
CICS Transaction Gateway
Version 8 Release 1

UNIX and Linux Administration

SC34-7216-00

���

CICS Transaction Gateway
Version 8 Release 1

UNIX and Linux Administration

SC34-7216-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 333.

This edition applies to Version 8.1 of the CICS Transaction Gateway for Multiplatforms program number 5724-I81
and CICS Transaction Gateway Desktop Edition program number 5725-B65 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1998, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii

What's new in CICS Transaction
Gateway V8.1 ix

Chapter 1. Overview 1
CICS Transaction Gateway for Multiplatforms . . . 1
CICS Transaction Gateway Desktop Edition 2
Application programming interfaces (APIs) 3
Programming Guide 4
Programming 4
Deployment topologies 4

Remote mode 4
Local mode 5

High availability 6
Security 6
Statistics and monitoring 7
Tooling and product integration 7

Chapter 2. Planning. 9
Hardware requirements. 9
Supported software 9

Supported operating systems 9
Web browsers. 11
Java support for the Gateway daemon 11
Java support for Java Client applications. . . . 11
Supported CICS servers 12
Supported JEE application servers 13
Supported SNA communications products . . . 14
Supported compilers and application
development tools 14
GPL licence and copyright issues on Linux . . . 15

Virtualization 15
Dynamic logical partitioning on AIX 16
Which protocol can be used? 16
Which API can be used? 17
Compatibility. 18

Application compatibility 18
Resource adapter compatibility 19

Code page support 20
Server code page support. 20
DBCS multibyte characters 20

Chapter 3. Installing 21
Preparing to install CICS Transaction Gateway . . 21
Location of product files 21
Installing CICS Transaction Gateway 21
Installing a supported JVM 23
Uninstalling CICS Transaction Gateway 23
Location of the installation logs. 24
Redistributable components 24
Using X-Window System from a remote system . . 24

Chapter 4. Upgrading 27

Upgrading from Version 8 Release 0 27
Upgrading from Version 7 Release 2 27
Upgrading from Version 7 Release 1 28
Upgrading from Version 7 Release 0 28
Upgrading from Version 6 and earlier 30
Upgrading from CICS Universal Client 30

Chapter 5. Configuring 31
Configuring the system environment 31

Set the JVM 31
Set the time 31
Changing the system locale 31
Configuring inter-process communication
message queues 33
Environment variable reference 34

Configuring a local mode topology 35
Configuring a remote mode topology. 35

Configuring remote Client application
environments 35
Recommended Java options for the Solaris JVM 36

Deploying CICS TG applications 36
Deploying the CICS resource adapters 36
Deploying ECI V2 and ESI V2 to remote systems 43
Deploying .NET applications to remote systems 43

Using the Configuration Tool 44
Identification using APPLID 45

Gateway APPLID 45
Gateway APPLID qualifier 45
IPIC server connections 46
SNA and TCP/IP server connections 47

Configuring CICS server connections 48
Default server 48
Configuring IPIC 48
Configuring TCP/IP 55
Configuring SNA 61

Configuring Gateway daemon settings 70
Gateway daemon resources 70
Gateway daemon logging 74
TCP protocol settings 77
SSL protocol settings 79

Configuring Client daemon settings 84
Maximum buffer size 84
Terminal exit 85
Maximum servers 85
Maximum requests 85
Print command 86
Print file 86
Code page identifier override 87
Server retry interval (Client daemon connections
to CICS) 87
Client daemon logging 87

Configuring SSL 89
Creating and maintaining digital certificates . . 89
Configuring server authentication with iKeyman 90
Configuring client authentication with iKeyman 92

© Copyright IBM Corp. 1998, 2011 iii

||

||

||
||
|
||

|
||
||

||

||
||

Using keytool for certificate management . . . 93
Gateway daemon SSL configuration 98
Using hardware cryptography 98
Using the SSL protocol 98
SSL configuration for IPIC connections 98

Configuring identity propagation 99
Configuring identity propagation on CICS . . . 99
Configuring identity propagation on WebSphere
Application Server 99
Configuring identity propagation on RACF . . 101
Configuring identity propagation for CICS
Transaction Gateway 101

Configuring high availability 102
Configuring a CICS request exit 102

Configuring monitoring and statistics 102
Configuring the request monitoring exits for a
Gateway daemon 102
Configuring the request monitoring exits for
Gateway classes 103
Configuring statistics settings 103

