


#### NATIONAL ENERGY TECHNOLOGY LABORATORY



## **University Turbine Systems Research**

Design, Fabrication and Performance Characterization of

Near-Surface Embedded Cooling Channels with an Oxide Dispersion Strengthened (ODS) Coating Layer

Award Number: DE-FE0025793
Period of Performance: FY2015-FY2018

Cost: DOE: \$798,594 / Non DOE: \$216,896

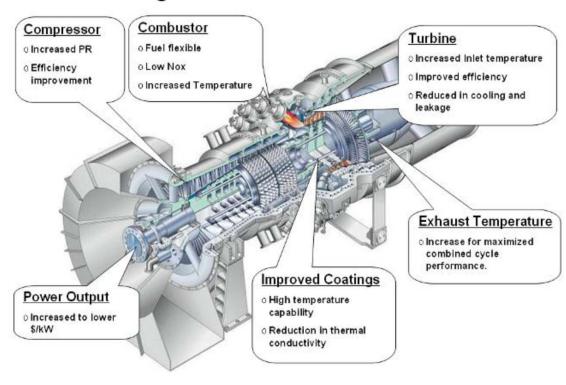
Project Kick-Off Meeting Oct 5, 2015





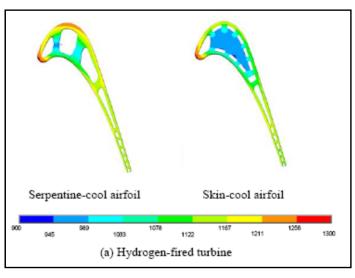
Bruce S. Kang West Virginia University



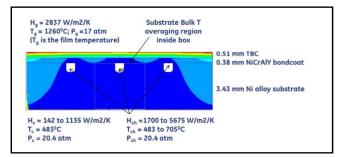

## **University Turbine Systems Research**

# **Outlines**

- Introduction and Background
- ➤ Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation


# Technical Background/Approach

## Targeted Areas of R&D

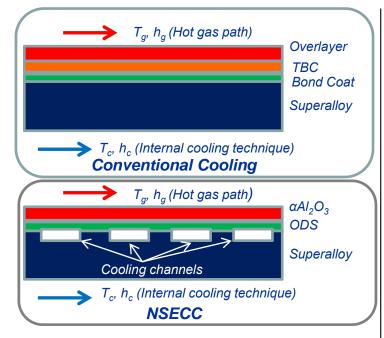


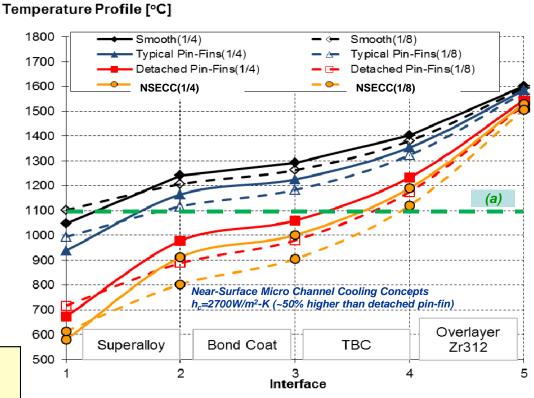

Airfoil metal temperature distributions (in K)  $h_c$ =3000W/m<sup>2</sup>-K  $\rightarrow$  Gas temperature: Hydrogen-fired turbine (~1430°C)

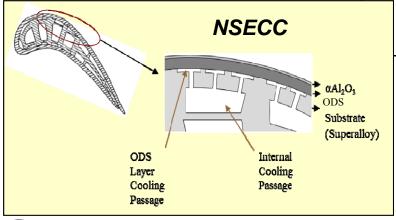
Near surface 'skin cooling' or 'double-wall' internal cooling arrangement leads to a significant reduction of metal surface temperature, ~50 − 100 °C, compared to conventional serpentine cooling designs



Siw, S.C., Chyu, M.K., Karaivanov, V.G., Slaughter, W.S., and Alvin, M.A., 2009, "Influence of Internal Coolinjg Configuration on Metal Temperature Distributions of Future Coal-Fuel Based Turbine Airfoils," ASME Turbo Expo 2009, Paper No. GT2009-59829.





Skin Cooled Bulk Substrate Metal Temperature as a Function of Channel Heat transfer Coefficient and Coolant Temperature


Bunker, R.S., 2013, "Gas Turbine Cooling: Moving from Macro to Micro Cooling," ASME Turbo Expo 2013, Paper No. GT2013-94277

# Turbine Thermal Management

## Advanced Cooling via NSECC Development –







# Projected Temperature Profiles Incorporating Advanced Cooling Concepts

- S.Siw, M.Chyu, December 2011 -

Coolant properties @ Re=50,000, 600K Hot Gas Temperature: 1700°C; Gas Side h: 4000 W/m<sup>2</sup>K

(a) Maximum temperature considered for functional operation of bond coat systems

# **University Turbine Systems Research**

# **Outlines**

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

# **Near Surface Embedded Channel Cooling**

### **Technical Challenges**

- Design optimal aerothermal configuration
- > ODS powder fabrication, ODS layer deposition processing
- > Scale-up and commercial manufacturing of test articles

#### **Project Objectives**

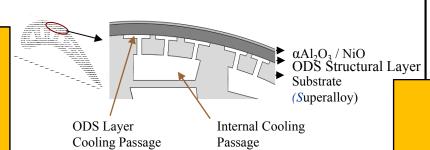
- > To design highly-heat-transfer augmented and manufacturable internal cooling channels for the development of NSECC. The two heat transfer augmentation techniques to be explored first are:
  - (a) advanced impingement cooling
  - (b) zig-zag channel configurations
- To produce ODS particles within 45-105 microns which will be used in an additive manufacturing (AM) process based on laser deposition to build NSECC test modules
- To develop fabrication process through additive manufacturing for coating either a densified ODS layer over a grooved single crystal superalloy substrate to form an enclosed NSECC, or an ODS layer with cooling channels embedded within the ODS layer atop a single crystal superalloy metal substrate
- ➤ To characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS-NSECC protective module under high-temperature conditions. Comparison with the state-of-the-art cooling technology will be made and the performance improvements over the standards will be assessed

