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1 Knots: an introduction

1.1 Knots in time

From decorative art pieces (Figure 1) to information communication [2] (Figure 2), knots
have been vital to our innovation as humans. Their role in mathematics however, is perhaps
most key.

Figure 1: Example of a decorative, Celtic knot
[1].

Figure 2: A method of transferring in-
formation called a Quipu. Often used
by Incas [3].

Knot theory is a relatively new (first developed in the 18th century, with most advances
coming much later [11]) subfield of the itself modern field of topology.

Mathematicians love to classify interesting, abstract objects: numbers, groups, rings,
sets... But originally, our interest in the classification of knots was not simply motivated as
to extend our mathematical knowledge. English physicist William Thomson (known as Lord
Kelvin) believed knots could be the answer to our classification of all matter [17, § 1] - and
hence the classification of knots began. But how do we classify knots?

If we first consider a simple knot as one may make using a piece of string - see Figure 3.

Figure 3: Our standard concept of a ’knot’.

It is clear that given freedom of movement we could once again unknot Figure 3. But
now tie the ends to get a closed curve. See Figure 4.

Figure 4: A knot with the ends attached.

Can we now unknot this object? The simplest object we could make with a closed,
continuous curve is quite clearly a circular knot and we call this the unknot (see Figure 5).
So, is Figure 4 also the unknot with some extra twists and crossings? In our classification,
we would surely want our knots in their simplest form.
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Later on we will in fact prove Figure 4 is not the unknot and so a figure with three
crossings exists that cannot be unknotted (this term refers to the ability - intuitively - to
untangle our knot into the unknot). To see why it is not a 2 crossing knot, attempt to draw
the possible 2 crossing knots.

And so, thanks to Lord Kelvin, we began to tabulate knots via their crossing number,
making sure they could not be simplified further.

Figure 5: A knot table up to crossing number 7 [5].

1.2 Why knots?

Quite amazingly, knots can be seen to appear useful in various other areas of science. With
the Sliding Knot Fish [17, pp. 50–51] and DNA analysis [8, pp. 181–195] in biology, the study
of molecular synthesis and chirality [8, pp. 195–204] in chemistry and also that of quantum
field theory [17, §. 8] in physics. It is clear therefore that a strict mathematical model
will help provide key information to numerous other fields. However, the main questions
that mathematicians have pondered are much more generalised (and as of yet lack complete
solutions). Two such questions are:
1. (The Classification Problem) When are two knots equivalent?
2. (The Unkotting Problem) When is a knot the unknot?
Clearly problem 2 is a subset of problem 1, however, even this simplification of the problem
has yet to be fully resolved [4].
The problem of classification is just one of many in knot theory, but in this essay it shall be
explored how invariants have helped open up this fundamental question.

2 Knots: a mathematical approach

2.1 Defining knots

Definition 1. Given a homeomorphic function f : S1 → K ⊂ R3. That is, a continuous,
bijective function with a continuous inverse, with:

S1 = {(x, y) : x2 + y2 = 1, x and y real numbers}

Then let the image of f be equal to K and define K to be a knot.

Notice that this definition ensures a knot is a smooth, closed curve - as suggested to be
desirable in section 1.1. In addition to this definition, the following subset of knots is further
required in order to simplify our proofs and appeal to combinatorial topology.

3



Definition 2 ([9]). A polygonal knot is a knot whose image in R3 is the union of a finite set
of line segments.

From now on it is assumed that all knots mentioned are polygonal without specifically
stating so (even when represented as curves). This new class of knots then allows us to define
strict, mathematical transformations that mimic the act of moving a knot in space.

Definition 3 (Elementary Knot Moves (EKMs) [13, p. 7]). For a knot K with arbitrary,
adjacent vertices A and B:
(i) For any edge AB ∈ K we may take a point C ∈ AB and divide the edge AB into edges
AC ∪ CB.
(ii) Given C ∈ R3 such that C /∈ K. If the triangle formed by joining A, B and C does not
intersect K, we may replace edge AB with edges AC and CB.
We may also take the converse of these moves.

Definition 4. Two knots K1 and K2 are equivalent if we can obtain one from the other by
applying EKMs. Denote this by K1 ∼ K2.

