David Sondak

Harvard University
Institute for Applied Computational Science

9/5/2019

https://harvard-iacs.github.io/2019-CS207/lectures/lecture1/

e Course introduction

e Unix and Linux

1/42

e More on Unix / Linux
e Practice time

Again, some content adapted from Dr. Chris Simmons.

2/ 42

Unix Commands

Basic Commands

UNIX / LINUX CHEAT SHEET .

FILE SYSTEM SYSTEM PROCESS MANAGEMENT PERMISSIONS NETWORKING
st toms in curont dectory I v coun machios B - ey dounoad a fle
— et Homs in currnt directory and show in g (R — resart machine opley i running processes — downioad a e

erimissions, size, and modification date (BN show the curent date and thme
— st il toms i current drectory,inchuding

— change permissions offle to ugo

il process d pd ‘secure copy a e flom
grovp's romote server to the dir directory on your machine
rmissions. The

Vvaues of u, g, and o can be any number betwoen 0 and

) — force kil process id pid

SEARCHING

[- srow dskusage
[- srow iectory space usage

- pormissions

irectory dir from remots server tothe directory i on
your machine

search o pattan i fles
[Jp——

ange drectoryto i
[- s memory and swap usage

B oad and oxecut ony

90 p e drectoy
showpossile ocatons of app ~ souchrocusaytor [rescony

90t0the root drectory

Ty T — show which app willbe by defaut patte in i and show the ine umber found 10— wrte anc execute onty
9010 the fast drectory you were just in R = 8- witeony
COMPRESSION Searchrocursively for patern i i and only se —

QPR — scarch forpattern in

taining fies — you can read and wit - good for

B oo e cutput of command
[. J—
exnoRnm

— copy fle1 o fle2

gt DN information for domain

P — ot sl instances of fie in real system T
— you can read, wits, and execute — raversa lookup host

good o sapts st sl processes raving on
B - youcanread andwrte,and pot 1397
everyono elsecan ony read - good for web pages

you can read, wrte, and execute, SHORTCUTS
e - good for

— find al nstances off using indoxed
database buit from the updated command. Much faster
than find

PR - copy directory i to di2

ESIRTSMINR) e om0 iz

create symbolic ink to fle

S means substtue and g means gobl - sed sso o

ESIEEY - oot e contents of fle [EERE — rove cursor to end of ine
EESTREIERY o e i s rigation move cursorforard 1 word
— output the st 10 ines of fle IEERE — rove cursor backward 1 word

[— outout thelast 10 s of fle

— move cursor o beginning of e

http://cheatsheetworld.com/programming/unix-1linux-cheat-sheet/

4/ 42

http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

Absolutely Essential Commands

These commands should be at your fingertips at all times:

— list items in current directory

— list items in current directory and show in long
format to see perimissions, size, and modification date

— list all items in current directory, including
hidden files

— list all items in current directory and show
directories with a slash and executables with a star

— list all items in directory dir

— change directory to dir

m — go up one directory

— go to the root directory

m — go to to your home directory

— go to the last directory you were just in
M — show present working directory

— make directory dir

— remove file

— remove directory dir recursively
— copy file1 to file2

— copy directory dir1 to dir2

recursively

— move (rename) file1 to file2

— create symbolic link to file
— create or update file

— output the contents of file

— view file with page navigation

— output the first 10 lines of file

— output the last 10 lines of file

— output the contents of file as it

grows, starting with the last 10 lines
— et fle
— create an alias for a

command

5/ 42

The 1s command

e The 1s command displays the names of files

e Giving it the name of a directory will list all files in that directory

e 1s commands:

1s — list files in current directory

1s / — list files in the root directory

1s . — list files in the current directory

1s .. — list files in the parent directory
1s /usr — list files in the /usr directory

6/ 42

Command Line Options

e Modify output format of 1s with command line options
e There are many options for the 1s command, e.g.

e -1 — Jong format
e —-a — all; shows hidden files as well as regular files

e -F — include special character to indicate file types

Note: Hidden files have names that start with .