Configuring the terminal emulator 106
Keyboard mapping for cicsterm 106
Customizing the screen colors for cicsterm . . 108

Configuring trace settings 109
Gateway trace file 110
Gateway trace file wrap size (KB) 110
Data byte offset in trace data 110
Maximum size of trace data blocks 110
Exception stack tracing 111
Client trace file 111
Client trace file wrap size (KB) 111
Client trace components 112
Starting JNI trace 113

Configuration parameter reference 113
The configuration file. 114
PRODUCT section of the configuration file . . 114
GATEWAY section of the configuration file . . 115
CLIENT section of the configuration file . . . 118
IPICSERVER section of the configuration file 119
SERVER section of the configuration file . . . 119
DRIVER section of the configuration file . . . 120

Summary of environment variables 121
Testing your configuration 121

JCA resource adapter installation verification
test (IVT) 121
Using the sample programs to check your
configuration 123

Chapter 6. Scenarios 125
Sample files 125
Configuring a secure autoinstalled IPIC connection
(SC01) 125

Prerequisites. 126
Configuring the IPIC server on CICS TG . . . 127
Configuring the IPCONN autoinstall user
program DFHISCIP on CICS TS 127
Configuring the TCPIPSERVICE on CICS TS 128
Configuring the IPCONN template on CICS TS 129
Testing your scenario 130
Optional: using the APPLID to identify your
CICS TG 131

Configuring a secure predefined IPIC connection
(SC02) 132

Prerequisites. 133
Configuring the IPIC server on CICS TG . . . 134
Configuring the TCPIPService on CICS TS. . . 134
Configuring the IPCONN on CICS TS 135
Testing your scenario 136
Optional: specifying CICSAPPLID and
CICSAPPLIDQUALIFIER in the IPICSERVER
definition. 138

Configuring SSL between a Java client and CICS
TG (SC06) 138

Prerequisites for the SSL scenario. 139
Configuring SSL server authentication 140
Configuring SSL client authentication (optional) 141
Configuring the Gateway daemon for SSL. . . 143
Verifying that SSL is enabled on the connection 143
Testing the SSL scenario 144

Configuring SSL between CICS TG and CICS
(SC07) 145

Prerequisites for the SSL scenario. 146
Configuring SSL server authentication on the
CICS server 147
Configuring SSL server authentication on the
client 148
Configuring SSL client authentication 149
Configuring the IPIC connection on CICS . . . 151
Verifying the connection 152
Configuring WebSphere Application Server . . 153
Testing the SSL scenario 155

Chapter 7. Security 157
Security considerations 157
CICS connection security 158

IPIC connection security. 159
SNA connection security. 160
TCP/IP connection security 161

Gateway connection security and SSL 161
Why use SSL? 161
What is SSL? 162

Client security overview. 166
Default connection settings 166
EPI terminal security 167

Changing the user ID and password 167
Password expiry management 167
Sign-on capable and sign-on incapable terminals 168

Identity propagation 169
Benefits of using identity propagation 170
Configurations that support identity
propagation 170

Chapter 8. Performance 173
Performance indicators and factors 173
Data compression 174
Request flows 174
Threading model 176
Tuning your configuration parameters 178
Java considerations 180
Other system factors 180

iv CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Performance considerations for heavy IPIC
workloads 182
Performance considerations with large containers 182
Tracing and performance 183
Performance monitoring tools 183
Statistics and performance assessment 184

Investigating poor response times 184
Avoiding out of memory conditions 187

Chapter 9. High availability 189
CICS request exit 189

Chapter 10. Operating. 191
Starting CICS Transaction Gateway 191
Stopping CICS Transaction Gateway. 191
Changing the system time 192
Operating the Gateway daemon 193

Starting and stopping the Gateway daemon . . 193
Running the Gateway daemon as a background
process 196
Gateway daemon administration 197
ctgadmin command reference 203

Operating the Client daemon 204
Administering the Client daemon 204
cicscli command reference 210

