigma Aldrich. Tris(hydroxymethyl)aminomethane was purchased from Formedium. 

Dimethyl sulfoxide (DMSO), tri-Sodium citrate dihydrate, diethylzinc (Et2Zn) solution, myristic 

acid, L-cyst, oleylamine (OLA) and gold (III) chloride trihydrate (HAuCl4.3H2O) were purchased 

from Thermo Fisher. Quinolin-8-yl 1-pentyfluoro-1H-indole-3-8-carboxylate (5F-PB-22), N-

ethylpentylone hydrochloride, methylenedioxypyrovalerone hydrochloride (MDVP), 

benzylpiperazine dihydrochloride (BZP) and reference standards (all >98% pure) were 

synthesised, characterised and provided by Dr. Oliver B. Sutcliffe, Manchester Metropolitan 

University, UK. All other chemicals were used as received. The buffer solution used in this study 

was prepared in Milli-Q water.  
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2.2. Characterization 

UV/vis absorption and fluorescence emission measurements were performed on a Cary Eclipse 

(Varian) spectrophotometer. Transmission electron microscopy (TEM) measurements were 

carried using a JEOL JEM-1200EX operated at 80 kV. Samples were deposited on a pioloform 

coated grid prior to imaging. The particle size distribution of the plasmonic NPs were analysed 

using ImageJ software. Energy dispersive X-ray (EDX) analysis was carried out using a JEOL 

JSM 7400F field emission scanning electron microscope integrated with an Oxford Instruments 

Inca EDX spectrometer. Powder X-ray Diffraction (XRD) analysis was carried out using a 

Siemens D5000 diffractometer with Cu Kα radiation (λ = 1.54056 nm) and data were obtained in 

the range of 3-60° using a 0.1° 2θ step size and a 3 s count time per step with a 0.066° slit width.  

FT-IR measurements were carried out using an Agilent Cary 630 FT-IR spectrometer. Absorbance 

measurements were recorded on a 800 TS microplate absorbance reader from BioTek. 

 

2.3. Synthesis of multi-shaped CTAB-AuNPs 

To synthesize CTAB-AuNPs [24], growth solution containing a mixture of 10 mL 0.1 M CTAB, 

5 mL 2.5 x 10-4 M HAuCl4.3H2O, 0.5 mL 0.004 M AgNO3 and 0.4 mL 0.1 M ascorbic acid was 

stirred at room temperature. Thereafter, 100 µL of seed solution (5 mL 2.5 x 10-4 M HAuCl4.3H2O 

+ 10 mL 0.1 M CTAB + 0.6 mL 0.01 M NaBH4) was added into the growth solution under stirring 

and the solution was left to stand for ~24 hours. The CTAB-stabilized AuNPs were purified by 

centrifugation, re-suspended in 50 mL of Milli-Q water and stored in the dark at room temperature.  
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2.4. Synthesis of L-cyst-ZnSeS alloyed QDs 

Organic-phased non-cadmium emitting ZnSeS alloyed QDs were synthesized via the hot-injection 

organometallic synthetic route and a ligand exchange reaction was used to convert the hydrophobic 

nanocrystals to hydrophilic nanocrystals by replacing the organic-capped ligands with L-cyst thiol 

ligand. Under reflux, 5 mL Et2Zn, 0.9 g TOPO, 1 mL TOP, 0.6 g HDA, 0.6 g myristic acid, 20 mL 

ODE, 2 mL OLA and 10 mL oleic acid were mixed in a 3-necked flask under N2 gas flow for a 

few minutes (min). Thereafter, the solution was subjected to high temperature reaction to aid 

complexation of the Zn metal to the surfactants and organic ligand precursors. When the 

temperature reached ~320 °C, 3 mL of TOPSe precursor (0.12 g Se + 5 mL TOP) was injected into 

the Zn reaction solution to aid the nucleation and growth of ZnSe core QDs. When the temperature 

of the solution reached ~330 °C, TOPS precursor (0.16 g S + 0.9 g TOPO + 10 mL ODE, 1 mL 

TOP and 5 mL oleic acid) was injected to aid the nucleation and growth of alloyed ZnSeS QDs. A 

fraction of the ZnSeS alloyed QDs was injected out after ~35 min into a beaker, sealed with 

parafilm and kept in the dark for ~24 hours. Prior to ligand exchange reaction, the organic-phased 

QDs was dissolved in chloroform. 