A final fundamental concept to define before the exploration of knots begins is that of
projections [12, pp. 6–7].

Definition 5. Given a knot K. Let:

P : R3 → R3 with P(x, y, z) = (x, y, 0)

Then we call P(K) a projection of K.

This definition is then restricted further with the following, to ensure our projections can
be used consistently and without confusion.

Definition 6. If the following conditions hold for P:
(i) P(K) has finite points of intersection.
(ii) For any p ∈P(K) such that p is a point of intersection, |P−1(p) ∩K| = 2.
(iii) For any v - a vertex of K, |P−1(v) ∩K| = 1.
Then P is a regular projection. When drawing the diagram for a regular projection, at a
point of intersection, the point from the knot with the greater z-value is drawn over (called
an overcrossing) the secondary point (the undercrossing).

Example 2.1. It is now clear how the diagrams drawn in section 1 make mathematical sense
(especially those of Figure 5). Consider the following example demonstrating our newfound
mathematical object - the knot.

Figure 6: A diagram of the regular projection of a knot.

Using EKMs, it can now be shown that the knots in Figure 7 and 8 are in fact equivalent.
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Figure 7: A polygonal repre-
sentation of the knot in Fig-
ure 6.

Figure 8: A polygonal repre-
sentation of the 31 knot - the
Trefoil knot.

Figure 9:

The equivalence is easiest to see on our
original diagram. Notice the shaded area

in Figure 9 may be manipulated via
EKMs and made into a straight line.

Producing 3 crossings and hence we see
the Trefoil.

Example 2.2. If there exists a homeomorphism of R3 onto itself, that maps a knot to a
polygonal knot, this knot is called tame - otherwise it is wild. Our use of tame knots helps
avoid problems with limit points and pathological behaviour associated to knots such as the
example in Figure 10.

Figure 10: A wild knot. Notice the limit point as each iteration gets smaller [7].

2.2 The Reidemeister moves

We may now apply EKMs to a knot K such that we transform its respective projection. The
German mathematician Kurt Reidemeister however, discovered a set of moves we may apply
to the diagram of P(K) - the regular projection of K, such that its corresponding knot may
be transformed into any knot K∗ such that K ∼ K∗. We state this more formally in our first
theorem. But before that we must state the moves themselves.

Definition 7 (The Reidemeister moves [14]). Pictured below are the moves, with their
inverses given by traversing the arrows backwards. In each move it is clear how applying
EKM (ii) allows us to apply the move along the forward arrow (similarly with the inverses).
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The Reidemeister moves may at first seem quite arbitrary. They are very specifically
presented and when applying them, the correct overcrossings and undercrossings must be
seen. However, we accept the definitions to apply locally to a diagram and may form many
other seemingly different moves from their composition.

Example 2.3. The following demonstrates how we may apply multiple Reidemeister moves
to perform a seemingly different move to the original four (notice the alternate, central
crossing).

We can clearly see that this equivalence will hold for the respective knots that the diagrams
represent, and we will in fact see that the respective diagrams for any two equivalent knots
may be navigated between using a set of Reidemeister moves.

One final definition is needed before the main theorem of this section.

Definition 8. Two regular knot diagrams D1 and D2 are equivalent if we can obtain one
from the other by applying Ω0,Ω1,Ω2,Ω3 or their inverses. Denote this by D1 ∼ D2.

And so, with all that we understand up to this point, Reidemeister then showed something
incredible.

Reidemeister’s Theorem ([13, p. 50][14]). Given D and D∗ are regular diagrams of two
knots K and K∗, respectively. Then

K ∼ K∗ ⇔ D ∼ D∗

A standard proof of this is given by Burde and Zieschang [10], but I recommend looking
to Murasugi [13] first, who follows a more combinatorial approach. The full proof is long and
so here we shall omit it, but the reader is advised to look over it as given by Murasugi [13,
pp. 52-56].
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This theorem is astonishing. Given any property we can find that stays the same be-
tween Reidemeister moves, we now know that same property will stay the same between any
equivalent knots. And so our exploration of invariants begins.

3 Invariants

An invariant, as the name suggests, is simply a mathematical object that does not vary as
we alter our knot through EKMs. So we say the function I : {K : K is a knot} → X, where
X is any set, is an invariant if I(K) = I(K∗) when K ∼ K∗.
Remark. From this we also have that

I(K) 6= I(K∗)⇒ K � K∗

And so the strength of invariants lies in their ability to tell knots apart.