# Benefits of Technology to the DOE Turbine Program

- High heat transfer removal rate compared to conventional internal cooling techniques, mandated by the efficiency goals
- Currently proposed Near-Surface-Embedded Cooling Channel (NSECC) design can render 50-70% higher cooling effectiveness than existing internal cooling technologies. Even greater improvement is possible
- NSECC can be positioned at desired near wall locations
- NSECC can be optimally designed based on local cooling load demand, eliminating hot spot, resulting in more cooling uniformity

# Current State of the Art, Patented Concepts, and Advanced Turbine Airfoil Configurations for Improved Near Surface Cooling

Double Wall (Skin


| Cooling Configuration                                        | Serpentine<br>US Patent 005924843<br>1999                | Cooling) European Patent Specification, EP 1 617 043 B1, 2008                       | Surface or Near Surface<br>ODS-Micro-Channel                      |  |  |
|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Thickness                                                    | 150 µm MCrAIY (SOTA)                                     | 150 µm MCrAIY (SOTA)                                                                | 200-500 μm ODS<br>(Max: >200 μm – 5 mm)                           |  |  |
|                                                              | . , ,                                                    |                                                                                     | ` '                                                               |  |  |
| Maximum Surface                                              | <1000°C                                                  | <1000°C                                                                             | ~1200°C                                                           |  |  |
| Temperature                                                  | (Bond Coat-Substrate<br>Alloy)                           | (Bond Coat-Substrate<br>Alloy)                                                      | (ODS)                                                             |  |  |
| Rupture Strength @<br>T>1000°C                               | Low (Metal Substrate)                                    | Low (Metal Substrate)                                                               | High (ODS Layer)                                                  |  |  |
| Manufacturability                                            | Casting –<br>SOTA Issues Resolved;<br>Commercial Process | Casting –<br>Challenges wrt Core Pull-<br>Out & Consistent Thin<br>Wall Fabrication | Casting & ODS Cold/Hot<br>Spray– Projected Ease of<br>Fabrication |  |  |
| Cooling Channel                                              | Internal (Deep)                                          | 100 µm from Surface                                                                 | Outside or Near Metal<br>Substrate Surface                        |  |  |
| Heat Removal Capacity                                        | Reference Point                                          | 44% more                                                                            | 50-70% more                                                       |  |  |
| Comparative Predicted Airfoil Metallic Substrate Temperature | 1100°C                                                   | 950°C                                                                               | 900 - 850°C                                                       |  |  |

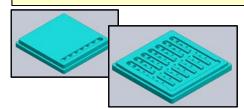
# Project Work Breakdown Structure

## Enhanced Heat Removal Capability

Current NSECC design leads to 50-70% over existing internal cooling technologies.

Additional improvement is projected.




Near Surface Embedded Cooling Channel (NSECC )

# Novel Metallic ODS Surface Coating

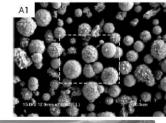
- ➤ Ultra-High Temperature (1200 °C) Strength
- > Oxidation Resistance
- Significant challenges in traditional manufacturing

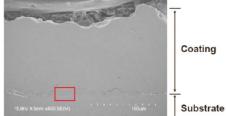
## Task 1 – Advanced Impingement

- Design, CFD modeling & scaled testing
- · Advanced impingement



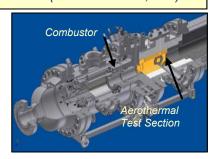
### Task 2 – ODS Powder Fabrication and Characterization


- ODS powders fabrication
- Characterization


## Task 3 – ODS Coating (AM Assisted)

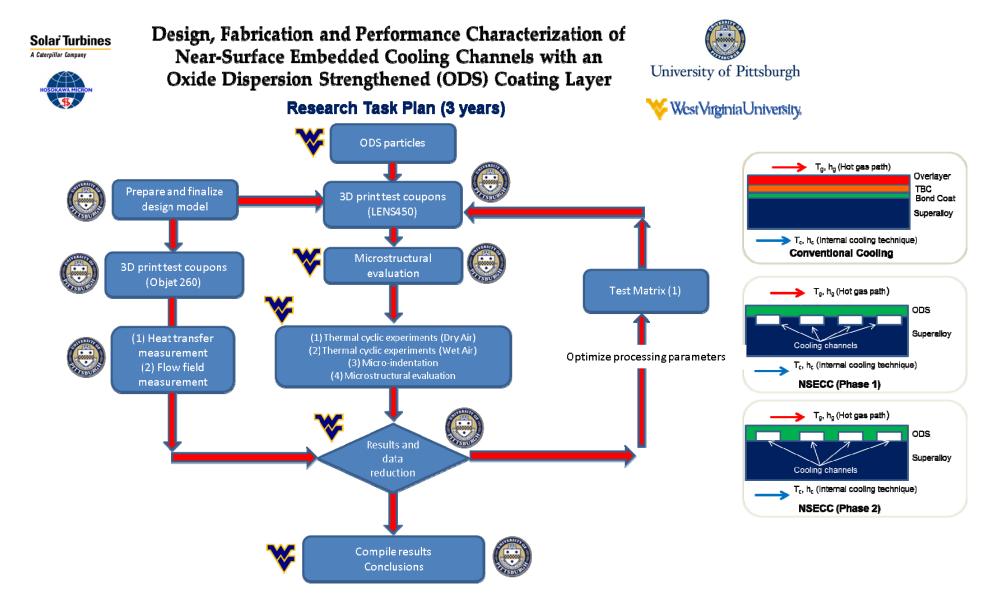
• Process development and optimization

# Task 5 – Design Integration & Testing


- High Temperature, Pressurized Testing (NETL)
- High Temperature Testing
   Facilities (Solar Turbines, Inc.)