A ligand exchange reaction to replace the organic capping with water-soluble L-cyst thiol ligand 

was carried out by mixing the chloroform-dispersed QDs in a solution of 3 g KOH, 2.5 g L-cyst 

and 40 mL methanol. Appropriate volume of Millipore water was added into the solution to 

precipitate the hydrophilic QDs from the hydrophobic QDs and the solution was kept still for ~24 

hours. The QDs were purified with acetone, chloroform/acetone/ethanol and acetone/ethanol 

mixture and thereafter dried in the fume hood. The surface capping with L-cyst ligand provided 

free carboxylate groups readily available for electrostatic interaction. 
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2.5. Assay procedure 

All assay preparation and detection was carried out in a 96-well clear flat-bottom microplate. The 

QDs-CTAB-AuNP fluorescent hybrid nanozyme was formed via electrostatic interaction by 

mixing 3 mL of cationic CTAB-AuNPs (0.02 nM) with 3 mg/mL of L-cyst-capped ZnSeS QDs (1 

mL). For quantitative cocaine detection, 20 µl of the hybrid nanozyme was mixed with 75 µl of 

cocaine (10–100 µM) in KCl-HCl buffer, pH 2.2, 45 µL TMB solution (0.003 M) and 30 µl H2O2 

(1.2 M) solution. After adding TMB/H2O2 into the probe system, photographs of the colorimetric 

response were taken at ~2 min.  The absorbance of the probe solution was recorded on a BioTek 

800 TS microplate reader with a 630 nm filter after TMB/H2O2 addition.  

 

3. Results and discussion 

3.1. Structural properties  

The surface morphology of the plasmonic cationic CTAB-AuNPs, L-cyst-capped ZnSeS QDs and 

the QDs-CTAB-AuNP hybrid nanozyme was analysed using TEM. Looking closely at the TEM 

micrograph of CTAB-AuNPs (Fig. 1A), a well-defined multi-shape mixture of spherical, cubic, 

bipyramidal, pentagonal and urchin particles was observed. The estimated average particle size 

was 58 nm. CTAB functioned as a stabilizer while ascorbic acid acted as a reducing agent for the 

Au ion in which higher reduction rates and the strong effect of Ag precursor led to the formation 

of the multi-shaped surface morphology [25]. The surface morphology of the L-cyst-capped ZnSeS 

QDs (Fig 1B) and the hybrid nanozyme (Fig. 1C) was heterogenous in nature as evident from the 

polydisperse particle morphology. Zn-based non-cadmium emitting QDs are known to exhibit 

lesser optical properties than the well-known Cd-based QDs [26]. However, to avoid the inherent 

toxicity of Cd-based QDs, Zn-based QDs was the choice of nanocrystal in this work. 
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PXRD was used to study the crystal nature of the colloidal L-cyst-capped ZnSeS QDs, CTAB-

AuNPs and the QDs-CTAB-AuNP hybrid nanozyme. To confirm the formation of the alloyed 

ZnSeS QDs, we compared the diffraction pattern of ZnSe core and the alloyed ZnSeS QDs (Fig. 

2A). From the diffraction pattern, a slight shift to higher Bragg angle was observed for the alloyed 

ZnSeS QDs relative to the ZnSe core. The shift was clearly visible in the diffraction peak at the 

{220} and {311} plane, thus depicting structural changes in the alloyed ZnSeS QDs relative to the 

ZnSe core. The diffraction pattern can also be attributed to the zinc-blende crystal structure due to 

the formation of the three prominent peaks at planes {111}, {220} and {311} respectively [27] 

and can be assigned to the JCPDS Card No.19-0191. For the diffraction pattern of CTAB-AuNPs 

shown in Fig. 2B, the position of the peaks and the assigned plane at {111}, {112}, {211}, {220}, 

{310} and {200} is indicative of cubic crystal structure [28]. The analysis of the diffraction pattern 

of the QDs-CTAB-AuNP hybrid nanozyme (Fig 2C), reveal the presence of the prominent QDs 

peak at the {111} plane while the less prominent peaks at the {220} and {311} plane were weakly 

projected. This suggest that the electrostatic interaction between the L-cyst-capped ZnSeS QDs and 

CTAB-AuNPs induced the structural change in the diffraction pattern of the QDs-CTAB-AuNP 

hybrid nanozyme. 

The elemental analysis of L-cyst-ZnSeS QDs was qualitatively and quantitatively assessed by EDX 

spectroscopy. As shown in Fig. S1, the qualitative Zn, Se, S metal components of the alloyed QDs 

were strongly detected. In addition, C and O present in the functional moiety of the L-cyst thiol 

capping ligand was also identified. The elemental compositions are: Zn (34.15%), Se (6.26%), S 

(22.45%), C (26.63%) and O (10.50%), thus suggesting that the QD nanocrystal is rich in Zn. 
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3.2. Optical properties 

3.2.1. UV/vis and fluorescence emission spectra 

The optical properties of AuNPs occur primarily due to their distinctive SPR absorption property. 

