UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

	I.E. (Electro		0 0					
Course Code	Course Name	()	eaching Schei Contact Houi	: s)		Credits As	0	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX601	Embedded System and RTOS	04			04			04
ELX 602	Computer Communication Network	04			04			04
ELX 603	VLSI Design	04			04			04
ELX 604	Signals and systems	04		@01	04		01	05
ELXDLO502X	Department Level Optional courses II	04			04			04
ELXL601	Embedded System and RTOS Lab.		02			01		01
ELXL 602	Computer Communication Network Lab.		02			01		01
ELXL 603	VLSI Design Lab.		02			01		01
ELXLDLO601 X	Department Level Optional courses IILab.		02			01		01
	TOTAL	20	08	01	20	04	01	25

T.E. (Electronics Engineering) – Semester VI

				Exan	nination So	cheme – Seme	ester VI	-	
		Tradarama	1 4	Theor	y End	Exam	Term	Oral	
Course Code	Course Name	Test I	l Assessme Test II	AVG.	Sem Exam Marks	Duration (Hours)	Work	/Prac	Total
ELX601	Embedded System and RTOS	20	20	20	80	03			100
ELX 602	Computer Communication Network	20	20	20	80	03			100
ELX 603	VLSI Design	20	20	20	80	03			100
ELX 604	Signals and systems	20	20	20	80	03	25	25	100
ELXDLO602X	Department Level Optional courses II*	20	20	20	80	03			100
ELXL601	Embedded System and RTOS Lab.						25	25	50
ELXL 602	Computer Communication Network Lab.						25	25	50
ELXL 603	VLSI Design Lab.						25	25	50
ELXLDLO602 X	Department Level Optional Courses II*Lab.						25	25	50
	Total	100	100	100	400	15	125	125	750

Course Code	Department Level Optional Course II
ELXDLO6021	Microwave Engineering
ELXDLO6022	Electronics Product Design
ELXDLO6023	Wireless Communication
ELXDLO6024	Computer Organization and Architecture

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Embedded	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELX 601	Systems& Real Time Operating	04			04			04	
	System	04			••			VT	

			Examination Scheme										
		Theory											
Course Code	Course	Internal Assessment				Du							
	Name	Test 1	Test 2	Avg	End sem		Term work	Pract.	Oral	Pract. / Oral	Total		
ELX 601	Embedded Systems& Real Time Operating System	20	20	20	80	03					100		

Course Objectives

To study concepts involved in embedded hardware and software for systems realisation.

Course Outcomes At the end of the course, the learner will have the ability to

- 1. Identify and describe various characteristic features and applications of embedded systems.
- 2. Analyse and identify hardware for embedded systems implementation.
- 3. Analyse and identify various software issues involved in Embedded systems for real time requirements.
- 4. Analyse and explain the design life-cycle for embedded system implementation.

Module		Contents	Time
		Introduction to Embedded Systems	04
	1.1	Characteristics and Design metrics of Embedded system.	
1.	1.2	Real time systems: Need for Real-time systems, Hard-Soft Real-time	
	1.2	systems.	
	1.3	Challenges in Embedded system Design: Power, Speed and Code density.	
		Embedded Hardware	12
	2.1	Embedded cores, Types of memories, Sensors (Optical encoders,	
	2.1	Resistive) and Actuators (Solenoid valves, Relay/switch, Opto-couplers)	
	2.2	Power supply considerations in Embedded systems: Low power features-	
2.	2.2	Idle & Power down mode, Sleep mode, Brown-out detection.	
4.		Communication Interfaces: Comparative study of serial communication	
	2.3	interfaces (RS-232, RS-485), I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee.	
	2.5	Selection criteria of above interfaces.	
		(Frame formats of above protocols are not expected)	
		Embedded Software	14
	3.1	Program Modelling concepts: DFG,FSM,UML	
		Embedded C-programming concepts (from Embedded system point of	
	3.2	view): Data types, Modifiers, Qualifiers, Functions, Macros, Interrupt	
		service routine, Device drivers.	
		Real-time Operating system: Need of RTOS in Embedded system software	
		and comparison with GPOS, Foreground/Background processes, Interrupt	
3.		latency, Task, Task states, Multi-tasking, Context switching, Task	
	3.3	scheduling, Scheduling algorithms-Rate Monotonic Scheduling, Earliest	
		Deadline First (with numericals), Inter-process communication: Semaphore,	
		Mailbox, Message queues, Event timers, Task synchronisation- Shared	
		data, Priority inversion, Deadlock.	
		Memory Management	
	24	Introduction to μ COS II RTOS: Study of Kernel structure of μ COS II,	08
	3.4	μ COS II functions for Initialisation, Task creation, Inter-task	Vð
Λ		communication and Resource management, Memory management	04
4.		System Integration, Testing and Debugging Methodology	04

	4.1	Embedded Product Design Life-Cycle (EDLC)	
	4.2	Hardware-Software Co-design	
	4.3	Testing & Debugging: Boundary-scan/JTAG interface concepts, Black-Box	
	ч.5	testing, White-Box testing, Hardware emulation, Logic analyser.	
		Case Studies	06
5.	5.1	Soft Real-time: Automatic Chocolate Vending machine using µCOS II RTOS- Requirements study, Specification study using UML, Hardware architecture, Software architecture	
	5.2	Hard Real-time: Car Cruise-Control using μ COS II RTOS- Requirements study, specification study using UML, Hardware architecture, Software Architecture	

Text books:

1.Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.

