

Procedures and Problems So far we have been talking about procedures (how much work is our brute force subset sum algorithm?) We can also talk about problems: how much work is the subset sum problem? What is a problem? What does it mean to describe the work of a problem?

Problems and Solutions

- A **problem** defines a desired output for a given input.
- A **solution** to a problem is a procedure for finding the correct output for all possible inputs.
- The **time complexity** of a problem is the running time of the best possible solution to the problem

UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

JVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Subset Sum Problem

- **Input:** set of *n* positive integers, {*w*₀, ..., *w*_{*n*-1}}, maximum weight *W*
- Output: a subset S of the input set such that the sum of the elements of S ≤ W and there is no subset of the input set whose sum is greater than the sum of S and ≤ W

What is the time complexity of the subset sum *problem*?

JVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Brute Force Subset Sum Solution

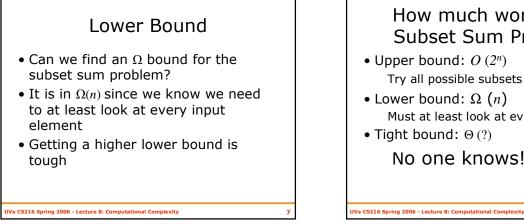
def subsetsum (items, maxweight):
 best = {}
 for s in allPossibleSubsets (items):
 if sum (s) <= maxweight \
 and sum (s) > sum (best)
 best = s
 return best

Running time $\in \Theta(n2^n)$

What does this tell us about the time complexity of the subset sum *problem*?

• If we know a *procedure* that is that is

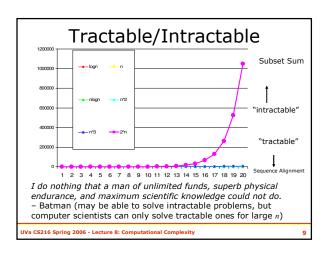
- $\Theta(f(n))$ that solves a *problem* then we know the problem is O(f(n)).
- The subset sum **problem** is in Θ(n2ⁿ) since we know a **procedure** that solves it in Θ(n2ⁿ)
- Is the subset sum problem in Θ(n2ⁿ)?
 No, we would need to prove there is no better procedure.

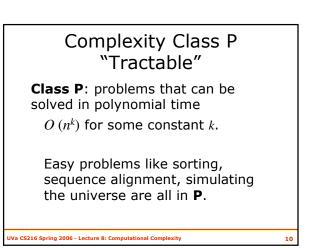


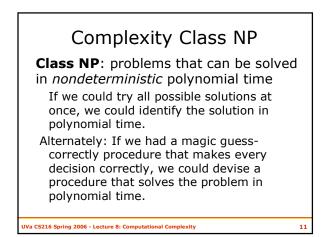
How much work is the Subset Sum Problem?

- Upper bound: $O(2^n)$ Try all possible subsets
- Lower bound: $\Omega(n)$ Must at least look at every element
- Tight bound: Θ (?)

No one knows!





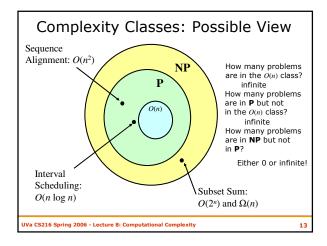


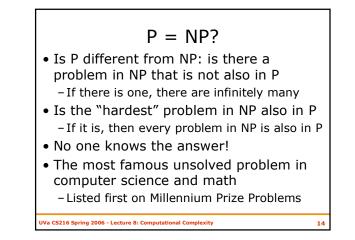
Complexity Classes

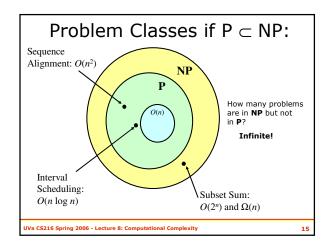
Class P: problems that can be solved in polynomial time ($O(n^k)$ for some constant *k*): "myopic" problems like sequence alignment, interval scheduling are all in **P**.

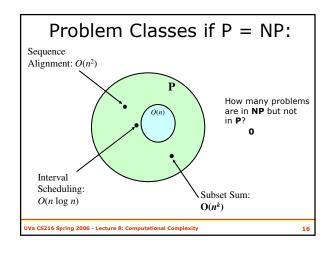
Class NP: problems that can be solved in polynomial time by a nondeterministic machine: includes all problems in **P** and some problems *possibly* outside **P** like subset sum

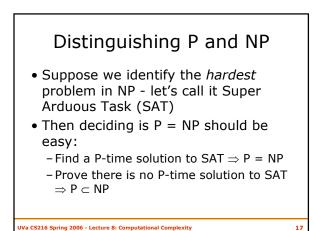
JVa CS216 Spring 2006 - Lecture 8: Computational Complexity