## Task 4 – Microstructural and Mechanical Properties Evaluation

- Thermal Cyclic Tests, Micro-Indentation Tests
- OM, EDX, SEM, XRD, TEM



NATIONAL ENERGY TECHNOLOGY LABORATORY

## Research Task Plan

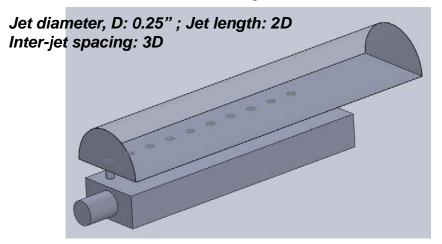


## **University Turbine Systems Research**

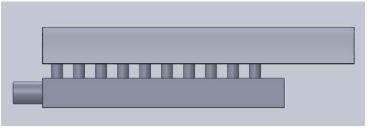
# **Outlines**

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

Objective: Develop internal air foil cooling technologies capable of yielding a heat transfer enhancement factor nearly 5 times the smooth channel and which are reasonably manufacturable

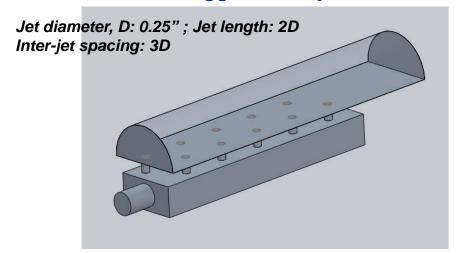

## ➤ Leading Edge Cooling - screw (helical) cooling

**Challenge:** Some of the promising intricate vortex generating geometries which were studied in the up-scaled research models cannot always be reproduced in actual size blade castings or are very sensitive to the manufacturing tolerances, particularly when small internal holes and sharp edge features are required

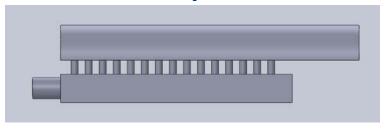

## Why? Advantages?

- Swirling flow structure, move radially, generating 3D screw-shaped flow
- Optimized screw cooling configurations resulted in more uniform cooling
   more efficient than direct impingement
- ➤ Less sensitive to fabrication tolerances than highly effective internal cooling technique,
  - ~ more attractive for industrial applications

#### Test #1 Inline 90° jets

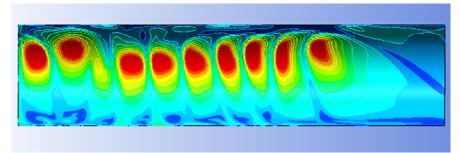


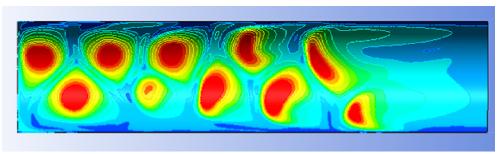

## Test #3 Inline 90° jets



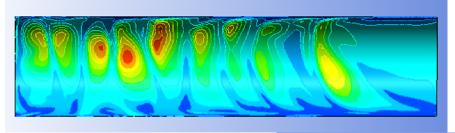

Jet diameter, D: 0.375"; Jet length: 1.33D Inter-jet spacing: 2D

### Test #2 Staggered 90° jets

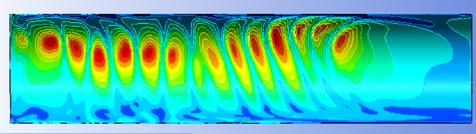


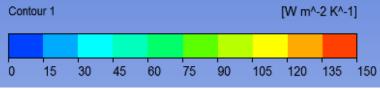


## Test #4 Inline 90° jets



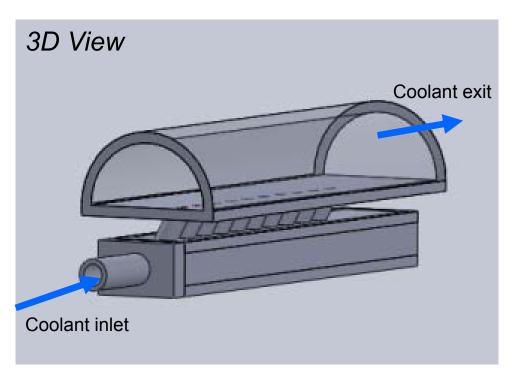

Jet diameter, D: 0.25"; Jet length: 2D Inter-jet spacing: 2D

Test #1 Test #2





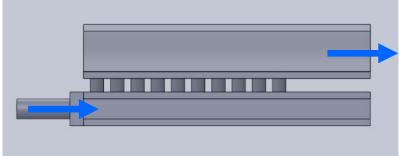

Test #4



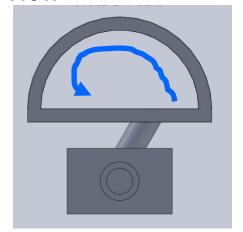


- ➤ Test#1 and #2 Significant impingement from the jets
- Test#3 larger jet, reduce the bulk velocity, very minimal impingement effects, most uniform heat transfer distribution among all tested cases
- Test#4 total number of jets is 50% more than other test cases
   impingement effects are preserved
- > Design and fabricate scaled-up test section for detailed experimental study, for validation with CFD results




➤ Jet diameter, d: 6.4mm (0.25")
Inter-jet spacing: 1.5d

Jet angle, θ: 30°


> Semi-circular channel diameter, D: 10d

> Test section thickness: 12.7mm (0.5")

Side View

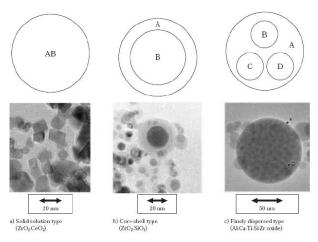


## Front View

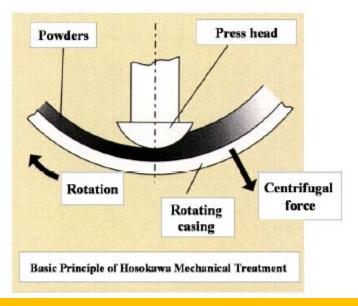


# **University Turbine Systems Research**

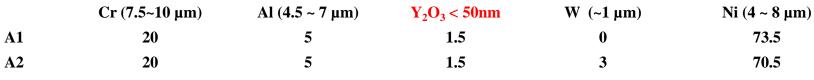
# **Outlines**

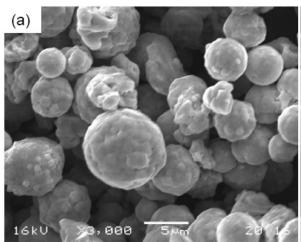

- Introduction and Background
- ➤ Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

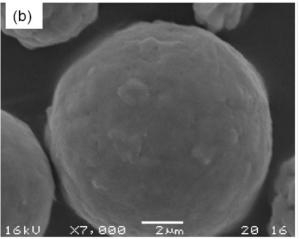
# Task 2: ODS Powders Fabrication and Characterization

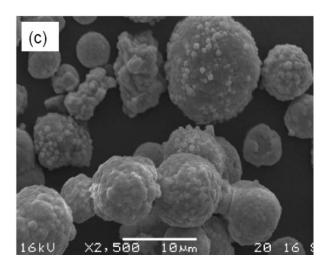

Objective: Develop and optimize ODS fabrication process for additive manufacturing

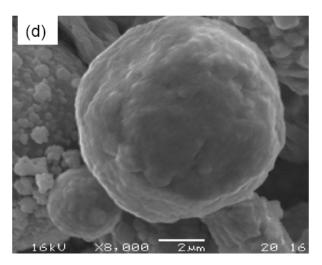
## **Approach**


- Powder mechanical alloying using Hosokawa Mechano-Chemical Bonding (MCB) followed by Ball Milling (BM)
  Why MCB + BM?
  - For MCB, powders are subjected to substantial compression, shear, mechanical forces under high rotating condition (~4000 rpm), through a gap between chamber and press head
  - Enable smaller particles to be dispersed uniformly and bonded onto base(host) particles without using binders.
  - Improved particle sphericity, ideal for precision mixing of nano and submicron powders.
  - Grain boundaries of host particles are pinned by nano-oxide particles,
  - minimized arain arowth during sintering.