2.Jean J. Labrosse, "MicroC / OS-II The Real-Time Kernel", CMP Books, 2011, Edition 2nd.

3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.

4. SriramIyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.

Reference Books:

1. DavidSimon, "An Embedded Software Primer", Pearson, 2009.

2.Jonathan W. Valvano, "Embedded Microcomputer Systems – Real Time Interfacing", Publisher - Cengage Learning, 2012 Edition 3rd.

3.AndrewSloss, DomnicSymes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004

4.FrankVahid, Tony Givargis, "Embedded System Design – A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.

5.Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.

- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 602	Computer	4	2		4			04	
	Communication								
	and Networks								

Subject	Subject Name	Examination Scheme									
Code		Theory Marks				Term	Practical	Oral	Total		
		Internal assessment		End Sem.	Work						
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX 602	Computer	20	20	20	80	-			100		
	Communication										
	and Networks										

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX502 Digital Communication

Course Objectives:

The objectives of this course are to:

- 1. Introduce networking architecture and protocols
- 2. Understand the various layers and protocols in the TCP/IP model
- 3. Recognize different addressing schemes, connecting devices and routing protocols
- 4. Select the required protocol from the application layer protocols

Course Outcomes:

On successful completion of the course the students will be able to:

1.Demonstrate understanding of networking concepts and required protocols

- 2. Analyze the various layers and protocols of the layered architecture
- 3. Evaluate different addressing schemes, connecting devices and routing protocols

4. Appreciate the application layer protocols

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to Network Architectures, Protocol Layers, and Service models	06
	1.1	Uses of computer networks. Topologies, LAN, MAN, WAN, Network topologies,	
		Addressing : Physical / Logical /Port addressing, Protocols and Standards.	
	1.2	Protocol Architecture: Need of layered protocol architecture, Layers details of OSI, , Protocol Layers and Their Service Models	_
	1.3	TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP	
2.		Physical Layer	08
2.	2.1	Transmission Media: Guided media like Coaxial, fiber, twisted pair, and Wireless media, Transmission Impairments. Interconnecting Devices: Hub, Bridges, Switches, Router, Gateway	-
	2.2	Data communication model : DTE, DCE, RS-232D Interface , Null Modem , Multiplexing : FDM , Synchronous TDM , Statistical TDM, ADSL , xDSL, Cable	

		Modem	
3.		Data Link Control	08
	3.1	Data link services: Framing, Flow control, Error control, ARQ methods, Piggybacking	
	3.2	High Level Data Link Control (HDLC): HDLC configurations, Frame formats, Typical frame exchanges.	
	3.3	Medium Access Control Protocols: ALOHA, Slotted ALOHA, CSMA, CSMA/CD	-
4.		Network Layer	14
	4.1	Switching : Switched Communication networks, Circuit switching Networks, , Circuit switching Concepts, Packet switching Principles: Virtual circuit switching and Datagram switching	-
	4.2	Routing in Packet Switching Networks: Characteristics, Routing strategies, Link state Routing versus Distance vector Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford Algorithm.	-
	4.3	Internet Protocol: Principles of Internetworking: Requirements, Connectionless Operation Internet Protocol Operation: IP packet, IP addressing, subnet addressing, IPv4, ICMP, ARP, RARP	-
		IPv6 (IPv6 Datagram format, comparison with IPv4, and transition from IPv4 to IPv6)	00
5.	5.1	Transport Layer & Application Layer Connection –oriented Transport Protocol Mechanisms: Transmission Control	08
	5.1	Protocol (TCP): TCP Services, TCP Header format, TCP three way handshake, TCP state transition diagram.	
		User datagram Protocol (UDP)	
	5.2	Congestion: Effects of congestion, Congestion control methods, Traffic management, Congestion control in Packet switching Networks	
	5.3	Application layer Protocols : HTTP, FTP, DNS, SMTP, SSH	
6.		LANs. High speed Ethernet	04
	6.1	LAN Protocol architecture, LAN topologies, Hub, Bridges, Virtual LANs	
		Traditional Ethernet and IEEE 802.3 LAN Standard : Ethernet protocol, Frame structure, Physical layers,	
	6.2	High Speed Ethernet : Fast Ethernet, Gigabit Ethernet & 10- Gigabit Ethernet	
	I	Total	48

Recommended Text Books

- 1. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 2. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 3. Alberto Leon Garcia, "Communication Networks", McGraw Hill Education, Second Edition