Alteration of the local electron confinement which is reflected via changes in the SPR absorption 

band and via the colour of the colloidal solution is induced by alteration/change in the plasmonic 

NP geometry, shape or size [29]. Changes in the colour of the colloidal solution and the SPR 

absorption peak also forms the basis for colorimetric plasmonic sensors and is reflected by either 

analyte-induced NP aggregation or disaggregation of the particles. In addition, colorimetric probes 

based on changes in the surrounding dielectric constant of plasmonic NPs by target analytes also 

alters the SPR absorption peak [29]. Fig. 3A shows the SPR absorption peak of the cationic CTAB-

AuNPs. The strong plasmon absorption at around 564 nm is distinctive of non-spherical particles 

[30] while the absence of broadening in the SPR absorption peak provides direct evidence for the 

stability and unagglomerated state of the cationic plasmonic CTAB-AuNP. For the QDs (Fig. 3B), 

the broad excitonic absorption spectrum is indicative of a heterogenous growth pattern and a 

polydisperse particle morphology [31], described earlier in the TEM image.  

Fig 3B shows the fluorescence emission spectrum of the QDs with a wavelength maximum at 525 

nm (λexc = 200 nm). The fluorescence quantum yield which is a measure for assessing the surface 

quality of the QDs was determined according to Eq. 1: 

 

ΦF
QD = ΦF

R6G F𝑄𝐷𝑠.ODR6G(λexc).n
2
water

F𝑅6𝐺.ODQD(λexc)
.nethanol
2                                                                                       (1) 

 

ΦF
R6G is the fluorescence quantum yield of the reference standard, rhodamine 6G in ethanol (Φ = 

0.95) ) [32], F𝑄𝐷𝑠 and F𝑅6𝐺 are the sum of the integrated fluorescence intensity of the QDs and 
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standard, ODR6G(λexc) and ODQD(λexc) are the optical densities of the standard and QDs while n2water 

and nethanol
2  are the square of the refractive indices of the solvents used to dissolve the QDs and 

standard respectively. The calculated fluorescence quantum yield of the QDs was 52%. The 

relatively high quantum yield value provides strong evidence for the moderate suppression of 

surface defect states that act as dangling bonds to induce a non-radiative exciton recombination 

state in the QDs.  

 

3.2.2. LSPR-enhanced fluorescence of L-cyst-ZnSeS QDs 

The chemistry underpinning the effects of noble metal plasmonic NPs on the fluorescence of light-

emitting fluorophores have long been researched and is well documented in the literature [33,34]. 

Metal plasmonic NPs are known to act as either radiative fluorescence quenchers or radiative 

fluorescence enhancers based on strong dependence on their shape, size, and distance between the 

fluorophore and plasmonic NP in a donor-acceptor relationship [35,36]. The competition between 

fluorescence quenching and enhancement, relates to the dielectric dispersion of the materials and 

the electric field magnitude at the particle surface which results in plasmon-induced fluorescence 

quenching from small-sized plasmonic NPs or plasmon-induced fluorescence enhancement from 

larger-sized plasmonic NPs [34,36]. Lakowicz used the radiating plasmon model to demonstrate 

that depending on the coupling nature between the oscillating SPR of the metal NP and the 

fluorophore in close distance to the metal surface, the plasmon-induced radiative fluorescence 

quenching of the fluorophore is dominated by the absorption cross section of the NP while the 

plasmon-induced radiative fluorescence enhancement is dominated by the scattering cross section 

of the NP.  
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Fig. 3C shows the spectral overlap between the LSPR absorption band of CTAB-AuNPs and the 

fluorescence emission spectrum of L-cyst-ZnSeS QDs. The strong overlap, which reveals close 

proximity of the QDs PL spectrum to the LSPR absorption band of the NP, can be attributed to the 

combination of the NP shape and size and the PL spectral emission of the QDs. Comparison of the 

PL emission spectra of the unbonded QDs and the hybrid CTAB-AuNPs-QDs (Fig. 3D), reveals a 

marked enhancement in fluorescence intensity for the latter. Due to the LSPR-induced fluorescent 

enhancement of the QDs, the radiating plasmon model proposed by Lakowicz suggests that the 

scattering cross section of the NP dominates over the absorption cross section. Hence, CTAB-

AuNPs acts as a donor of plasmon energy while L-cyst-ZnSeS QDs acts as an acceptor. It has been 

reported that plasmonic NPs with size less than 40 nm are strong radiative fluorescence quenchers 

while NPs with size > 40 nm are strong radiative fluorescence enhancers [37]. Therefore, the 

LSPR-induced fluorescence enhancement of L-cyst-ZnSeS QDs by the 58 nm-sized CTAB-AuNPs 

as observed in this work, corroborates the underpinning chemistry of published plasmon-enhanced 

fluorescence of fluorophores.  