3.1 Crossing number

By definition 6, the regular projection of a knot K has finite points of intersection, and so a
corresponding diagram D of K has finite crossing points.

Example 3.1. The following shows the unknot and an equivalent diagram obtained by
applying Ω2.

If we denote c(D) to be the number of crossing points of a regular diagram D, then
clearly by the above example, c(D) is not an invariant. But all we need is something a little
stronger, and so define:

DK = {D : P(K∗) = D any regular diagram of K∗ with K∗ ∼ K}

Theorem 3.1 ([13, p. 57]). For a knot K let:

c(K) = min
DK

(c(D))

Then c(K) is a knot invariant.

Proof. Suppose arg minDK
(c(D)) = D0. Now let K∗ be any knot such that K ∼ K∗, with

corresponding, minimum, regular diagram D∗0. By Reidemeister's theorem, D∗0 is also a
regular diagram for K and so by definition c(D0) ≤ c(D∗0). Similarly, D0 is also a regular
diagram for K∗ and so c(D∗0) ≤ c(D0). Therefore, c(D0) = c(D∗0).
Hence, c(D0) is the minimum number of crossing points for all knots equivalent to K and
c(K) is our first invariant.
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3.2 Unknotting number

We have seen that the crossing number is a fundamental property of knots, and so, does
intuition lead us to anymore fundamental ways to assign a knot a specific value? Given the
crossing number classifies the minimal form of a knot, is it then possible to unknot that knot
by some step-by-step procedure?

Definition 9. In a given, regular diagram D of K, take a crossing point and switch the
vertex with greater z value for the one with smaller z value. Call this an unknotting move.

Applying an unknotting move allows us to exchange an overcrossing with an undercross-
ing. It seems intuitive that multiple unknotting moves will unknot a given knot (the reader
may wish to try this on some knots from Figure 5), but in order to utilise unknotting as an
invariant we must show this rigorously.

Theorem 3.2. Given any knot K there exists a sequence of unknotting moves that, along
with the use of Reidemeister moves, will take its regular diagram D to the unknot.

Proof. We induct on the crossing points c(D). c(D) = 0 ⇒ D = 0 (where 0 is the unknot)
and the base case is clear.
Now, assume true for any regular diagram D such that c(D) < m ∈ N and take a diagram
D such that c(D) = m. Next choose an arbitrary point p on D such that |P−1(p) ∪K| = 1.
Follow an arbitrary, fixed orientation around D. If ever an undercrossing is reached, perform
an unknotting move, and as soon as we reach a crossing already visited we will have formed
a loop with a single crossing. See Figure 11.

Figure 11

Everything below the loop may be moved clear of it, as it does not intersect it, and
then the crossing itself may be removed via Ω1. Denote this new regular diagram by D∗.
c(D∗) = m − 1 and by the induction hypothesis, D∗ may now be taken to the unknot via
more sequences of unknotting moves and Reidemeister moves.

Much like with crossing number, given we define u(D) to be the minimum unknotting
moves required to unknot D, this does not present an invariant of K (see Murasugi [13,
p. 63]).

Theorem 3.3. For a knot K let:

u(K) = min
DK

(u(D))

Then u(K) is a knot invariant.

Proof. Identical to that of theorem 3.1.
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3.3 Tricolourability

The two invariants we have met thus far are intuitive to our sense of what a knot is. However,
in practice their calculation can be extremely difficult. Adams points out that u(K) isn’t
necessarily realised in a regular projection of minimum crossings [8, pp. 67-69]. Furthermore,
we have c(0) = 0 and c(31) ≤ 3, but how do we then show 0 � 31? Our next step is to
introduce colourability.

Definition 10. Given a knot K, call the section s ∈ K between two undercrossings a strand.
Further, let S(D) be the set of all strands of a regular diagram D of K.

Definition 11 ([16, p. 13]). The function x : S(D) → Z/nZ is a colouring modulo n if it
satisfies the following for each crossing of D:

2x(a) ≡ x(b) + x(c) mod n

Remark. If x(s) ≡ γ, some constant, for all s ∈ S(D) then we note this as a trivial colouring
since this gives

2x(a) ≡ x(b) + x(c) mod n

⇒ 2γ ≡ γ + γ mod n

⇒ 2γ ≡ 2γ mod n

Which is true for all γ and n.