Reference books :

- 1. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. J. F. Kurose and K. W. Ross ,"Computer Networking: A Top-Down Approach", Addison Wesley, 5th Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial			TW/Practical	Tutorial	Total	
ELX 603	VLSI Design	4	4 2					04	

Subject	Subject Name		Examination Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total	
		Internal assessment End Sem.			Work					
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX 603	VLSI Design	20	20	20	80	-			100	

Prerequisite Subject:

- ELX302: Electronics Devices and Circuits- I
- ELX304: Digital Circuit Design
- ELX404: Digital System Design

• ELX504: Design with Linear Integrated Circuits

Course Objectives:

- 1. To study MOS based circuit realization using different design styles
- 2. To highlight the fundamental issues in data path and system level design

Course Outcomes: After successful completion of the course student will be able to ...

- 1. Demonstrate a clear understanding of choice of technology, scaling, MOS models and system level design issues.
- 2. Design and analyze MOS based inverters.
- 3. Design MOS based circuits with different design styles.
- 4. Design semiconductor memories, adders and multipliers.

Unit No.	Details	Teaching Hours
1	Technology Trend :	¥
	1.1 Technology Comparison: Comparison of BJT and MOS technology	06
	1.2 MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models,	00
	MOSFET capacitances	
2	MOSFET Inverters:	
	2.1 Types of MOS inverters: Active and passive load and their comparison.	
	2.2 Circuit Analysis of MOS Inverters:	
	Static Analysis resistive and CMOS inverter: Calculation of all critical voltages and	
	noise margins.	10
	Design of symmetric CMOS inverter.	10
	Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and	
	propagation delay	
	2.3Logic Circuit Design: Analysis and design of 2-I/P NAND,NOR and complex	
	Boolean function using equivalent CMOS inverter for simultaneous switching.	
3	MOS Circuit Design Styles:	
	3.1 Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo	
	NMOS, C ² MOS, Dynamic, Domino, NORA and Zipper.	10
	3.2Circuit Realization: Basic gates, SR Latch, JK FF, D FF, 1 Bit Shift Register,	
	MUX using above design styles.	
4	Semiconductor Memories:	
	4.1 SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write	
	circuits, sense amplifier.	
	4.2DRAM: 1T_DRAM, operation modes, leakage currents, refresh operation,	08
	physical design.	
	4.3 ROM Array: NAND and NOR PROM, Nonvolatile read/write memories-	
	classification and programming techniques	
5	Data Path Design:	
	5.1 Adder: CLA adder, MODL, Manchester carry chainand high speed adders like	04
	carryskip, carry select and carry save.	04
	5.2 Multipliers and shifter: Array multiplier and barrel shifter	
6	VLSI Clocking and System Design:	
	6.1Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2Low Power CMOS Circuits: Various components of power dissipation in	10
	CMOS, Limits on low power design, low power design through voltage scaling	10
	6.3I/O pads and Power Distribution: ESD protection, input circuits, output	
	circuits, simultaneous switching noise, power distribution scheme	

6.4Interconnect: Interconnect delay model, interconnect scaling and crosstalk.

Text and Reference Books

1.Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

2. John P. Uyemura, "Introduction to VLSI CIRCUITS AND SYSTEMS", Wiley India Pvt. Ltd.

3. Jan M. Rabaey, Anantha Chandrakasan and BorivojeNikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition.

4. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

5. Neil H. E. Weste, David Harris and Ayan Banerjee, "*CMOS VLSI Design: A Circuits and Systems Perspective*", Pearson Education, 3rd Edition.

6. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.

7. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

8. David A Hodges, Horace G Jackson and Resve A Saleh, "Analysis and Design of Digital Integrated Cicuits", TMH, 3rd Edition

Additional Study Material & e-Books

1. Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", Prentice Hall of India Private Ltd.

2.Samir Palnitkar, "A Guide to Digital Design and Synthesis", Pearson Education

Subject Code	Subject Name	Te	eaching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX604	Signals and Systems	04		#01	04		01	05	

Subject	Subject]	Examinatio	ion Scheme					
Code	Name		T	heory Marks		Term	Practical	Oral	Total		
		In	Internal assessment End			Work					
		Test	Test	Ave. Of	Sem.						
		1	2	Test 1 and	Exam						
				Test 2							
ELX604	Signals and	20	20	20	80	25	-	-	125		
	Systems										

#Class wise

Course Objectives:

1. To provide a comprehensive coverage of continuous time and discrete time Signals and Systems.

2. To introduce various time domain and frequency domain methods for analysis of Signals and systems.

Course Outcomes:

After successful completion of this course student will be able to

- 1. Differentiate between continuous time and discrete time Signals and Systems.
- 2. Understand various transforms for time domain to frequency domain conversion
- 3. Apply frequency domain techniques for analysis of LTI systems
- 4. Apply frequency domain techniques for analysis of continuous and discrete signals