Structural patterns of nanocomposite particles
[T. Yokoyama and C. C. Huang, KONA No.23 (2005)]

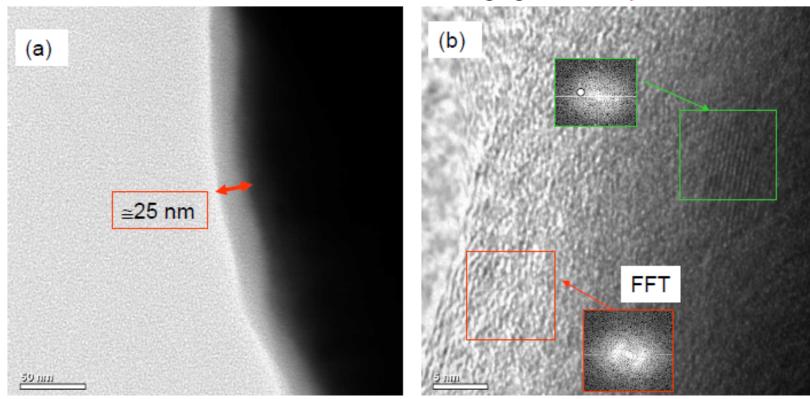




## **ODS Powder Compositions (in weight %)**





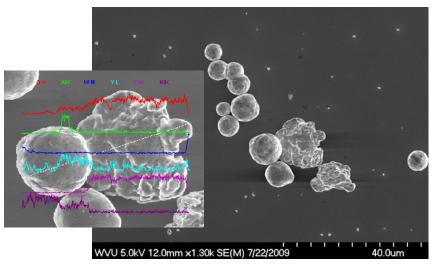






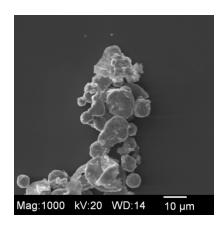

SEM micrographs of MCB processed powder sample A1 and A2

(a). Sample A1; (b) close view of (a); (c) sample A2; (d): close view of (c)


TEM BF and HREM imaging - A1 Sample

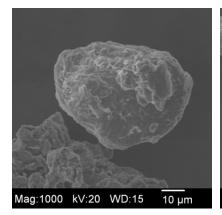


- ➤ TEM BF image (a) shows a layer of Y<sub>2</sub>O<sub>3</sub> thin film with thickness about 25nm around the edge of particle. The film thickness is relatively homogeneous.
- ➤ HREM image (b) shows the fine structure of the thin film. Most area of the film is amorphous and the corresponding FFT (Fast Fourier Transform) image show the diffusive feature.
- ➤ There is crystal structure within film as FFT indicated. The embedded FFT shows the spots and image shows the orientation fringe. The growth of film may involve crystallization of Y<sub>2</sub>O<sub>3</sub>.

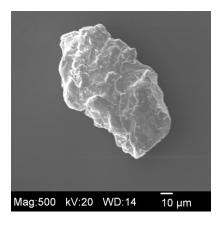

## **ODS Powder Fabrication**

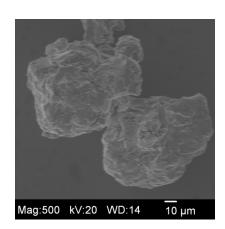
## MCB + Ball Mill (sample R1)