-rw-r--r-- 1 dsondak staff 1687 Jul 2 @9:56 .gitignore

7/ 42

1s Command Line Options

e How to use the command line options:
e 1s -a,1s -1, ...

e Two or more options can be used at the same time!

e 1s -ltra

8/ 42

General 1s Command Line

e The general form is

e 1s [options] [names]
e Note: Options must come first
e You can mix any options with any names
e Example:
1ls -al /usr/bin
The brackets around options and names means that something is
optional

You will see this kind of description often in the Unix commands
documentation

Some commands have required parameters

You can also use variable argument lists

e 1s /usr /etc
e 1s -1 /usr/bin /tmp /etc
e This will display many files or directory names
9/ 42

man and More Information

e man pages (manual pages) provide extensive documentation
e The Unix command to display a manual page is man
e Man pages are split into 8 numbered sections

@ General commands

® System calls

© C library functions

O Special files (usually devices found in /dev
@ File formats and convections

@ Games

@ Miscellaneous

® Sys admin commands and daemons

e You can request pages from specific sections, e.g.

man 3 printf (shows manpage for C library function)

10 / 42

Interacting with the Shell

Running a Unix Program

Type in the name of a program and some command line options

The shell reads this line, finds the program, and runs it feeding it the
options you specified

The shell establishes 3 1/O streams:

@ Standard input
® Standard output
© Standard error

File descriptors associated with each stream:

e 0 =STDIN
e 1 =STDOUT
e 2 =STDERR

12 /42

e A pipe is a holder for a stream of data

e A Unix pipeline is a set of processes chained by their standard
streams

o The output of each process (stdout) feeds directly as input (stdin)
to the next one

o Very useful for using multiple Unix commands together to perform a
task

13/ 42

Building Commands

e More complicated commands can be built up by using one or more
pipes
e The | character is used to pipe two commands together

e The shell does the rest for you!

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel|
$ cat readings.md

Title: Lecture 1

Category: lectures

Date: 2019-09-03

Slug: lecturel

Author: David Sondak

dsond iching/Harvard/CS207/2019-(S207/content/lectures/lecturel
$ cat readings.md | wc
17 37 302

Lecture @

* Unix and Linux
* *git’ bash

Introduction Slides
- [Lecture 1 Slides]({attach}presentation/lecture2.pdf)

Lecture Notebook Slides
- [Lecture 1 Notebook]({filename}notebook/lecture2.ipynb)

e Note: wc prints the number of newlines, words, and bytes in a file.

14 / 42

More Unix Commands: find

e find searches the filesystem for files whose name matches a specific
pattern

e |t can do much more than this and is one of the most useful
commands in Unix

e e.g. it can find files and then perform operations on them

e Example:

dsondak: ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ 1s

data fig notebook notes presentation readings.md

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ find . -name presentation -print
./presentation

15 / 42

e find can also scan for certain file types:

e Find directories with find . -type d -print
e Find files with find . -type f -print
e The exec option can be used to make very powerful commands on
files
e find . -type f -exec wc -1 {} \;

e What does this command do?

16 / 42

The Famous grep

e grep extracts lines from a file that match a given string or pattern

dsondak: ~/Teaching/Harvard/CS207/2019-(S207/content/lectures/lecturel
$ grep -r "grep" presentation/
Binary file presentation//.lecture2.tex.swp matches

presentation//lecture2.tex: \begin{frame}{The Famous \texttt{grep}}

presentation//lecture2.tex: \item \texttt{grep} extracts lines from a file that match a given string or patter \\[@.5em]
presentation//lecture2.tex: \item \texttt{grep} can dlso use a regular expression for the pattern search
presentation//lecture2.tex: \includegraphics[width=0.9\textwidth]{grep_example.png}

e grep can also use a regular expression for the pattern search

17 / 42

Regular Expressions

e grep isn't the only Unix command that supports regular expressions
® sed
o awk

e perl

e General search pattern characters

e Any character

wn

e "" matches any character except a newline

e “*" matches zero or more occurrences of the single preceeding
character

e "4+" matches one or more of the proceeding character

e 7" matches zero or one of the proceeding character

e More special characters

e “()" are used to quantify a sequence of characters

e “|" functions as an OR operator

o “{}" are used to indicate ranges in the number of occurrences
18 / 42

More on Regular Expressions

e To match a special character, you should use the backslash *\"

e e.g. to match a period do “\."”