Module	Unit	Topics	Hrs.
No.	No.		
1.		Continuous and Discrete Time Signals	8
	1.1	Mathematical Representation and Classification of CT and DT signals,	
	1.0	Orthogonality of signals	
	1.2	Arithmetic operations on the signals, Time Shifting, Time scaling, Time Reversal of signals	
	1.3	Sampling and Reconstruction, Aliasing effect	
2		Continuous and Discrete Systems	8
	2.1	Mathematical Representation and classification of CT and DT systems	
	2.2	Properties of LTI systems, impulse and step response.	
	2.3	Use of convolution integral, convolution sum and correlation for analysis of LTI	
		systems	
	2.4	Properties of convolution integral and convolution sum	
3		Frequency Domain Analysis of Continuous Time System using Laplace	6
		Transform	
	3.1	Concept of Complex frequency, Region of Convergence for Causal, Non-causal	
		and Anti-causal systems, Poles and Zero of transfer function	
	3.2	Unilateral Laplace Transform	
	3.3	Analysis and characterization of LTI system using Laplace Transform: Impulse	
		and Step Response, Causality, Stability, Stability of Causal system	
4		Frequency Domain Analysis of Discrete Time System using Z Transform	12
	4.1	Need for Z transform, definition, properties of unilateral and bilateral Z	
		Transform, mapping with s plane, relationship with Laplace transform	
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function,	
		Inverse Z transform	
	4.3	Analysis and characterization of LTI system using Z transform: impulse and step	
		response, causality, stability, stability of causal system	
	4.4	System realization-Direct, Direct Canonic, Cascade and Parallel forms	
5		Frequency Domainc Analysis of Continuous Signals	6
	5.1	Frequency Domain Analysis of periodic non-sinusoidal signals	
	5.2	Frequency Domain Analysis of aperiodic Signals-Introduction, Properties of	
	012	Fourier Transform, Fourier Transform based amplitude and phase response of	
		standard signals, Relationship with Laplace and Z transform, Energy Spectral	
6		Frequency Domain Analysis of Discrete Signals	8
U	6.1		
	0.1	Discrete Time Fourier Series, Evaluation of DTFS coefficients, Magnitude and	
		Phase Spectrum of Discrete time periodic signals, Power Spectral Density	
	6.2	Discrete Time Fourier Transform - Concept of discrete time signal in frequency	
		domain, definition of DTFT, determination of magnitude and phase functions using	
		DTFT	
		Total	48

Text Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 2. A. NagoorKani, "Signals and Systems", Tata McGraw-Hill Education

Reference Books:

1. John Proakis and DimitrisMonolakis, "Digital Signal Processing", Pearson Publication, 4th Edition

- 2. Alan V. Oppenheim, AlanS. Willsky, and S.Hamid Nawab, "Signals and Systems", 2nd Edition, PHIlearning,2010.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Te	eaching Sch	eme	Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ELX DLO6021	Microwave Engineering	04		#01	04		01	05	

Subject	Subject]	Examinatio	on Scheme					
Code	Name		Theory Marks				Practical	Oral	Total		
		Internal assessment			End	Work					
		Test	Test	Ave. Of	Sem.						
		1	2	Test 1 and	Exam						
				Test 2							
ELX6021	Microwave	20	20	20	80	25	-	-	125		
	Engineering										

Prerequisites: Knowledge of basic Engineering Electromagnetics

Course Objectives:

- 1. To introduce the students to various concepts of Microwave Engineering.
- 2. To teach the students the working principles and applications of different microwave devices.

Course Outcomes (CO):

After successful completion of the course, students will be able to:

- 1. Understand the importance and applications of microwaves.
- 2. Explain the process of generation and amplification of microwaves.
- 3. Analyse the electromagnetic field distribution in various microwave components.
- 4. Measure various microwave parameters.

Module	Contents	Hours					
1	Introduction to microwave communication	4					
	 1.1 Microwave spectrum and bands 1.2 Limitations of conventional circuit theory concepts at microwave frequencies 1.3 Applications of microwaves 1.4 Limitations of conventional vacuum tubes at microwave frequencies 						
2	 Generation and amplification of microwaves 2.1 Two cavity Klystron amplifiers: Construction, Process of velocity modulation and bunching , Apple gate diagram Output power and efficiency, Applications 2.2 Reflex Klystron: Construction, Process of velocity modulation and bunching 	12					