 

3.2.3. FT-IR analysis 

FT-IR analysis was used to probe the electrostatic interaction between CTAB-AuNPs and the L-

cyst-ZnSeS QDs. From Fig. 3E, L-cyst-ZnSeS QDs is characterized by the asymmetric and 

symmetric -COO- stretching band at 1576 cm-1 and 1388 cm-1 while the band at 3365 cm-1 is 

assigned to the -N-H stretch. For CTAB-AuNPs, the bands at 2915 cm-1 and 2847 cm-1 is assigned 

to the -C-H stretch while the bands at 1464 cm-1 is assigned to the -C-H bend. For the QDs-CTAB-

AuNP hybrid nanozyme, the band at 1617 cm-1 which is absent in CTAB-AuNPs and the L-cyst-

ZnSeS QDs can be used as a proof of the electrostatic interaction [38]. In addition, the -C-H 
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bending and stretching band at 1460 cm-1 and 2913 cm-1 for the QDs-CTAB-AuNP hybrid 

nanozyme are shifted to lower wavenumbers relative to CTAB-AuNPs, thus tentatively confirming 

the established electrostatic interaction.   

 

3.3. Catalytic activity  

The efficiency of the peroxidase-like catalytic activity of the QDs-CTAB-AuNP hybrid nanozyme 

sensor to recognize cocaine was investigated. From Fig 4A and 4B, the mixture of TMB/H2O2 was 

colourless and exhibited no absorption peak while the mixture of the QDs-CTAB-AuNP hybrid 

nanozyme and TMB/H2O2 (without cocaine) showed no colour and absorption peak unique to a 

peroxidase catalytic activity. However, a strong catalytic colorimetric response and corresponding 

characteristic absorption at ~655 nm, unique to the characteristic peroxidase catalytic activity was 

exhibited when cocaine solution (100 µM) was added to the QDs-CTAB-AuNP hybrid nanozyme 

and TMB/H2O2 mixture.  

Scheme 1 shows the descriptive working principle of the QDs-CTAB-AuNP hybrid nanozyme 

peroxidase-like catalytic cocaine biosensor. Due to the electrostatic interaction between cationic 

CTAB-AuNPs and anionic L-cyst-capped ZnSeS, LSPR from the plasmonic NP induced 

fluorescence intensity enhancement signal in the QDs (Fig. 3B). Such LSPR-mediated 

fluorescence interaction has been reported for several biosensors [39,40]. The widely reported 

mechanism of nanozyme-based peroxidase-like biosensors is the catalysation of H2O2 into 

hydroxyl radicals (·OH) by a nanozyme catalyst in the presence of a suitable substrate [41]. To 

understand the interaction between the QDs-CTAB-AuNP hybrid nanozyme and cocaine, we 

undertook direct fluorescence measurements as shown in Fig. S2. It was observed that the direct 

addition of cocaine to the hybrid nanozyme triggered further fluorescence enhancement which 
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could be explained in terms of affinity-based interaction between the QDs-CTAB-AuNP hybrid 

nanozyme and cocaine. Within the aqueous hybrid environment, hydrophobic molecules can be 

trapped by CTAB and adsorbed onto the AuNP surface, thus aiding strong interaction with an 

affinity-based analyte (cocaine in this case) and leading to the enhanced fluorescence intensity of 

the QDs. Such interaction has been reported for surface-enhanced Raman scattering, surface-

enhanced fluorescence and hydrophobic molecule-based photochemical reactions [42]. From a 

fluorescence theoretical perspective for semiconductor QDs, the enhanced fluorescence intensity 

observed for the QDs-CTAB-AuNP hybrid nanozyme from the cocaine interaction, implies that 

the electron-hole exciton pair of the QDs recombined and promoted an electron from the valence 

band to the conduction band. This led to the creation of positive holes in the valence band and 

excited electrons in the conduction band [43,44]. Thus, the QDs-CTAB-AuNP fluorescence hybrid 

nanozyme has the potential to decompose H2O2 to ·OH and oxidize the chromogenic substrate 

substrate TMB to yield a bluish-green colour for cocaine identification. 

 

3.4. Effect of buffer type  

During enzymatic assays, buffers serve to stabilize and adjust the desired pH. Besides selecting 

the appropriate pH required, the nature of the buffer components, concentration and the ionic 

strength all play important roles for optimum catalytic reaction. The effect of buffer type was 

investigated to probe the efficiency of the detection medium to aid the peroxidase-like catalytic 

activity of the QDs-CTAB-AuNP hybrid nanozyme for cocaine colorimetric recognition. Cocaine 

HCl (100 µM) was prepared in citrate-phosphate, pH 4.0 and KCl-HCl, pH 2.2 buffer due to 

reported stability of cocaine HCl in these buffers [45]. Borax-HCl, pH 8.0 was also chosen for 

further investigation as cocaine is known to hydrolyze to benzoylecgonine at pH > 5.5 [46]. 
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Sodium citrate, pH 4.2 buffer was chosen due to its use as a detection medium for plasmonic NPs 

in peroxidase-mimic reaction [47]. Fig. 5 shows the catalytic response of the QDs-CTAB-AuNP 

hybrid nanozyme to cocaine using the four different buffer types. It was evident that no catalytic 

activity was observed by the QDs-CTAB-AuNP hybrid nanozyme when citrate-phosphate pH 4.0, 