Chapter 11. 3270 terminal emulation
and printing 213
cicsterm emulator 213

Using cicsterm 213
cicsterm options 214
Stopping a terminal emulator 216
cicsterm and user exits 216
cicsterm and RETURN TRANSID IMMEDIATE 216
Using clients for X-Window System 216
Keyboard mapping in cicsterm 217
cicsterm restrictions 217

cicsterm command reference 217
cicsprnt emulator 218

Using cicsprnt 219
cicsprnt options 219
cicsprnt and user exits 221
cicsprnt and RETURN TRANSID IMMEDIATE 221
cicsprnt restrictions 221

cicsprnt command reference 222

Chapter 12. Resolving problems . . . 225
Introduction to problem determination 225
Preliminary checks 225
What to do next 227
Problem determination tools 227

Java debug tools 227
JVM dump and system dump 227
VTAM buffer trace 228
APING utility 228
TCP/IP diagnostic commands 228

Dealing with problems 229
Installation problems 229
Startup and shutdown problems 230
Configuration problems 233

CICS connection problems 233
Security problems 237
Memory problems 239
Performance problems 241
Resource problems 242
Java problems 243

General information about messages 243
Telnet clients 244
SNA error log 245

Tracing 245
Gateway daemon tracing 245
Client daemon tracing 246
JNI tracing 252
Tracing Java Client applications 253
JEE Tracing 253
Tracing issues when serializing Connection
Factories 254

Problem solving and support 254
Searching knowledge bases 255
Contacting IBM Software Support 255

Chapter 13. Monitoring and statistics 257
Request monitoring exits 257

Request monitoring exits configuration 258
Statistics 259

Statistics configuration 261
Displaying statistics 265
Statistics resource groups 267
Using the statistics 279

CICS TG plug-in for CICS Explorer 283

Appendix. Data conversion 285
Supported conversions 285

Arabic 286
Baltic Rim 287
Cyrillic 287
Estonian 288
Greek 288
Hebrew 288
Japanese 289
Korean 290
Latin-1 and Latin-9 290
Latin-2 292
Latin-5 292
Simplified Chinese 293
Traditional Chinese 293
Vietnamese 294
Unicode data 294

Product library and related literature 295
CICS Transaction Gateway books 295
Sample configuration documents 295
IBM Redbooks publications. 296
Other useful information 296

CICS Transaction Server publications 296
APPC-related publications 297

Accessibility 299
Installation 299
Configuration Tool accessibility 299

Contents v

||
||

||

Components. 300
Keys 300
Customizing colors and fonts 302

Starting the Gateway daemon 302
cicsterm 303

Glossary 305

Index 327

Notices 333
Trademarks 334

vi CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

About this information

This information describes the planning, installation, configuration, and operation
of the IBM® CICS® Transaction Gateway and the IBM CICS Transaction Gateway
Desktop Edition products.

You should be familiar with the operating system on which CICS Transaction
Gateway runs and also with Internet terminology.

This information is organized as shown in the following table:

Topic Contents

“What's new in CICS Transaction
Gateway V8.1” on page ix

Functional changes made in this version of the product.

../common/ctg_int.dita Overview of the product and the functions it provides.

Chapter 2, “Planning,” on page 9 Planning your installation, including the hardware and software you need to
run the product.

Chapter 3, “Installing,” on page
21

How to install the product.

“Configuring CICS server
connections” on page 48

How to set up communication between CICS Transaction Gateway and CICS.

How to configure the product.

Chapter 7, “Security,” on page
157

How to set up the product to use the SSL network security protocol.

“Client security overview” on
page 166

How to provide a user ID and password when connecting to a CICS server.

Chapter 8, “Performance,” on
page 173

How to tune the product, and other system components, to achieve the best
possible performance.

“Operating the Gateway daemon”
on page 193

How to operate the product.

Chapter 10, “Operating,” on page
191

How to operate the Gateway daemon.

“Operating the Client daemon”
on page 204

How to operate the Client daemon.

Chapter 11, “3270 terminal
emulation and printing,” on page
213

How to use the cicsterm and cicsprnt programs.

Chapter 12, “Resolving
problems,” on page 225

How to perform problem determination and problem solving.

Chapter 4, “Upgrading,” on page
27

How to upgrade from an earlier version of the product.

Chapter 13, “Monitoring and
statistics,” on page 257

How to use the statistics and request monitoring exits provided by the product.

© Copyright IBM Corp. 1998, 2011 vii

viii CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

What's new in CICS Transaction Gateway V8.1

CICS Transaction Gateway includes enhancements in the areas of open integration,
security and high availability.