e a\.b matches a.b

A character class (a.k.a. character set) can be used to match only
one out of several characters

Place the characters you want to match between square brackets, []

A hyphen can be used to specify a range of characters

A caret, A, after the opening square bracket will negate the class

e The result is that the character class will match any character that is
not in the character class

Examples:
e [abc] matches a single a, b, or ¢

e [0-9] matches a single digit between 0 and 9
e [AA-Za-z] matches a single character as long as it's not a letter

19 / 42

Regular Expressions Continued

e Some shorthand character classes are available for convenience,
e \d a digit, e.g. [0-9]
e \D a non-digit, e.g. [A0-9]
e \w a word character, matches letters and digits
e \W a non-word character
e \s a whitespace character

e \S a non-whitespace character

e Some shorthand classes are available for matching boundaries,

e A the beginning of a line

e $ the end of a line

e \b a word boundary

e \B a non-word boundary
e Some references:

e RegexOne

e Mastering Regular Expressions
20 / 42

https://regexone.com/
http://shop.oreilly.com/product/9780596528126.do

Regular Expression Examples and Practice

You are given a text file called dogs.txt that contains names, ages, and
breeds of dogs. Use grep and regular expressions to accomplish the
following:

@ Find all dogs named either Sally or Joey.

e Hint: In addition to a regular expression, you may also find the -E
option for grep useful

® Find all dogs named Joey.

e Note: There are two dogs named Joey, but one of them has been
entered in all lowercase!

* Note: The extended regex grep option (-E) is not needed here

© Find all dogs that are 6 months old.

e Hint: You may assume that dogs that are 6 months old have been
entered as 0.5.

21/ 42

File Attributes

Every file has a specific list of attributes:
o Access times

e when the file was created
e when the file was last changed
e when the file was last read

e Size
e Owners

o user (remember UID)
e group (remember GID)

e Permissions

For example, time attributes access with 1s,
e 1s -1 shows when the file was last changed
e 1s -1c shows when the file was created

e 1s -1u shows when the file was last accessed

22/ 42

File Permissions

e Each file has a set of permissions that control who can access the file
e There are three different types of permissions:

e read, abbreviated r
e write, abbreviated w
e execute, abbreviated x

e In Unix, there are permission levels associated with three types of
people that might access a file:

o owner (you)
o group (a group of other users that you set up)
o world (anyone else browsing around on the file system)

23 /42

File Permissions Display Format

- IYwX IXrwx
Group Others

e The first entry specifies the type of file:

is a plain file
“d" is a directory

[]
[]
e “c" is a character device
e “b" is a block device

[]

is a symbolic link

e Meaning for Files: e Meaning for Directories:
e r - allowed to read e r - allowed to see the names of files
e w - allowed to write e w - allowed to add and remove files
e x - allowed to execute e x - allowed to enter the directory

24 / 42

Changing File Permissions

The chmod command changes the permissions associated with a file
or directory

Basic syntax: chmod <mode> <file>

The <mode> can be specified in two ways

e Symbolic representation

e Octal number

It's up to you which method you use

Multiple symbolic operations can be given, separated by commas

25 / 42

Symbolic Representation

Symbolic representation has the following form,

o [ugoal [+-=] [rwxX]

e u=user, g=group, o=other, a=all

+ — add permission, - — remove permission, = — set permission

e r=read, w=write, x=execute

X — Sets to execute only if the file is a directory or already has
execute permission

e Very useful when using recursively

26 / 42

Symbolic Representation Examples

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ 1s -al notes/

total @

drwxr-xr-x 4 dsondak staff 128 Sep
drwxr-xr-x 8 dsondak staff 256 Sep
-rw-r--r-- 1 dsondak staff @ Sep
-rw-r--r-- 1 dsondak staff @ Sep 8
dsondak:~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ chmod g=rw notes/foo