sodium citrate pH 4.2 and borax-HCl pH 8.0 buffers were used. However, high catalytic activity 

accompanied by a bluish-green colorimetric response was exhibited by the QDs-CTAB-AuNP 

hybrid nanozyme biosensor when KCl-HCl pH 2.2 buffer was used. It was also noteworthy that 

within 2 minutes (min), cocaine was detected visually with high catalytic activity under optimum 

conditions. Since the nature and ionic strength of buffers play important roles in enzyme activity 

as well as the stability of cocaine, components of the buffer such as mono- or di-valent metal ions 

directly influence the catalytic activity of the enzyme. Therefore, the catalytic-induced reaction of 

the hybrid nanozyme for cocaine recognition in 0.1 M KCl-HCl, pH 2.2 buffer may be explained 

in terms of the stabilizing effects of the buffer components for cocaine and was the reason why 

this buffer was chosen for the colorimetric assay. The effects of pH on the catalytic activity of the 

QDs-CTAB-AuNP hybrid nanozyme for cocaine detection is discussed in the Supplementary 

Information.  

 

3.5. Elucidation of the affinity-based cocaine interaction 

Understanding the structure and conformation of molecules is crucial in the context of unravelling 

how drugs interact with the hydrophobic and hydrophilic surfaces of materials. It is imperative to 

note that the high affinity-based binding of cocaine to the QDs-CTAB-AuNPs hybrid surface is 

quite intriguing. Thus, to unravel the mystery behind the strong selectivity reaction of cocaine, we 

have displayed the structure of cocaine and the other tested drug substances and drugs in Scheme 
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2. We believe a possible mode of interaction of the catalytic sensor to cocaine can be unravelled 

by elucidating the structural conformation of cocaine in comparison to the non-selective 

compounds. Observing closely the molecular structure of cocaine, it is apparent that cocaine 

possesses a unique carbomethoxy and benzoyl group accompanied by a tropane alkaloid ring that 

is absent in the other compounds. Stojanovic et al., has previously used the lack of enantio-

differentiation in the binding affinity of cocaine to suggest that enantiomers of cocaine exhibit 

similar fluorescence quenching abilities and are indistinguishable in their binding interactions [48]. 

Hence, we can infer from Stojanovic’s theoretical description of cocaine binding, that the benzoyl 

group of cocaine and the planes of symmetry of the tropane ring can be aligned with the plane of 

the receptor molecule (L-cyst-ZnSeS QDs-CTAB-AuNPs in this case), such that the carbomethoxy 

group of cocaine projects away from the lipophilic cavity.  

The constraints afforded by intramolecular hydrogen bonding is known to influence the properties 

of molecules. The intramolecular hydrogen bond between the carbomethoxy group and the tropane 

ring has been proposed by Johnston et al., to induce stability in cocaine such that it inhibits the 

rotation of the carbomethoxy group and prevents cocaine from folding back on itself ensuring that 

the benzene ring tilts at an angle of 30 °C, preventing it from orientating itself towards the tropane 

ring [49]. Since intramolecular hydrogen bonding is also known to be strongly associated with 

water, we believe the ability of cocaine to strongly bind water to the atoms within its non-covalent 

bond, coupled with the aforementioned intramolecular hydrogen bonding between the 

carbomethoxy group and the tropane ring, a strong affinity to the QDs-CTAB-AuNP hybrid 

surface is created. Such a mode of interaction has been reported previously for the movement of 

cocaine across the blood-brain barrier [48]. This demonstrates that the distinct structural 

conformation of cocaine plays a major role in the binding affinity to the hybrid nanozyme surface. 
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3.6. Effects of TMB and H2O2 

The effects of TMB substrate and H2O2 oxidant on the peroxidase-like catalytic activity of the 

QDs-CTAB-AuNP hybrid nanozyme for cocaine recognition was investigated. Fig 6A shows the 

catalytic response of the hybrid nanozyme to cocaine at different TMB concentrations. A 

systematic increase in catalytic activity proportionate to the increase in TMB concentration was 

observed. In contrast, the catalytic response of the hybrid nanozyme to cocaine as a function of 

increasing H2O2 concentration did not follow any definite trend (Fig. 6B). Further studies were 

undertaken to understand the catalytic activity of TMB and H2O2 as a function of time. As revealed 

in Fig. 6C and D, a direct linear relationship was observed in the catalytic response of each TMB 

and H2O2 concentration as a function of time. Specifically, the linear reaction rate increased with 

TMB and H2O2 concentration but was more pronounced in quantitative signal for TMB than for 

H2O2. Hence, we chose 3000 µM TMB and 1.2 M H2O2 concentration as the optimum 

concentration for substrate and oxidant respectively.  