Mag:1000 kV:20 WD:14

Ball milling for 2 hrs





Ball milling for 6 hrs

Before ball milling

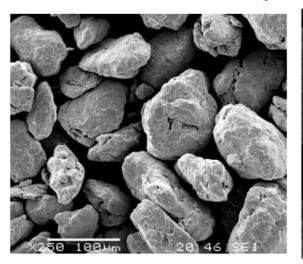


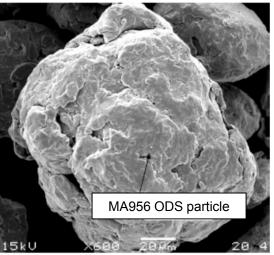
Mag:500 kV:20 WD:15

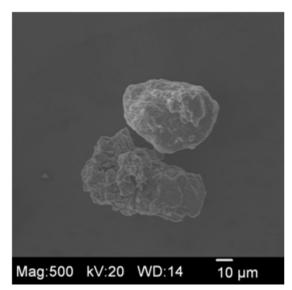


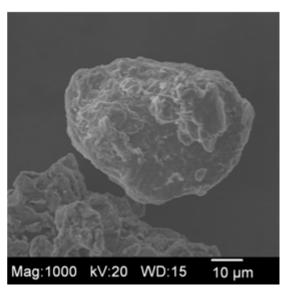


**Ball milling for 15 hrs** 

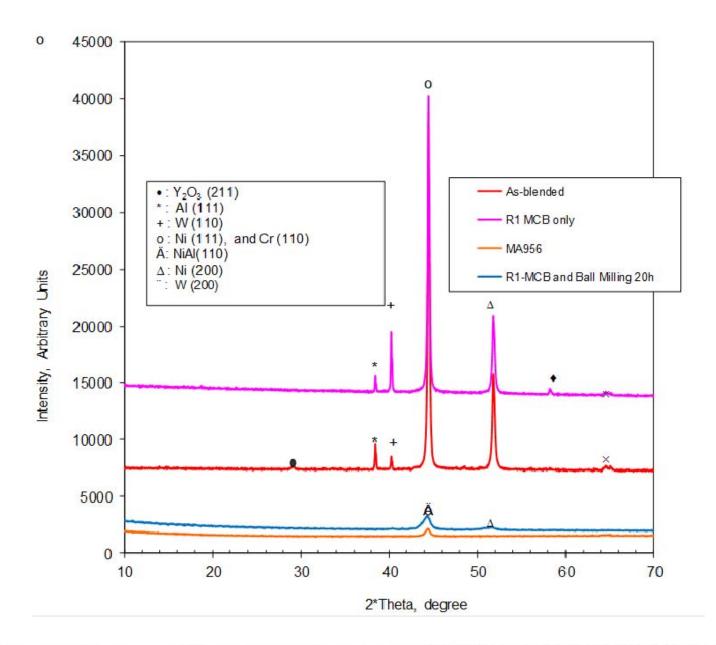

Ball milling for 30 hrs

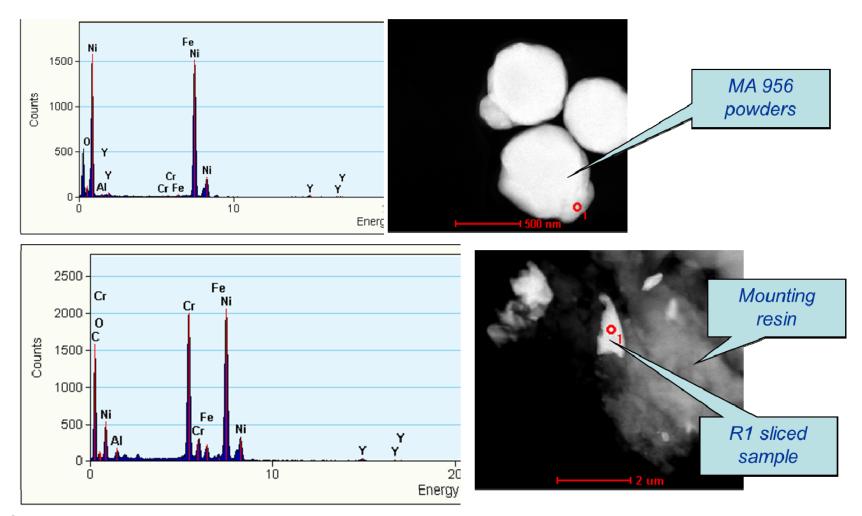

Ball milling for 60 hrs


**Ball milling for 84 hrs** 


## **ODS Powder Fabrication**

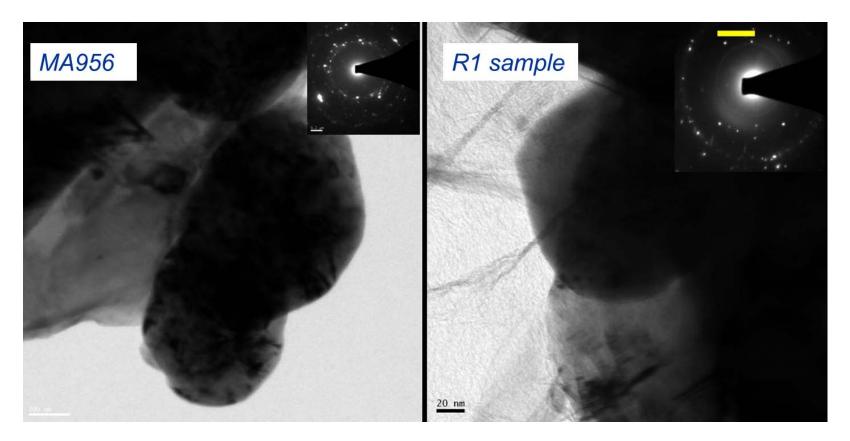
MA 956 ODS sample (Special Metals Inc.)





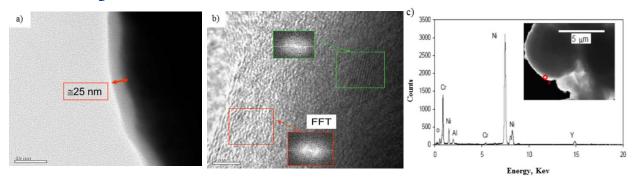




R1 sample with 15 hrs ball milling

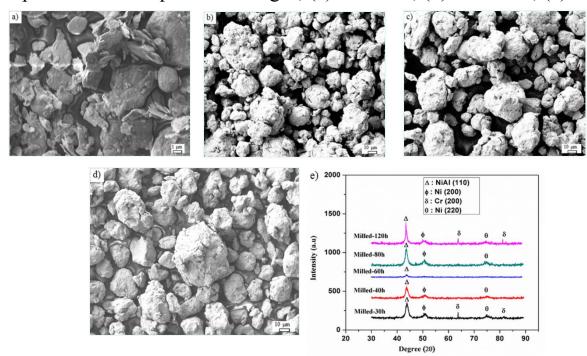




#### STEM and EDX


- For MA 956, hosting particles consist of Ni and Fe, and a few of Cr, Al, indicating Fe and Ni were well mixed.
- For R1 sample, cross section of powder shows Fe, Cr, Al, Ni and Y were well mixed. There are relatively higher Al, Cr and Y counts in R1 sample than in MA 956.




#### **TEM results**

- ➤ For MA 956, many dislocations were found inside particles, indicating heavy deformation during ball milling as well as many tiny particles were embedded into particles. SAD shows particle is polycrystalline.
- ➤ For R1 sample, TEM image and SAD show the similar structure to MA 956, indicating heavy deformation, well mixed and polycrystalline structure.

## **Summary - ODS Powder Characterization**



MCB processed ODS powders images, (a) TEM BF, (b) HR TEM, (c) STEM EDX



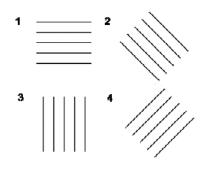
SEM micrographs of milled ODS powders for (a) 5 hrs, (b) 40 hrs, (c) 60 hrs, (d) 120 hrs, and (e) XRD spectrum.