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ 1s -al notes

total @

drwxr-xr-x 4 dsondak staff 128 Sep 3 18:37 .
drwxr-xr-x 8 dsondak staff 256 Sep 3 17:46 ..
-rw-r--r-- 1 dsondak staff @ Sep 3 17:46 README.md
-rw-rw-r-- 1 dsondak staff @ Sep 3 18:37 foo

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ chmod u-w,g+x,0=x notes/foo
dsondak:~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel
$ 1s -al notes

total @

drwxr-xr-x 4 dsondak staff 128 Sep 3 18:37 .
drwxr-xr-x 8 dsondak staff 256 Sep 3 17:46 ..
-rw-r--r-- 1 dsondak staff @ Sep 3 17:46 README.md
-r--rwx--x 1 dsondak staff @ Sep 3 18:37 foo

dsondak : ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel

137 .
146 ..
:46 README.md

1
1
1
1

18:37
il
1
1

Octal Representation

e Octal mode uses a single-argument string which describes the
permissions for a file (3 digits)

e Each digit is a code for each of the three permission levels
e Permissions are set according to the following numbers:
e read=4, write=2, execute=1

e Sum the individual permissions to get the desired combination

e 0 = no permission at all e 4 = read only

e 1 = execute only e 5 = read and execute (4+1)

e 2 = write only e 6 = read and write (4+2)

e 3 = write and execute (1+2) e 7 = read, write, and execute
(4+2+1)

28 / 42

Octal Representation Examples

$ 1s -al notes/
total @

drwxr-xr-x
drwxr-xr-x

5 dsondak
8 dsondak

staff 160 Sep
staff 256 Sep

wwwww

-rw-r--r-- 1 dsondak staff @ Sep
-rw-r--r-- 1 dsondak staff @ Sep
-r--rwx--x 1 dsondak staff @ Sep

$ chmod 660 notes/bar

$ 1s -al notes
total @

drwxr-xr-x
drwxr-xr-x
-rw-r--r-- 1 dsondak
-rw-rw---- 1 dsondak
-r--rwx--x 1 dsondak

5 dsondak
8 dsondak

staff 160 Sep 3
staff 256 Sep 3
staff @ Sep 3
3
3

staff @ Sep
staff @ Sep

$ chmod 417 notes/bar

$ 1s -al notes
total @

drwxr-xr-x
drwxr-xr-x
-rW-r--r--
-I----XrwX
-r--rwx--X

5 dsondak
8 dsondak
1 dsondak
1 dsondak
1 dsondak

staff 160 Sep
staff 256 Sep
staff @ Sep
staff @ Sep
staff @ Sep

wWwwwww

dsondak:~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel

dsondak:~/Teaching/Harvard/CS207/2019- CSZO?/content/Iectures/lecturel

dsondak:~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel

8:4
8: 40

7:46 README md
8:47 bar

1
il
1
1
18:37 foo

dsondak: ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel

dsondak: ~/Teaching/Harvard/CS207/2019-CS207/content/lectures/lecturel

dsondak : ~/Teachina/Harvard/CS207/2019-CS207/content/lectures/lecturel

Text Editors and Shell

Customization

For programming and changing of various text files, we need to make
use of available Unix text editors

The two most popular and available editors are vi and emacs

You should familiarize yourself with at least one of the two

e Editor Wars

We will have very short introductions to each

31/ 42

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Editor_war

A Brief Text Editor History

e ed : line mode editor

e ex : extended version of ed

e vi : full screen version of ex

e vim : Vi IMproved

e emacs : another popular editor

e ed/ex/vi share lots of syntax, which also comes

back in sed/awk: useful to know.