 

3.7. Selectivity to cocaine 

The catalytic efficiency of the QDs-CTAB-AuNP hybrid nanozyme biosensor for cocaine was also 

investigated in comparison with a selection of other substances. L-nicotine (a potent 

parasympathomimetic stimulant used in cigarettes), N-ethylpentylone (N-EP; a stimulant drug of 

the synthetic cathinone class), 5F-PB-22 (1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-

carboxylic acid; a synthetic cannabinoid receptor agonist), benzocaine (an anaesthetic and 

adulterant often found in cocaine in the UK), BZP (Benzylpiperazine; a recreational drug of the 

piperazine class), MDVP (Methylenedioxypyrovalerone; a stimulant drug of the synthetic 

cathinone class), methamphetamine (an amphetamine-type stimulant), lidocaine (an anaesthetic 
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and adulterant commonly found in cocaine in some jurisdictions), phenacetin (a pain-relieving dug 

and adulterant commonly found in cocaine in some jurisdictions) [50], levamisole (a medication 

drug used to treat parasitic worm and adulterant commonly found in cocaine in some jurisdictions) 

[51] and diltiazem (used in hypertension treatment and adulterant commonly found in cocaine in 

some jurisdictions) [52] were tested for their ability to trigger a colour change (false positive) 

based on the peroxidase-like catalytic activity of the QDs-CTAB-AuNP hybrid nanozyme for 

cocaine. As shown in Fig. 7, no catalytic response from any of the other tested substances was 

observed in comparison to the strong catalytic response and bluish-green colour observed for 

cocaine. Under the optimum catalytic reaction conditions used to detect cocaine, no colorimetric 

response was observed for any of the other substances tested. Therefore, it is reasonable to suggest 

that the developed QDs-CTAB-AuNP hybrid nanozyme biosensor could be used as a presumptive 

colour spot test for cocaine. 

 

3.8. Quantitative cocaine detection 

Quantitative detection of cocaine in the concentration range of 10 to 100 µM was carried out using 

the peroxidase-like catalytic QDs-CTAB-AuNP hybrid nanozyme biosensor. Fig. 8A shows the 

quantitative colorimetric response to cocaine after 2 min while the corresponding catalytic 

response is shown in Fig. 8B. A steady enhancement in catalytic signal which linearly correlated 

to the concentration of cocaine revealed the quantitative efficiency of the QDs-CTAB-AuNP 

hybrid nanozyme biosensor. The limit of detection (LOD) was calculated by multiplying the 

standard deviation of blank measurements (n = 8 (0.000463)) by 3 and dividing by the slope of the 

linear calibration curve (0.0108) (inset of Fig. 8B). The LOD obtained for cocaine detection was 

128 nM (43.5 ng/mL cocaine base) for the QD-57 nm-CTAB-AuNPs hybrid nanozyme.  
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Since the optical properties of NPs are known to be dependent on their size, it is reasonable to 

suggest that the sensitivity of the catalytic assay can be tuned according to the plasmonic NP size. 

Hence, we investigated the effect of the plasmonic CTAB-AuNPs size and the effect of citrate-

AuNPs on the sensitivity of the cocaine catalytic assay. Fig. S4 shows the colorimetric and 

catalytic response of the 37 nm and 39 nm-sized CTAB-AuNPs-QD hybrid nanozyme to cocaine 

detection. A strong catalytic response to cocaine was observed with minimal signal difference for 

the different-sized CTAB-AuNP-bonded QDs, while a very weak catalytic signal was observed 

for citrate-AuNPs. In general, the LOD of the cocaine peroxidase-mimic assay using the different-

sized CTAB-AuNPs followed the order QD-37 nm CTAB-AuNPs (112 nM (38.1 ng/mL)) > QD-

58 nm CTAB-AuNPs (128 nM (43.5 ng/mL)) > QD-39 nm CTAB-AuNPs (135 nM (45.9 ng/mL)). 

Comparison of the analytical performance of the QDs-CTAB-AuNP hybrid nanozyme biosensor 

with other colorimetric biosensors for cocaine demonstrated a considerable improvement in either 

the detection time or sensitivity, or both, compared to previously reported probes (Table 1). 

 

3.9. Comparative effects of sensitivity and selectivity 

Under similar experimental conditions, the catalytic sensitivity and specificity of the QDs-CTAB-

AuNP hybrid nanozyme to cocaine was compared with the QDs alone, CTAB-AuNPs and citrate-

AuNPs (a known nanozyme) [47]. As shown in Fig. S5, no catalytic response was observed for 

the QDs alone while a weak catalytic response was observed for citrate-AuNPs and a strong 

catalytic response, higher than that exhibited by the hybrid nanozyme was observed for CTAB-

AuNPs. However, probing the colorimetric selectivity of the QDs-CTAB-AuNP hybrid nanozyme 

to cocaine in comparison to citrate-AuNPs and CTAB-AuNPs, we observed poor selectivity for 

cocaine when CTAB-AuNPs and citrate-AuNPs were used.  Fig. S6 shows the comparative time 
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course colorimetric response of the QDs-CTAB-AuNP hybrid nanozyme, citrate-AuNPs and 