	Apple gate diagram, Output power and efficiency	
	Applications	
	2.3 Cylindrical Magnetron Construction and working principle	
	Hull cut-off magnetic equation, Cyclotron angular frequency	
	Applications	
	2.4 Traveling wave tube : construction and working principle	
	applications	
	2.5 numerical examples based on the above topics	
3	Waveguides:	10
5	waveguues.	10
	3.1 Rectangular and circular waveguides	
	3.2 solution of Maxwell's equation for distribution of fields in the	
	waveguides	
	3.3 characteristic equation	
	3.4 Dominant and degenerate modes	
	3.5 group and phase velocities	
	3.6 cut-off frequency	
	3.7 numerical examples based on the above topics	
4	Waveguide components and analysis:	12
	4.1 Definition and significance of s-parameters	
	4.2 Properties of s-parameters	
	4.3 Construction, working principle and s-matrix representation of cavity	
	resonators, waveguide attenuators, waveguide phase shifters,	
	waveguide multiport junctions, E-plane and H-plane Tees, Magic Tee,	
	Hybrid Ring, direction couplers	
	4.4 Microwave ferrite components:	
	*	
	Faraday rotation isolator, Circulator, Gyrator	
	Numerical examples based on the above topics	
	Numerical examples based on the above topics	
5	Microwave solid state devices:	5
	5.1Principle of operation and characteristics of:	
	Gunn Diode, TRAPATT and IMPATT diodes, Microwave	
	Transistors	
	11415150015	
	5.2 Introduction to Strip Lines	
6	Microwave Measurement:	5
	Measurement of	
	6.1 Power	
	6.2 Attenuation	
	6.3 Frequency	
	6.4 VSWR	
	6.5 Cavity Q	
	6.6 Impedance	

Text Books:

- 1. "Microwave Devices and Circuits" by Samuel Liao, PHI
- 2. "Microwave circuits and Passive Devices" by M L Sisodia, G S Raghuvanshi, New Age International(P) Ltd

Reference Books:

- 1. "Electronic Communication Systems" by Kennedy, Davis, 4e TMH
- 2. "Microwave Engineering: Passive Circuits" by Peter Rizzi, PHI
- 3. "Foundations for Microwave Engineering" by Robert E Collin, 2e, John Wiley
- 4. "Basic Microwave Techniques & Laboratory Manual" by M L Sisodia, G S Raghuvanshi, 2001 New Age International(P) Ltd
- 5. Microwave Engineering, Annapurna Das, TMH

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code		Teaching Scheme				Credits Assigned			
	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practic al	Tutorial	Total	
ELX DLO6022	Electronic Product Design	04			04			04	

		Examination Scheme								
Course Code	Course Name		Th	eory Marks	T					
		Interna	al Assessm	ent (IA)	End Semester	TermOral &WorkPractical		Total		
		Test I	Test II	Average	Examination					
ELX DLO6022	Electronic Product Design (EPD)	20	20	20	80			100		

<u>Rationale</u> :- The aim of this course is to enable students to gain practical experience & nurture their creativity in electronic product design & the objective is to provide students with a clear understanding of the practical design problems of the electronic products at an introductory level. With this course, students are expected to become familiar with the concept of designing a product as per the requirements (non-technical) & given specifications (technical), component tolerances, production constraints, safety requirements & EMC standards.

Course Objectives:-

- 1. To understand the stages of product (hardware / software) design & development
- 2. To learn different considerations of analog, digital & mixed circuit design
- 3. To be acquainted with methods of PCB design & different tools used for the same
- 4. To be aware of the importance of testing in product design cycle
- 5. To gain knowledge about various processes & importance of documentation

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1 :-** Design electronic products using user-centered designing processes
- CO-2 :- Identify & recognize essential design & production procedures of electronic products
- CO-3 :- Implement a prototype for meeting a particular requirement / specification
- CO-4 :- Demonstrate problem solving & troubleshooting skills in electronic product design
- CO-5 :- Prepare the relevant set of design documentation & present it as a case study

Modul e No.	Topics	Hour s
1	INTRODUCTION TO ELECTRONIC PRODUCT DESIGN Man-machine dialog & industrial design, user-centered design, elements of successful design, cognition, ergonomics, packaging & factors; design for manufacture, assembly & disassembly wiring, temperature, vibration & shock; safety, noise, energy coupling, grounding, earthing, filtering & shielding	06
2	HARDWARE DESIGN & TESTING METHODS Design process, identifying the requirements, formulating specifications, design specifications, system partitioning, functional design, architectural design, functional model v/s architectural model, prototyping, performance & efficiency measures, formulating a test plan, writing all the specifications, test procedures & test cases, design reviews, module debug & testing – black box testing, white box testing, grey box testing	10
3	SOFTWARE DESIGN & TESTING METHODS Types of software, the waterfall model of software development, models, metrics & software limitations, risk abatement & failure prevention, software bugs & testing, good programming practice, user interface, embedded & real-time software	10
4	PRINTED CIRCUIT BOARD (PCB) DESIGNING Fundamental definitions, standards, routing topology configuration, layer stack up assignment, grounding methodologies, aspect ratio, image planes, functional partitioning, critical frequency & bypassing, decoupling; design techniques for ESD protection, guard- band & guard-rings	08
5	PRODUCT DEBUGGING & TESTING Steps of debugging, the techniques for troubleshooting, characterization, electromechanical components, passive components, active components, active devices, operational amplifier, analog-to-digital conversion, digital components, inspection & testing of components, process of simulation, prototyping & testing, integration, validation & verification, EMI & EMC issues	08
6	THE DOCUMENTATION PROCESS Definition, needs & types of documentation, records, accountability & liability, audience, steps in preparation, presentation & preservation of documents, methods of documentation, visual techniques, layout of documentation, bills of materials, manuals – instructional or operating manual, service and maintenance manual, fault finding tree, software documentation practices	06
1-6	TOTAL	48