32/ 42

vi Overview

e The big thing to remember about vi is that it has two different
modes of operation:

e Insert Mode

e Command mode

e The insert mode puts anything typed on the keyboard into the
current file

e The command mode allows the entry of commands to manipulate text

o Note that vi starts out in the command mode by default

33/ 42

vim Quick Start Commands

vim <filename>

Press i to enable insert mode

Type text (use arrow keys to move around)

Press Esc to enable command mode

Press :w (followed by return) to save the file

Press :q (followed by return) to exit vim

34 /42

Useful vim Commands

e :q! - exit without saving the document. Very handy for beginners
e :wq - save and exit

/ <string> - search within the document for text. n goes to next
result
dd - delete the current line

yy - copy the current line

p - paste the last cut/deleted line

:1 - goto first line in the file

:$ - goto last line in the file
$ - end of current line

e A - beginning of line
e ’, - show matching brace, bracket, parentheses

Here are some vim resources: https://vim.rtorr.com/,
https://devhints.io/vim, https://vim-adventures.com/,

vimtutor.
35 / 42

https://vim.rtorr.com/
https://devhints.io/vim
https://vim-adventures.com/

Shell Customization

e Each shell supports some customization.
e user prompt settings
e environment variable settings
e aliases
e The customization takes place in startup files which are read by the
shell when it starts up
o Global files are read first - these are provided by the system
administrators (e.g. /etc/profile)
e Local files are then read in the user's HOME directory to allow for
additional customization

36 / 42

Shell Startup Files

Useful information can be found at the bash man page:
https://linux.die.net/man/1/bash
e ~/.bash profile
e Conventionally executed at login shells
e Conventially only run once: at login
e MacOS executes it for every new window

e ~/.bashrc
e Conventionally executed for each new window

e Can contain similar information as the .bash_profile

e ~/.bash login
* Relic of a bygone time; rarely (if ever) modify
e ~/.profile
e Executed after looking for .bash _profile and .bashrc; generally
don't modify
e ~/.bash logout
o Executed when the shell exits

Decent reference on the difference between .bash profile and .bashrc:
Apple Stack Exchange, Scripting OS X 37/ 42

https://linux.die.net/man/1/bash
https://apple.stackexchange.com/questions/51036/what-is-the-difference-between-bash-profile-and-bashrci
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

Lecture Exercise

Update your .bash _profile

Exercise goals:
e Familiarize with a text editor (like vim)

e Create an alias for 1s (e.g. 11) [see
https://www.tecmint.com/create-alias-in-linux/]

e Change command line prompt format (see https://www.cyberciti.
biz/tips/howto-linux-unix-bash-shell-setup-prompt.html)

Note to Windows users: Modify Bash Profile in Windows

Note: The Dracula Theme is pretty fun.

38/ 42

https://www.tecmint.com/create-alias-in-linux/
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://superuser.com/questions/602872/how-do-i-modify-my-git-bash-profile-in-windows
https://draculatheme.com/

/0

Standard Input ; ; Standard Output
(STDIN) (STDOUT)

!

Standard Error
(STDERR)

e File descripters are associated with each stream,
e 0=STDIN, 1=STDOUT, 2=STDERR

e When a shell runs a program for you,
e Standard input is the keyboard
e Standard output is your screen
e Standard error is your screen

e To end the input, press Ctrl-D on a line; this ends the input stream

39 /42

Shell Stream Redirection

The shell can attach things other than the keyboard to standard input
or output

e e.g. a file or a pipe

To tell the shell to store the output of your program in a file, use >,

e 1s > 1ls_out

To tell the shell to get standard input from a file, use <,

e sort < nums

You can combine both forms together,

e sort < nums > sortednums

40 / 42

Modes of Output Redirection

There are two modes of output redirection,

e > — create mode

e >>— append mode

1s > foo creates a new file foo, possibly deleting any existing file
named foo while 1s >> foo appends the output to foo

> only applies to stdout (not stderr)

To redirect stderr to a file, you must specify the request directly

e 2> redirects stderr (e.g. 1s foo 2> err)
o &> redirects stdout and stderr (e.g. 1s foo &> /dev/null)
e 1s foo > out 2> err redirects stdout to out and stderr to err

41/ 42

Wildcards

e The shell treats some characters as special
e These special characters make it easy to specify filenames
e *x matches anything

o Giving the shell * by itself removes * and replaces it with all the
filenames in the current directory

e echo prints out whatever you give it (e.g. echo hi prints out hi)
e echo * prints out the entire working directory!

e 1s *.txt lists all files that end with .txt

42 /42