# **University Turbine Systems Research**

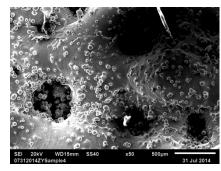
# **Outlines**

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

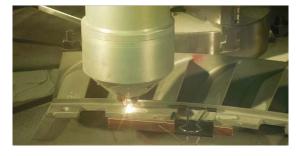
# Task 3: ODS Coating (AM Assisted)


Objective: Develop and optimize processing parameters for fabricating an ODS layer atop of substrate

### **Approach**

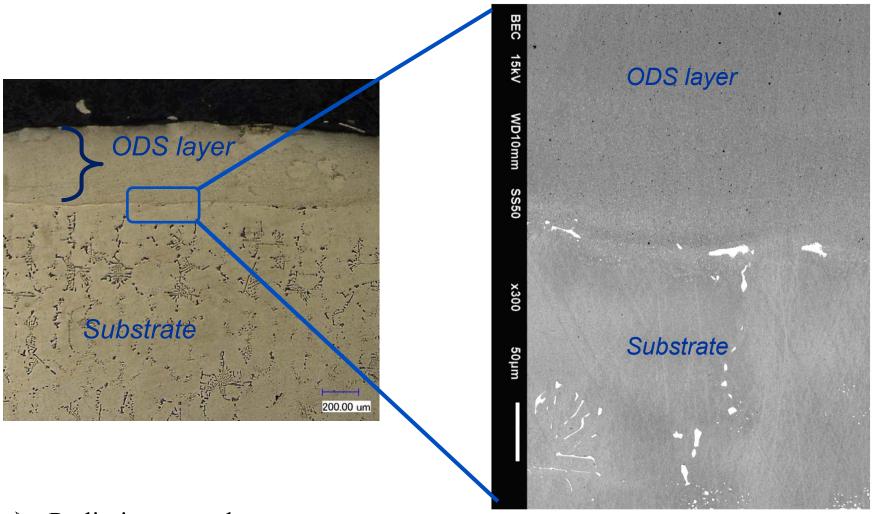

- > Produce a series of test coupon with densified ODS layer atop of single crystal nickel based superalloy substrate using varying major parameters.
  - Laser power, powder feeding rate, deposition speed, hatch spacing, hatch pattern




LENS450 (Direct Laser Deposition Process)



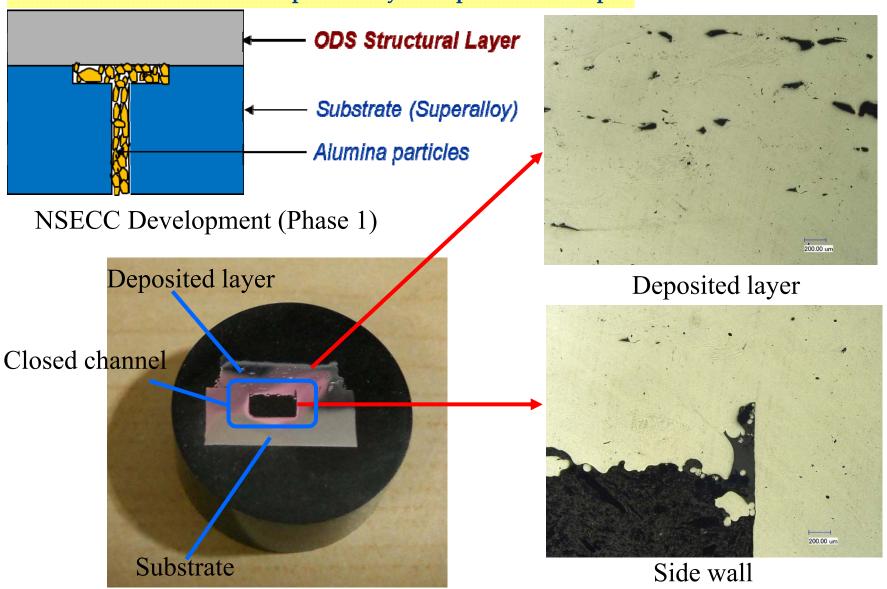
Hatch pattern




Hatch spacing



Laser power


# Task 3: ODS Coating (AM Assisted)



➤ Preliminary result
Test coupon – single crystal nickel based superalloy with densified ODS layer

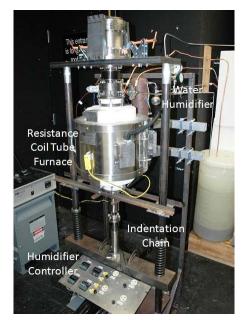
# Task 3: ODS Coating (AM Assisted)

> SS316L substrate with deposited layer (as proof-of concept)

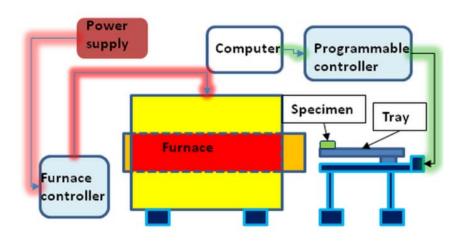


# **University Turbine Systems Research**

# **Outlines**


- Introduction and Background
- > Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

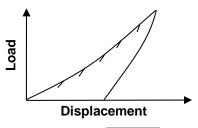
# Task 4: Microstructural and Mechanical Properties Evaluations


Objective: Characterize the microstructural and mechanical properties of ODS coating under (1) dry air, and (2) highly moisture content

#### **Approach**

- Advanced microstructural characterization
  - OM, EDX, XRD, SEM, TEM
- Micro-indentation using in-house test rig
- > Thermal cyclic tests




Controlled environment high temperature micro-indentation system

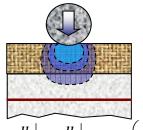


Schematic of the cyclic thermal exposure apparatus setup

# **Durability/Damage Assessment of Advanced Turbine Components**

## Multiple Loading/Partial Unloading Micro-Indentation




# PZT Actuator -Load Cell Indenter

#### **Applications:**

- **Elastic Modulus**
- **Stress-Strain Curve**
- **Indentation Creep**
- **High Temperature** Characterization