Open integration
v Interoperability with 32-bit or 64-bit compilers and runtime environments is

provided on Microsoft Windows using a pure .NET DLL. For more information
see Programming using the .NET Framework.

v On Microsoft Windows, the .NET API is extended to provide CICS channels and
containers support. For more information see Using channels and containers in
.NET programs.

v The JCA 1.6 architecture is supported, enabling the use of JEE 6 certified
applications servers, such as WebSphere® Application Server V8. For more
information see Supported JEE application servers.

v AIX® V7 and Red Hat Enterprise Linux (RHEL) V6 platforms are now
supported, along with CICS Transaction Server V4.2.

v An enhanced CICS Transaction Gateway plug-in is provided for the CICS
Explorer® which supports user-defined connection groups, connection import
and export capability, and column sorting. For more information see the CICS
Transaction Server V4.2 Information Center at: http://publib.boulder.ibm.com/
infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.productoverview.doc/
concepts/Explorer.html.

Security
v Security is enhanced through the use of password phrases with ECI and ESI

requests over IPIC connections to CICS TS V4.2. For more information see IPIC
connection security.

v Password management is now available from .NET applications and remote C
applications using the ESI API. For more information see Making ESI calls from
.NET programs and Making ESI V2 calls in remote mode.

High availability
v Dynamic server selection is available through a user exit in the Gateway

daemon. The exit typically decides which CICS server to select based on the
CICS server name, user ID, and transaction ID that accompany the request. For
more information see High availability.

Additional features
v Transaction tracking is supported for ECI V2 and .NET client applications

through their APPLID and APPLID qualifier. For more information see
Monitoring and statistics.

v Origin data is available for remote Java client applications. For more information
see Monitoring and statistics.

User information
v Message help is provided for the CICS Transaction Gateway administration

program ctgadmin. For more information see Viewing message help.

© Copyright IBM Corp. 1998, 2011 ix

v Reference tables “Which API can be used?” on page 17 and “Which protocol can
be used?” on page 16 are included in the CICS Transaction Gateway information
center.

v An improved message search capability is included in the CICS Transaction
Gateway information center.

Removed and changed function
v The named pipe protocol for Windows is no longer supported. For more

information see Upgrading from Version 8 Release 0.
v The JAR file cicsj2ee.jar file has been renamed to cicsjee.jar.
v The CICS Transaction Gateway .NET API has been upgraded. For more

information see CICS Transaction Gateway .NET applications.
v The logical server has been deprecated and is superseded by policy-based

dynamic server selection. For more information see Logical CICS server definitions.

x CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 1. Overview

CICS Transaction Gateway for Multiplatforms
CICS Transaction Gateway for Multiplatforms is a high-performing, secure, and
scalable connector that enables client applications in different runtime
environments to access CICS servers.

Using standards-based interfaces, CICS Transaction Gateway delivers access to new
and existing CICS applications. CICS Transaction Gateway also provides flexible
deployment options for different architectures. An example is shown in Figure 1.

On all operating platforms, CICS Transaction Gateway provides a gateway to CICS
for remote clients, and complements IBM WebSphere Application Server on a
range of different platforms. CICS Transaction Gateway for Multiplatforms also
provides these features and benefits:
v A simple programming model requiring minimal change to CICS programs
v Access to CICS COMMAREA, channel and 3270 applications
v A rich set of client application programming interfaces (APIs) for different

runtime environments
v Support for standard network protocols
v Support for different operating platforms
v Managed qualities of service and, on z/OS®, high availability
v Access to statistics and request monitoring information
v Support for two-phase commit transactions from a JEE application server

Figure 1. Access to CICS using CICS Transaction Gateway for Multiplatforms

© Copyright IBM Corp. 1998, 2011 1

CICS Transaction Gateway Desktop Edition
CICS Transaction Gateway Desktop Edition provides single user desktop
connectivity to CICS applications from a wide variety of client environments.