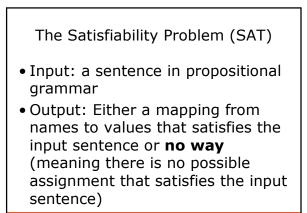




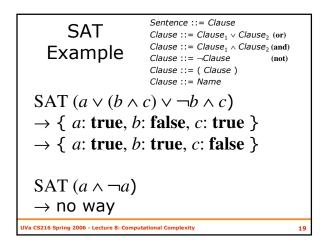


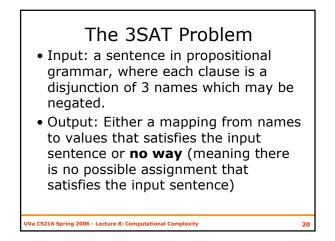






JVa CS216 Spring 2006 - Lecture 8: Computational Complexity





3SAT / SAT

 Is 3SAT easier or harder than

 SAT?

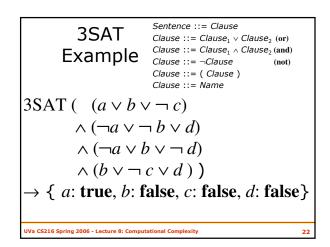
 It is definitely not harder than

 SAT, since all 3SAT problems

 are also SAT problems. Some

 SAT problems are not 3SAT

 problems.



NP Completeness

- Cook and Levin proved that 3SAT was NP-Complete (1971): as hard as the hardest problem in NP
- If any 3SAT problem can be transformed into an instance of problem Q in polynomial time, than that problem must be no harder than 3SAT: Problem Q is **NP-hard**
- Need to show in NP also to prove Q is **NP-complete.**

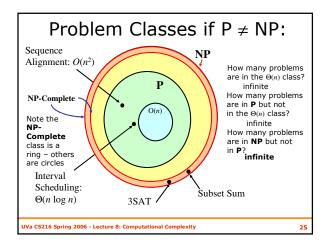
JVa CS216 Spring 2006 - Lecture 8: Computational Complexity

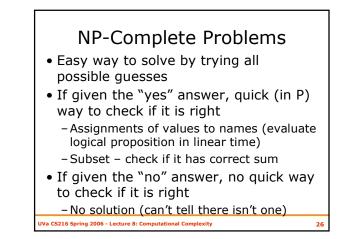
Subset Sum is NP-Complete
Subset Sum is in NP

Easy to check a solution is correct?

3SAT can be transformed into Subset Sum

Transformation is complicated, but still polynomial time.
A fast Subset Sum solution could be used to solve 3SAT problems



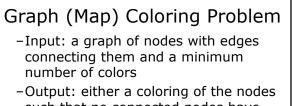


Traveling Salesperson Problem Input: a graph of cities and roads with distance connecting them and a minimum total distant Output: either a path that visits each with a cost less than the minimum, or "no".

• If given a path, easy to check if it visits every city with less than minimum distance traveled

27

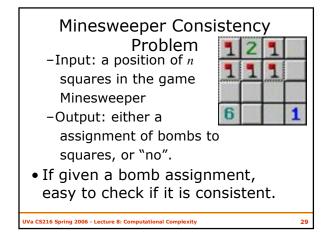
JVa CS216 Spring 2006 - Lecture 8: Computational Complexity

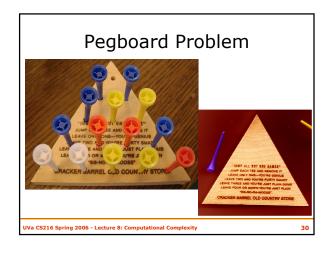


-Output: either a coloring of the nodes such that no connected nodes have the same color, or "no".

If given a coloring, easy to check if it no connected nodes have the same color, and the number of colors used.

Va CS216 Spring 2006 - Lecture 8: Computational Complexity



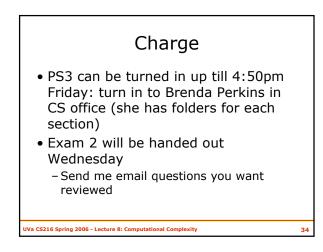


Pegboard Problem Drug Discovery Problem - Input: a configuration of *n* pegs on -Input: a set of a cracker barrel style pegboard proteins, a desired 3D shape - Output: if there is a sequence of -Output: a sequence jumps that leaves a single peg, output that sequence of jumps. of proteins that Otherwise, output false. produces the shape Caffeine (or impossible) If given the sequence of jumps, easy If given a sequence, easy (not really -(O(n)) to check it is correct. If not, this may actually be NP-Complete too!) to hard to know if there is a solution. check if sequence has the right shape. Va CS216 Spring 2006 - Lecture 8: Computational Complexity Va CS216 Spring 2006 - Lecture 8: Computational Complexity 31

33

Is it ever *useful* to be confident that a problem is hard?

UVa CS216 Spring 2006 - Lecture 8: Computational Complexity



32