Recommended Books :-

- 1. R. G. Kaduskar & V. B. Baru, Electronic Product Design, 3rd edition, Wiley India
- 2. Kim Fowler, Electronic Instrument Design, 2nd edition, Oxford University Press
- 3. Robert J. Herrick, PCB Design Techniques for EMC Compliance, 2nd edition, IEEE Press
- 4. G. C. Loveday, Electronic Testing & Fault Diagnosis, 4th edition, A. H. Wheeler Publishing
- 5. James K. Peckol, Embedded Systems A Contemporary Design Tool, 1st edition, Wiley Publication
- 6. J. C. Whitaker, The Electronics Handbook, CRC Press

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELX	Wireless	4	2		4			04		
DLO6023	Communication									

Subject	Subject Name				e				
Code			T	heory Marks		Term	Practical	Oral	Total
		Inte	Internal assessment End S						
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX	Wireless	20	20	20	80	-			100
DLO6023	Communication								

Course Objectives:

The objectives of this course are to:

- 1. To introduce the Concepts of basic Cellular communication systems, mobile Radio propagation
- 2. To understand the various Cellular processes such as handoff strategies, interference, Trunking theory
- 3. To study the features and services of 2G cellular technologies: GSM and CDMA
- 4. To study the features of evolving technological advances in 2G, 3G & 4G Cellular systems.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Understand the concepts of basic cellular system, frequency reuse, channel assignment
- 2. Understand the fundamentals radio propagation, Path loss and comprehend the effect of Fading.
- 3. Acquire the Knowledge about multiple access technologies and different of different spread spectrum techniques.
- 4. Acquire the Knowledge about overall GSM cellular concept and analyse its services and features
- 5. Comprehend the features of CDMA technology
- 6. Analyse the evolution of cellular technology from 2G to 4G Cellular systems .

Module No.	Unit No.	Topics	Hrs.
1.		Concept of Cellular Communication	08
	1.1	Introduction to cellular communications, Frequency reuse, Channel assignment	
		strategies	
	1.2	Cellular Processes: Call setup, Handoff strategies, interference and system capacity,	
		Co-channel Interference reduction with the use of Directional Antenna	
	1.3	Traffic Theory: Trunking and Grade of service, Improving Coverage and capacity in	
		Cellular systems: Cell splitting, Sectoring, Micro-cell Zone concept	
2.		Mobile Radio Propagation	08

	2.1	Introduction to Radio wave propagation, Free space propagation model, the three basic	
		Propagation mechanisms, The Ground Reflection (two-ray) model, Practical Link	
		budget design using Path-Loss models:Log-distance Path –loss model.	
	2.2	Small scale Multipath Propagation: Factors influencing small scale fading, Doppler	
		shift, Parameters of mobile multipath channels,	
	2.3	Types of small scale fading, Fading effects due to Doppler spread, Fading effects due	
		to Multipath Time delay spread, Raleigh and Rician distributions	
3.0		Multiple access techniques & Spread spectrum Modulation	08
	3.1	Multiplexing and Multiple Access: Time Division Multiple Access, Frequency Division	
		Multiple Access, Spread-spectrum multiple-access:Code Division Multiple Access	
	3.2	Spread spectrum Modulation :Need for and concept of spread spectrum modulation,	
		PN-sequence generation, properties of PN-sequence, Gold sequence generation, Direct-	
		sequence SS, Frequency-hopping SS,	
4.0		GSM	12
	4.1	GSM network architecture, Signalling protocol architecture, Identifiers, Physical and	
		Logical Channels, Frame structure, Speech coding, Authentication and security, Call	
		procedure, Hand-off procedure, Services and features	
5.0		IS-95	06
	5.1	Frequency and channel specifications of IS-95, Forward and Reverse CDMA channel,	
		Packet and Frame formats, Mobility and Resource management	
6.0		Evolution from 2G to 4G	06
	6.1	GPRS, EDGE technologies, 2.5G CDMA-One cellular network, W-CDMA (UMTS),	
		CDMA2000, LTE, Introduction to 5G Networks	
		Total	48

Recommended Books:

- 6. Theodore Rappaport, "Wireless Communications: Principles and Practice, 2nd Edition, Pearson Publication
- 7. ITI Saha Misra, "Wireless Communication and Networks: 3G and Beyond", Publication
- 8. Vijay Garg, "IS-95 CDMA and cdma 2000: Cellular/PCS System Implementation", Pearson Publication.