CTAB-AuNPs to cocaine, methamphetamine and lidocaine. From the time course results, no 

colour reaction was observed for methamphetamine and lidocaine when using QDs-CTAB-AuNP 

hybrid nanozyme as the catalyst probe, but significant colorimetric interference was observed for 

CTAB-AuNPs. Both methamphetamine and lidocaine displayed a blue colour reaction to cocaine 

using CTAB-AuNPs nanozyme with the intensity of the colour being higher for lidocaine than for 

methamphetamine. In addition to the lower catalytic activity exhibited by citrate-AuNPs 

nanozyme to cocaine in comparison to the hybrid nanozyme, lidocaine displayed a less intense 

blue colour with time as shown in Fig. S6B. Thus, it is reasonable to conclude that the QDs-CTAB-

AuNP hybrid nanozyme is a suitable catalyst probe for cocaine colorimetric recognition based on 

its superior selectivity. 

 

3.10. Detection of cocaine in mixed drug samples 

The catalytic efficiency of the CTAB-AuNP-QDs hybrid nanozyme to detect cocaine in mixed 

drug samples was investigated. Phenacetin, diltiazem and levamisole, all known adulterants 

previously detected in cocaine were chosen and different concentrations of cocaine (100, 75 and 

50 µM) were added into an assay solution containing a fixed concentration of the adulterant (100 

µM). Table 2 shows the analytical performance of the CTAB-AuNP-QDs hybrid nanozyme to 

cocaine detection in mixed drug samples while Fig. S7 shows the corresponding colorimetric 

response. From the data, we found that our peroxidase-like catalytic sensor can colorimetrically 

recognise cocaine in the tested mixed samples. Particularly, we found that the recovery of cocaine 

increased as the concentration of cocaine decreased in the mixed sample solution. Hence, it is 
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reasonable to conclude that the hybrid peroxidase-like catalytic sensor developed in this work is 

suitable to detect cocaine in adulterated drug samples. 

 

4. Conclusions 

The electrostatic interaction between cationic multi-shaped CTAB-AuNPs and anionic L-cyst-

ZnSeS QDs has revealed a new LSPR-enhanced hybrid artificial nanozyme mimicking the 

peroxidase-like catalytic activity of natural enzymes. Under optimum conditions, we found 

cocaine to exhibit high affinity for the hybrid nanozyme based on strong affinity to the QDs-

CTAB-AuNP’s surface. With the use of the new hybrid nanozyme sensor as a catalytic receptor 

and as a signal transducer, we have developed a rapid and selective colorimetric sensor for cocaine 

based on a TMB catalysed H2O2 system. A positive bluish-green colour was colorimetrically 

transduced within 2 min for cocaine with no colour interference observed from other tested 

substances and drugs under the optimum reaction conditions. This provides a convincing proof of 

concept application for the developed biosensor within the domain of forensic drug analysis. 
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Table 1. Comparison of the analytical performance of the CTAB-AuNP-L-cyst-ZnSeS QDs hybrid 

nanozyme peroxidase-like catalytic cocaine colorimetric biosensor with other published 

colorimetric biosensors for cocaine. 
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Strategy  Method LOD Detection 

time  

Ref. 

Magnetic NP-aptamer G-

quadruplex-based DNAzyme-

hemin 

Colorimetry 0.05 µM 20 min [53] 

Aptamer organic dye-

displacement 

Colorimetry 500 µM 12 hours [54] 

Enzyme linked aptamer assay Colorimetry 2.8 µM 60 min  [55] 

Split aptamer ligation-AuNPs Colorimetry 2 µM 10 min [56] 

Thiol-DNA aptamer-aggregated 

AuNPs 

Colorimetry 1000 µM  12 hours [57] 

58 nm CTAB-AuNP- L-cyst-

ZnSeS QDs hybrid nanozyme 

Colorimetry 0.128 µM 2 min This work 
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Table 2. Analytical performance of the CTAB-AuNP-L-cyst-ZnSeS QDs hybrid nanozyme 

peroxidase-like catalytic sensor for cocaine detection in mixed drug samples. All data recorded at 

~2 min. 

Mixed drug 

(100 µM) 

Cocaine added (µM) Found (µM) Recovery (%) 

±SD (%) 

RSD (%) 

Phenacetin 100 

75 

50  

93.2 

74.8 

50.3 

93.2±7.2 

99.8±4.4 

100.6±1.5 

8.1 

5.4 

3.0 

Diltiazem 100 

75  

50 

86.7 

71.5 

54.0 

86.7±6.7 

95.3±4.8 

108.0±0.4 

8.4 

6.0 

0.7 

Levamisole 100 

75 

50 

82.2 

66.1 

48.5 

82.2±8.9 

86.6±2.3 

97.0±1.6 

12.1 

3.0 

3.2 

SD = Standard deviation of three replicate measurements. 