#### Potential:

- In Situ Material Characterization
- **Portability**
- Variable Influence Zone



$$\frac{dP}{dh} = (6RE_r^2)^{1/3} \cdot P^{1/3}$$

$$\frac{dh}{dP} = C \times \frac{1}{P^{1/3}}$$

$$\frac{|dh|}{|dP|} - \frac{|dh|}{|dP|} = C \times \left( \frac{1}{p_1^{1/3}} - \frac{1}{p_2^{1/3}} \right)$$

$$\left(\frac{dh}{dP}\right) = C \times \left(\frac{1}{P^{1/3}}\right) + C_s$$

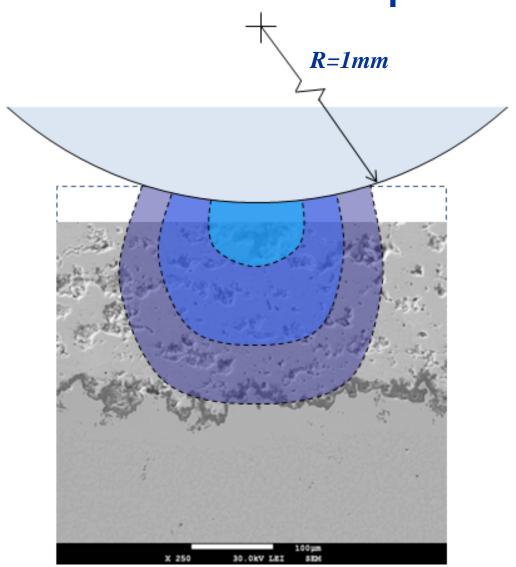
$$y = mx + b$$

where, 
$$a = \left(6RE_r^2\right)^{-1/3}, b = C_s$$

#### Load Based vs. Contact Area Based

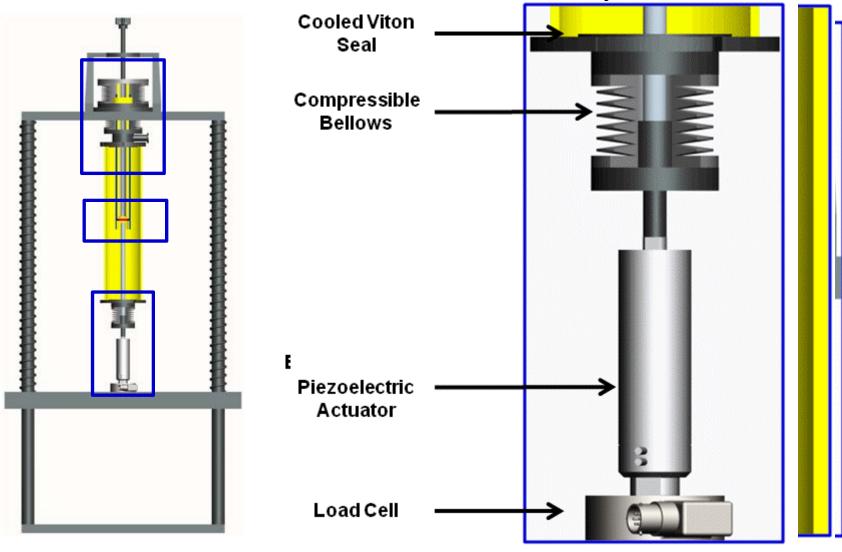
$$P = \frac{4}{3} \cdot \frac{\sqrt{R}}{k_0} h^{3/2} \quad \text{Hertzian Spherical Contact Mechanics} \\ \quad \text{where, } k_0 = \frac{1}{E_r} = \frac{1 - \upsilon^2}{E_d} + \frac{1 - \upsilon^2}{E_i} \\ \quad \frac{dP}{dh} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A} \quad \text{Area Based} \\ \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \quad \text{Load Based} \\ \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \quad \text{Load Based} \\ \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \quad \text{Load Based} \\ \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \quad \text{Load Based} \\ \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \cdot P^{1/3} \quad \frac{dP}{dh} = (6RE_r^{\ 2})^{1/3} \cdot P^{1/3} \cdot P^{1/3}$$

#### **Technique Benefits**


#### Designed for TBC/Bond and ODS Coating specimen

- Measurement of surface stiffness responses as a means to correlate the evolution of the microstructural changes of the coating layer/substrate subjected to high temperature thermal cycles.
- Can also be correlated to the damping effect
- No surface preparation needed

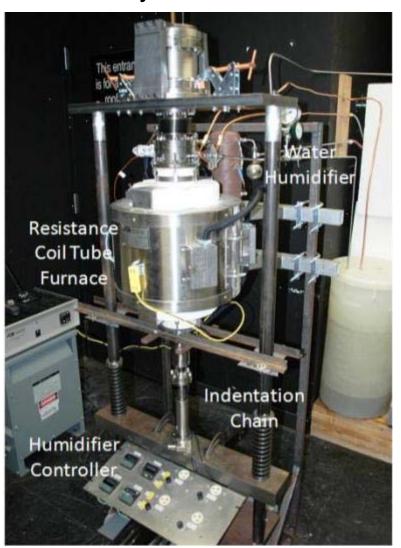
#### Controllable Influence Zone


- The overall response obtained is a contribution form different regions of the multilayered thermal barrier coating structure.
- As load increases, the influence zone increase as well.

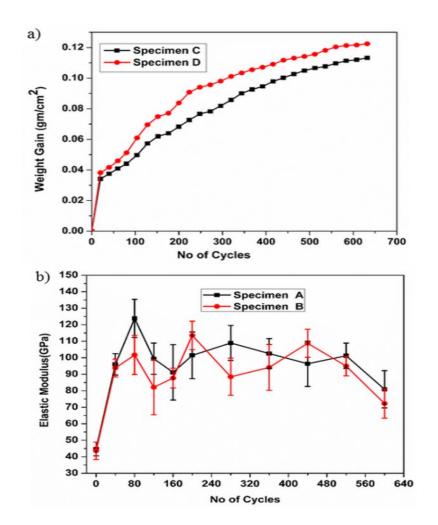
# **Durability/Damage Assessment of Advanced Turbine Components**

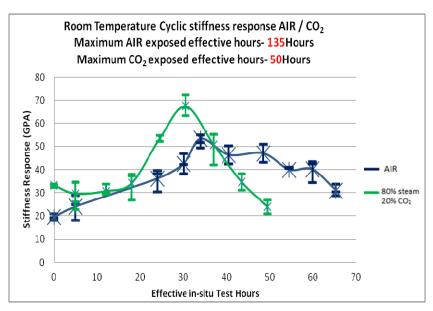


# Durability/Damage Assessment of Advanced Turbine Components


Controlled Environment Indentation System




# Durability/Damage Assessment of Advanced Turbine Components

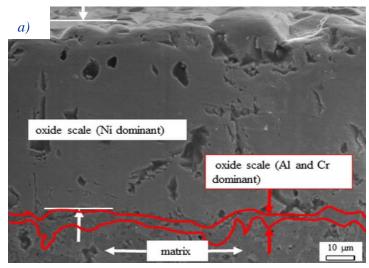

Controlled Environment Indentation System

- Continuous Water or Air Cooling
- Applied Test Systems Resistance Coil Tube Furnace
- Humidifier Numerically Controlled by 3 Separate PIDs
- Copper Gaskets Insure Proper and Efficient Sealing at Elevated Temperatures
- Controllable Thermal Ramp Rate
- Potential to Vary Internal Pressure