Client applications can be written in Java, .NET, C, C++, COM, or COBOL, and
communicate with CICS Transaction Gateway Desktop Edition using either the
local TCP/IP stack or interprocess communication. CICS Transaction Gateway
Desktop Edition offers these features and benefits:
v A simple programming model requiring minimal change to CICS programs
v Access to CICS COMMAREA, channel and 3270 applications
v A rich set of client application programming interfaces (APIs) for different

runtime environments
v Support for standard network protocols
v Support for different operating platforms
v Access to statistics and request monitoring information

CICS Transaction Gateway Desktop Edition does not include Java Connector
Architecture (JCA) resource adapter support, and some parameters have
restrictions. For more information about the parameter restrictions see:
v “Maximum requests” on page 85
v “Maximum number of worker threads” on page 71
v “Maximum number of connection manager threads” on page 70
v “IPIC send sessions” on page 53

Figure 2. Access to CICS using CICS Transaction Gateway Desktop Edition

2 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Related information:
Chapter 2, “Planning,” on page 9
When planning a CICS Transaction Gateway installation, you must ensure that the
requisite system hardware is available for running the product. You must also
check that you have the correct software (for example, the correct operating
system, web browser, CICS system and JEE application server). Finally, you must
ensure that you use the correct communications protocols and interfaces for
connecting to CICS on the platform on which CICS has been installed.

Application programming interfaces (APIs)
The application programming interfaces provide access to CICS COMMAREA
programs, CICS channels and containers programs, and 3270 programs. APIs are
included for the Java, C, C++, and COBOL programming languages. JCA resource
adapters, are also included.

External Call Interface (ECI)

The ECI enables client applications to send requests to CICS COMMAREA and
channel programs.

The ECI is available in all supported runtime environments. ECI is the most
commonly used mechanism for providing client access to CICS. An ECI request
results in a CICS distributed program link (DPL) call to the target program and
must follow the CICS rules of the DPL subset.

JEE applications using the ECI resource adapter can access CICS resources as part
of a two-phase commit transaction.

External Presentation Interface (EPI)

The EPI enables client applications to access CICS 3270-based programs. Client
applications can install and delete virtual 3270 terminals in CICS through this
interface. The EPI can be used in all supported runtime environments.

Basic mapping support (BMS) and non-BMS based terminal transactions are
supported. Automatic transaction initiation (ATI) is supported.

External Security Interface (ESI)

The ESI enables client applications to call CICS password expiry management
(PEM) functions. Client applications can access information about user IDs that are
held in the CICS External Security Manager (ESM) through this interface.

Statistics API

The statistics API enables applications to obtain dynamic, real-time statistical
information about the runtime performance of CICS Transaction Gateway.
Applications can be written in C or Java.

Sample applications written in the supported programming languages are
provided for all programming interfaces. For more information about working
with the APIs, see the CICS Transaction Gateway: Application Programming Guide.

Chapter 1. Overview 3

Programming Guide
Programming information for CICS Transaction Gateway including information on
APIs, ancillary functions, user applications, and supported programming
languages.

Programming

Deployment topologies
CICS Transaction Gateway can be deployed in a local mode (two-tier) topology or
a remote mode (three-tier) topology. Each topology provides different qualities of
service.

Connectivity options to CICS

There is a choice of network protocols for connecting to CICS.

All protocols support ECI COMMAREA requests.

IPIC This protocol is required for ECI channel requests and supports ESI
requests. The protocol also supports two-phase commit transactions in
local mode. SSL can be configured on IPIC connections in a local mode
configuration.

SNA This protocol is required for sending EPI to CICS TS servers and supports
ESI requests.

TCP/IP
This protocol is required for sending EPI requests to TXSeries servers.

Related information:
“Configuring CICS server connections” on page 48
After you have installed the CICS Transaction Gateway and set up your CICS
servers for communication, your next step is to set up the communication links
between the CICS Transaction Gateway and your CICS servers.
“Which protocol can be used?” on page 16
This table shows what support is available for connecting to different version CICS
servers over IPIC, TCP/IP and SNA.

Remote mode
The client application and CICS Transaction Gateway are on different machines
and the Gateway daemon listens on a specific port for incoming client requests.
The Gateway daemon runs as a standalone process, handles the management of
connections and threads, and forwards client requests to CICS.

In a remote mode configuration, the CICS Transaction Gateway runs a process
known as a Gateway daemon which receives requests from client applications and
forwards those requests to CICS servers. Client applications send requests to a
Gateway daemon using either TCP/IP or SSL.