Reference Books:

- 1. T.L Singal, "Wireless Communication", Tata McGraw Hill ,2010
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009
- 3. Andreas F Molisch, "Wireless Communication", John Wiley, India 2006.
- 4. Vijay Garg, "Wireless communication and Networking", Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned					
ELX DLO6024	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
	Organization and Architecture	04			04			04		

	Name	Examination Scheme										
Course		Theory								Droot		
Code		Internal Assessment			En	En Dura		Pract	Oral	Pract	Total	
		Test 1	Test 1 Test 2	Av	d	tion	work	•	Ulai	, Oral	Total	
		1050 1	1050 2	g	sem	(hrs)				Orui		
ELX DLO602 4	Computer Organizatio n and Architecture	20	20	20	80	03					100	

Course Objectives	 To introduce the learner to the design aspects which can lead to maximized performance of a Computer. To introduce the learner to various concepts related to Parallel Processing 3.To highlight the various architectural enhancements in modern processors.
Course Outcomes	At the end of the course, the learner will have the ability to
	 Define the performance metrics of a Computer Explain the design considerations of Processor, Memory and I/O in Computer systems Explain the advantages and limitations of Parallelism in systems Explain the various architectural enhancements in modern processors

Module		Contents	Time
		Introduction to Computer Organization	[06]
	1.1	Fundamental Units of a Computer	01
1.	1.2	Introduction to Buses	01
	1.3	Number Representation methods- Integer and Floating-point, Booth's Multiplier, Restoring and Non-Restoring Division	03
	1.4	Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and MFlops	01
		Processor Organization and Architecture	10
2.	2.1	CPU Architecture, Register Organization, Instruction cycle, Instruction Formats	04
2.	2.2	Control Unit Design- Hardwired and Micro-programmed Control: Vertical and Horizontal Micro-Instructions, Nano-programming	04
	2.3	Comparison between CISC and RISC architectures	02
		Memory Organization	12
	3.1	Classification of Memories-Primary and Secondary Memories, RAM (SRAM and DRAM) and ROM (EPROM, EEPROM), Memory Inter-	02
2		leaving	
3.	3.2	Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write Policies, Cache Coherency	
	5.2	(* Numerical Problems expected)	06
		Virtual Memory Management-Concept, Segmentation , Paging, Page	
	3.3	Replacement policies	04
		Input/Output Organization	06
4.	4.1	Types of I/O devices and Access methods, Types of Buses, Bus Arbitration	03
	4.2	Expansion Bus Concept, PCI Bus	03
		Parallelism	06
-	5.1	Introduction to Parallel Processing Concepts, Flynn's classification, Amdahl's law	02
5.	5.2	Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline hazards and solutions (* Numerical Problems expected)	04
		Architectural Enhancements	08
6.		Superscalar Architectures, Out-of-Order Execution, Multi-core processors, Clusters, Non-Uniform Memory Access (NUMA) systems, Vector Computation , GPU	08

Text books:

1. William Stallings, "*Computer Organization and Architecture: Designing for Performance*", Eighth Edition, Pearson.

2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.

Reference Books:

1. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.

2. B. Govindarajulu, "*Computer Architecture and Organization: Design Principles and Applications*", Second Edition, Tata McGraw-Hill.

3. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design - The Hardware/Software Interface", Morgan Kaufmann, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learner need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teach	ing	schem	e	Credit assigned						
	Embedded	Theory		Pract.		Tut.	Theory	Pract.	Τι	at.	Total		
ELXL 601	Systems& Real Time Operating System Laboratory	0		02	2			01	-	-	01		
						Exan	nination Scheme						
Course Code	Course Name		ternal essme Tes t 2		End sem	Dura tion (hrs)	Term work	Pract.	Oral	Pract. / Oral	Total		
ELXL 601	Embedded Systems& Real Time Operating System Laboratory						25			25	50		

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 601 (Embedded System & Real Time Operating System) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus. **Suggested Experiments:**

- Simulation experiments using KeilC–cross complier to: evaluate basic C program for X-51 assembly; evaluating various C data types; evaluating and understanding iterative C constructs translated into x51's assembly; evaluating and understanding interrupt implementation.
- Simulate and understand working of µCOS-II functions using example programs from recommended text, "MicroC / OS-II The Real-Time Kernel", by Jean J. Labrosse.
- Porting of µCOS-II on X-51/AVR/CORTEX M3 platform.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 602	Computer	-	2		-	01		01		
	Communication									
	and Networks									
	Laboratory									

Subject	Subject Name				e				
Code			Tl	neory Marks		Term	Practical	Oral	Total
		Internal assessment End Sem. V				Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELXL 602	Computer	-	-	-	-	25		25	50
	Communication								
	and Networks								
	Laboratory								

Laboratory Experiments:

Lab session includes Seven experiments and a Case study (Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum **Seven experiments** need to be conducted, out of which **at least Four Experiments** should be softwarebased (C/C++, Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology. ("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report (PPT+Report)carry minimum of 10 marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of experiments:

- 1. Study of transmission media and interconnecting devices of communication networks.
- 2. Implementation of serial transmission using RS232
- 3. Implementing bit stuffing algorithm of HDLC using C/C++
- 4. Implementation of Routing protocols using C/C++
- 5. Study of NS2 simulation software
- 6. Implementation of TCP/UDP session using NS2
- 7. Implementation of ARQ methods using NS2
- 8. Study of WIRESHARK and analyzing Packet using WIRESHARK
- 9. Study and implementation of IP commands
- 10. Study of GNS software and implementation of routing protocols using GNS

Course Code	Course Name	Tea	ching sche	me	Credit assigned					
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ELXL 603	VLSI Design Laboratory		02			01		01		

		Examination Scheme											
			T	heory									
	Course	Internal Assessment			Dur	T			Dreat				
	Name	Test 1	Test 2	Av g	End sem	a tion (hrs)	Term work	Pract.	Oral	Pract. / Oral	Total		
ELXL 603	VLSI Design Laboratory						25			25	50		

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 603 (VLSI Design) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Suggested Experiments:

MOSFET Scaling using circuit simulation software like Ngspice Static and transient performance analysis of various inverter circuits Implementation of NAND and NOR gate using various logic design styles Design and verification of CMOS Inverter for given static and transient performance Implementation of ROM, SRAM, DRAM Interconnect analysis

Course Code	Course Name	Tea	ching sche	me	Credit assigned					
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ELXL DLO6021	Microwave Engineering Laboratory		02			01		01		

			Examination Scheme											
			Т	heory										
Course Code	Course Name	Internal Assessment				Dur				D				
		Test 1	Test 2	Av g	End sem	a tion (hrs)	Term work	Pract.	Oral	Pract. / Oral	Total			
ELXL DLO6 021	Microwave Engineering Laboratory						25			25	50			

Assessment:

Term Work:

At least **SIX** experiments based on the entire syllabus of **ELXDLO 6021** (Microwave Engineering) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Course Code	Course Na	ame	Tea	aching	schem	ie	Credit assigned								
			Theory Prac		ct. Tut.		Theory	Pract	. Tı	ut.	Total				
ELXL DLO6022	Electronic Product De	sign		02				01	-	-	01				
			Examination Scheme												
			Theory												
Course Code	Course Name		Internal Assessment			Dura tion	Term	Pract.	Oral	Pract.	Total				
		Test	Test	A	sem	(hrs)	work			/ Oral					
		1	2	Avg											
ELXL DLO6022	Electronic Product Design						25			25	50				

At least **Six** experiments based on the entire syllabus of **ELXDLO6022** (Electronic Product Design) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Lab session includes six experiments plus one presentation on case study.

Suggested Experiments:

- 1. Experiment based on Ground and Supply bounce
- 2. PCB design steps involved in product design
- 3. Simulation based on use of Simulator software
- 4. Working of an Emulator in Design step
- 5. Role of Pattern Generator in Design step
- 6. Debugging of the digital circuit based on Logic Analyzer
- 7. Application of the Spectrum analyzer
- 8. Demonstration of usefulness of the Arbitrary waveform generator
- 9. Setup for EMI and EMC test
- 10. Experiment based on calibration of the product.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL	Wireless	-	2		-	01		01		
DLO6023	Communication									
	Laboratory									

Subject	Subject Name	Examination Scheme										
Code			Tl	neory Marks		Term	Practical	Oral	Total			
		Internal assessment			End Sem.	Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2								
ELXL	Wireless	-	-	-	-	25		25	50			
DLO6023	Communication											
	Laboratory											

Laboratory Experiments:

Lab session includes seven experiments and a Case study(Power point Presentation)on any one of the suggested topics.

Note:

1. The experiments will be based on the syllabus contents.

2. Minimum seven experiments need to be conducted.(Scilab, MATLAB, LabVIEW, NS2/NS3 etc can be used for simulation).

3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+Report) carry minimum of 10 marks The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
ELXL	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
DLO6024	Organization and Architecture		02			01		01	

	Course Name		Examination Scheme											
			T	heory										
Course		Internal Assessment				Dur	T			Pract.				
Code		Test 1	Test 2	Av g	End sem	a tion (hrs)	Term work	Pract.	Oral	/ Oral	Total			
ELXL DLO60 24	Computer Organization and Architecture						25			25	50			

At least six experiments based on the entire syllabus of ELX DLO6024 (Computer Organization and Architecture) should be set to have well-defined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Additionally, a Seminar on IEEE/ACM paper focussing on key areas of research in Computer Architecture/Organization to be part of the term-work which is duly graded. Suggested List of Experiments:

Expt. No.	Title of the Experiments
1	Implementation of Booth's Algorithm (using VHDL)
2	To create a control store for micro-programmed control unit (using VHDL)
3	Using a cache simulator , calculate the cache miss-rate for various mapping schemes
4	Implement various page replacement policies (LRU, FIFO, LFU)
5	Program to detect the type of hazard (RAW,WAR,WAW)for a set of instructions
6	Using a performance analyzer tool, extract various performance metrics