Definition 12. A knot K is n-colourable if there exists a colouring x (modulo n), that is
non-trivial, of a regular diagram of K.

Example 3.2. If a knot is colourable for n = 3, we say it is tricolourable. The definition
we have given is equivalent to colouring the strands of a knot with three colours, and at each
crossing the strands are either all the same colour or all different colours. We demonstrate
that the trefoil is tricolourable in Figure 12.

Figure 12: The 31 knot 3-coloured.
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In its regular, minimal diagram, the unknot must clearly be trivially coloured (only having
one strand). We have also seen that the trefoil may be tricoloured. Now, if colourability is
preserved across equivalent diagrams, not only will we have found another invariant, but we
will finally have that 0 � 31.

Theorem 3.4 ([15, § 2.2]). Given a knot K with corresponding, regular diagram D, if there
exists a colouring x(D) (modulo n), then for all D∗ such that D ∼ D∗, there exists a colouring
x̃(D∗) (modulo n).

Proof. We show the Reidemeister moves preserve colourability between equivalent diagrams.
From here onwards we work modulo n without specifically stating so.

The preservation of colour in Ω0 is clear, whilst for Ω1 it is shown above that if a loop is
colourable then the strands are coloured the same. Hence, a single colour is needed for either
direction.

The top crossing gives
2b ≡ a+ a′

⇔ a′ ≡ 2b− a
Whilst the bottom gives

2b ≡ a′′ + (2b− a)
⇔ a = a′′

For Ω2, if a and b are coloured the same, we simply take all strands on the right coloured
the same. Alternatively, with a 6= b, from crossings on the right, we may colour a the same as
a′′, and assign a third colour to a′. More simply, the crossing equations for the left diagram
are satisfied if and only if the equations for the right are.
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For Ω3, considering the top, middle and bottom crossings of the left hand side diagram
gives us, respectively:

(c1) 2a ≡ e+ c

(c2) 2a ≡ d+ a′

(c3) 2c ≡ b+ a′

Where (c2) and (c3) give 2a−d ≡ 2c−b⇔ 2a ≡ 2c−b+d. Similarly with the right diagram:

(c̃1) 2e ≡ d+ a′

(c̃2) 2a ≡ b+ a′

(c̃3) 2a ≡ c+ e

(c̃1) and (c̃2) then give: 2a− b ≡ 2e− d
⇔ −2a ≡ −2e− b+ d

⇔ 2a ≡ (−2e− b+ d) + 2(c+ e) [using (c̃3)]

⇔ 2a ≡ 2c− b+ d

And so, our congruence equations for the left diagram are satisfied if and only if those for
the right are as well. Thus for Ω0,Ω1,Ω2 and Ω3, colouring of the left hand side diagram is
achievable if and only if colouring of the right is.

Corollary 3.5. The colourability of a knot K is a knot invariant.

Proof. Immediate from Reidemeister’s theorem.

Corollary 3.6. The unknot and trefoil knot are not equivalent.

Proof. For a knot K define

X (K) =

{
1 if K is colourable

0 otherwise

Then X is a knot invariant and X (0) 6= X (31)⇒ 0 � 31.

Corollary 3.7. c(31) = 3

Proof. Figure 13 depicts an example of a one crossing knot (with crossings left ambiguous)
and Figure 14 that of two crossing knots. It is clear that each possibility is in fact equivalent
to one or more unknots. Hence, c(K) = 0, 1, 2 ⇒ K = 0 since the unknot is the only knot
with crossing number zero. Then, since we have presented a diagram of the trefoil with three
crossings, the result is clear.

Figure 13 Figure 14
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Closing remarks

Our closing results appear elementary in nature, seemingly intuitive before any theory was
developed. However, the solid mathematical foundation we have laid paves the way to less
intuitive knot theoretic results. The curious reader may wish to explore other, more involved
invariants, such as the Jones and Alexander polynomial. The modules MA3F1 Introduction
to Topology and, of course, MA3F2 Knot Theory, lead on very naturally from this essay.
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