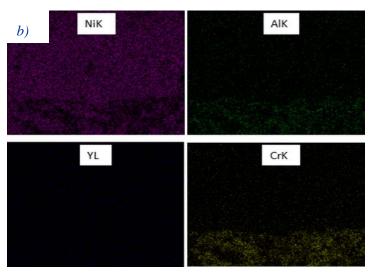


## **Mechanical Properties Evaluations**

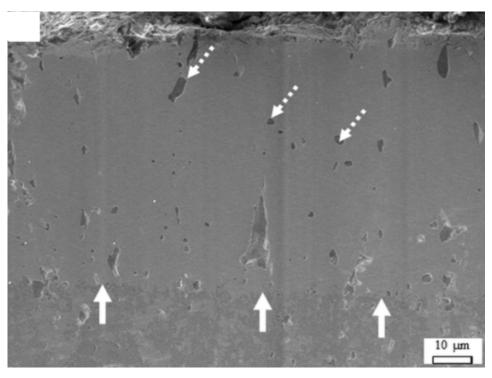





In-situ micro-indentation stiffness response of APS/MCrAIY/RenéN5 coupon under cyclic oxidation room to 1100°C under air and wet (80% steam/20% CO<sub>2</sub>) conditions


ODS specimen under cyclic oxidation room to 1100°C in air:

(a) weight gain, (b) micro-indentation stiffness response


## **Oxidation Kinetics – Stable NiO Formation**

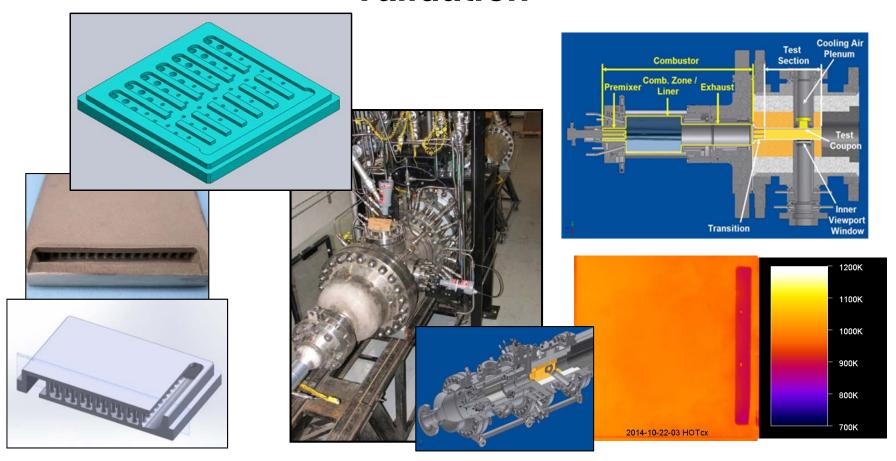


(a) oxide scale at 120 cycles



(b) EDX maps at 120 cycles SEM metallographic cross-section micrographs




SEM metallographic cross-section micrographs of NiO oxide scale at 600 cycles

# **University Turbine Systems Research**

# **Outlines**

- Introduction and Background
- ➤ Challenges, Objectives, Benefits of Technology, Research Task Plan
- > Tasks
  - 1. Advanced Impingement
  - 2. ODS Powders Fabrication and Characterization
  - 3. ODS Coating (AM Assisted) (Preliminary results)
  - 4. Microstructural and Mechanical Properties Characterization
  - 5. Detailed Experimental Measurement and Validation

# Task 5: Detailed Experimental Measurements and Validation



- ➤ Conduct HT/P testing at 1100°C demonstrating ~50-70% enhancement of NSECC over smooth channel and pin-fin arrays
- > Further optimization of the NSECC configuration for enhanced cooling performance
- > Address additive manufacturing capabilities for production of parts



# **Project Timeline**





| Task Description                                                                                                                    | 1 <sup>st</sup> Year |                 |                 |                 | 2 <sup>nd</sup> | Year            |                 |                 | 3 <sup>rd</sup> \ | Year            |                 |                 |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|
|                                                                                                                                     | 1 <sup>st</sup>      | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 1 <sup>st</sup>   | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
|                                                                                                                                     | quarter              | quarter         | quarter         | quarter         | quarter         | quarter         | quarter         | quarter         | quarter           | quarter         | quarter         | quarter         |
| Bi-weekly, quarterly and final reports                                                                                              | •                    |                 |                 |                 |                 |                 |                 |                 |                   |                 |                 | <b>→</b>        |
| Dr. M.K. Chyu, Dr. S.C. Siw - University of Pittsburgh (Pitt)                                                                       |                      |                 |                 |                 |                 |                 |                 |                 |                   |                 |                 |                 |
| Project management and planning                                                                                                     | <b>←</b>             |                 |                 |                 |                 |                 |                 |                 |                   |                 |                 |                 |
| Task 1.1 Heat Transfer Characterization of Optically Clear Scaled Test Section and Test Coupon                                      | <b>←</b>             |                 |                 |                 |                 |                 | <b>-&gt;</b>    |                 |                   |                 |                 |                 |
| Task 1.2 Development and Process Optimization to Coat an ODS Layer on Single Crystal Superalloy Substrate                           | <b>←</b>             |                 |                 |                 |                 |                 |                 |                 | <b>→</b>          |                 |                 |                 |
| Task 1.3. Heat Transfer Characterization of ODS/NSECC Protected Single Crystal Superalloy Coupon under High Temperature Environment |                      |                 |                 |                 |                 |                 |                 |                 | <del>&lt;</del>   |                 |                 | <b>-&gt;</b>    |
|                                                                                                                                     | Dr. Br               | uce S. Ka       | ang - We        | est Virgi       | nia Univ        | ersity (\       | NVU)            | •               |                   | •               |                 | •               |
|                                                                                                                                     |                      |                 |                 |                 |                 |                 |                 |                 |                   |                 |                 |                 |
| Task 2.1 Fabrication approach to produce ODS powder                                                                                 | <b>←</b>             |                 |                 |                 |                 |                 | <b>-&gt;</b>    |                 |                   |                 |                 |                 |
| Task 2.2. Thermal cyclic experiment on ODS<br>Alloy Specimens                                                                       |                      | <b>←</b>        |                 |                 |                 |                 |                 |                 |                   |                 | <b>&gt;</b>     |                 |