 

 

 

 

 

 

 

 

 



 { PAGE } 

 

Scheme 1. Schematic description of the CTAB-AuNP-L-cyst-ZnSeS QDs hybrid nanozyme 

peroxidase-like catalytic sensor for cocaine. 
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Scheme 2. Structure of cocaine and other drug compounds used as tested interferents in the 

developed peroxidase-like catalytic assay. 
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Fig. 1. TEM images of (A) multi-shaped CTAB-AuNPs, (B) L-cyst-ZnSeS alloyed QDs and the 

(C) hybrid QDs-CTAB-AuNP-nanozyme. 
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Fig. 2. PXRD pattern of (A) L-cyst-ZnSe core and L-cyst-ZnSeS alloyed QDs, (B) CTAB-AuNPs 

and the (C) hybrid QDs-CTAB-AuNP nanozyme. 
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Fig. 3. (A) UV/vis absorption spectrum of multi-shaped CTAB-AuNPs Inset: Photograph of the 

multi-shaped CTAB-AuNPs in solution., (B) UV/vis absorption (dotted line) and fluorescence 

emission spectra (solid line) of L-cyst-ZnSeS alloyed QDs, (C) spectral overlap between CTAB-

AuNPs and L-cyst-ZnSeS QDs, (D) LSPR-induced fluorescence enhancement of CTAB-AuNPs-L-

cyst-ZnSeS QDs and (E) FT-IR spectra of the QDs, CTAB-AuNPs and the hybrid QDs-CTAB-

AuNP nanozyme.  
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Fig. 4. (A) Photograph of (i) TMB/H2O2, (ii) hybrid nanozyme, (iii) hybrid nanozyme + 

TMB/H2O2 and (iv) hybrid nanozyme + cocaine + TMB/H2O2. (B) Corresponding UV/vis 

absorption spectra of (i), (ii), (iii) and (iv). [Cocaine] = 100 µM. Reaction carried out at room 

temperature.  
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Fig. 5. Catalytic response of the QDs-CTAB-AuNP hybrid nanozyme to cocaine (100 µM) in 

different buffer solution. Inset: Photographic colour of the QDs-CTAB-AuNP hybrid nanozyme 

to cocaine detection in the different buffer solution. Hybrid nanozyme (CTAB-AuNPs (0.02 nM) 

+ L-cyst-ZnSeS alloyed QDs (3 mg/mL); TMB (0.003 M); H2O2 (1.2 M); Data recorded at ~2 min. 

Reaction carried out at room temperature. Error bars represents standard deviation of three 

replicate analysis. 
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Fig. 6. Catalytic response of the hybrid QDs-CTAB-AuNP nanozyme to cocaine (100 µM) 

detection as it relates to the effects of different (A) TMB concentration (fixed H2O2 concentration 

= 1.2 M) and (B) H2O2 concentration (fixed TMB concentration = 3000 µM). Time course kinetic 

effects of varying TMB concentration (H2O2 fixed) (C) and H2O2 concentration (TMB fixed) (D) 

on the catalytic peroxidase activity of the hybrid nanozyme to cocaine detection. Fig. 3C: (i) 500 

µM, (ii) 1000 µM, (iii) 1500 µM, (iv) 2000 µM, (v) 2500 µM and (vi) 3000 µM. Inset of Fig. 3C: 

Photographic colour of the hybrid nanozyme to cocaine detection taken at the end of the time-

course assay as it relates to different TMB concentration. Control = nanozyme solution + KCl-

HCl, pH 2.2 buffer (no cocaine). Reaction carried out at room temperature. Error bars represents 

standard deviation of three replicate analysis. 
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Fig. 7. Selectivity of the QDs-CTAB-AuNP hybrid nanozyme biosensor to cocaine in comparison 

to other drug targets. Concentration of cocaine and other targets = 100 µM in 0.1 M KCl-HCl, pH 

2.2 buffer. Hybrid nanozyme (CTAB-AuNPs (0.02 nM) + L-cyst-ZnSeS alloyed QDs (3 mg/mL); 

TMB (0.003 M); H2O2 (1.2 M); Data recorded at ~2 min. Reaction carried out at room temperature. 

Error bars represents standard deviation of three replicate analysis.  
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Fig. 8. (A) Photographic display of the colorimetric response of the QDs-CTAB-AuNP hybrid 

nanozyme for the detection of each cocaine concentration after adding TMB-H2O2 and (B) 

Quantitative calibration signal plot for cocaine detection. Hybrid nanozyme (CTAB-AuNPs (0.02 

nM) + L-cyst-ZnSeS alloyed QDs (3 mg/mL); TMB (0.003 M); H2O2 (1.2 M); Data recorded at ~2 

min. Inset: Linear calibration plot. Error bars represents standard deviation of three replicate 

analysis. 
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