4 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Features of remote mode

Remote mode is best suited to large-scale systems and has the following features:
v A common point of access to CICS for different applications and operating

systems
v A common point of configuration and administration for connections to CICS
v A lightweight client footprint
v Access to statistical information
v Support for 64-bit JEE application servers
v Supports the use of applets to connect to a Gateway daemon

Local mode
In a local mode configuration, the CICS Transaction Gateway runs within the client
application. Client applications send requests directly to CICS without using a
Gateway daemon.

Figure 3. An example of CICS Transaction Gateway for Multiplatforms in remote mode

Figure 4. An example of CICS Transaction Gateway for Multiplatforms in local mode

Chapter 1. Overview 5

Features of local mode

Local mode is best suited to environments where a small number of JEE
application servers are connected to CICS, and has the following features:
v Fewer components to manage than in remote mode
v Network topology is simplified

High availability
High availability ensures that a single point of failure does not cause failure of the
total solution. High availability also allows increased capacity to be provided by
the addition of more components.

A high availability scenario can be implemented using dynamic server selection
from within a user exit program.

Security
CICS Transaction Gateway provides a secure way of connecting to CICS using
standard security mechanisms. These mechanisms integrate with security provided
by the JEE application server and with security provided by CICS.

Network security

Network security is the ability to provide authentication and encryption over a
network connection using these security technologies:
v Secure Sockets Layer (SSL) or Transport Layer Security (TLS) from a Java client

application to CICS Transaction Gateway
v SSL or TLS from a Java client application to a CICS server using IPIC
v Security exits

Underlying security technologies such as Internet Protocol Security (IPSec) are also
supported.

User authentication

User authentication is the process by which a service verifies a user's authenticity.
Verification is through the use of credentials, usually a password or a certificate.
User authentication can be implemented for all protocols.

Link security

Link security prevents a remote user from attaching to a transaction in CICS, or
accessing a resource for which the link user ID has no authority. Link security
provides an additional check on user authentication through the use of a preset
user ID on the CICS server connection. Link security can be implemented for the
SNA and IPIC protocols.

Bind security

Bind security prevents an unauthorized remote system from connecting to CICS.
Bind security can be implemented for the SNA, TCP/IP, and IPIC protocols.

6 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Statistics and monitoring
CICS Transaction Gateway provides statistics on the performance of runtime
components. Monitoring information on individual requests is also available.

Statistics

The information provided by statistics is used when performing the following
tasks:
v Capacity planning, where information about the resource usage is collected to

ensure adequate capacity is available
v Hosting services and billing, where information on resource usage enables

company or interdepartmental billing
v Runtime information, where a runtime “snapshot” of the system is used to

evaluate status or perform high-level problem diagnosis

Statistics are retrieved by issuing local system administration commands, by using
the C or Java statistics API, or by using third-party tools. The statistics API
provides remote access from any platform.

Monitoring

Monitoring provides information about individual requests as they are processed
by CICS Transaction Gateway. The information collected during monitoring
includes:
v Key timestamps as a request passes through the CICS Transaction Gateway
v The client where each request originated
v The target CICS server for each request
v Request parameters such as the transaction identifier and program identifier
v The amount of data sent and received on each request
v Request tracking tokens

Monitoring is available through the use of user exit programs written in Java.
Sample request monitoring exits are supplied.

Tooling and product integration
CICS Transaction Gateway is closely integrated with tools for application
development and system monitoring.
v IBM Rational® Application Developer provides a J2C toolkit. The toolkit enables

you to generate code for use with the CICS Transaction Gateway ECI resource
adapters that JEE applications use when accessing CICS programs.

v IBM CICS Explorer provides access to CICS Transaction Gateway runtime
statistics along with information from other CICS environments. The information
is displayed in integrated views that can be customized.

v IBM Tivoli® OMEGAMON® automatically detects and provides alerts if critical
transactions are not completed.

Chapter 1. Overview 7

8 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 2. Planning

When planning a CICS Transaction Gateway installation, you must ensure that the
requisite system hardware is available for running the product. You must also
check that you have the correct software (for example, the correct operating
system, web browser, CICS system and JEE application server). Finally, you must
ensure that you use the correct communications protocols and interfaces for
connecting to CICS on the platform on which CICS has been installed.

For information about upgrading from an earlier version of CICS Transaction
Gateway, see Chapter 4, “Upgrading,” on page 27.

Hardware requirements
These are the machines, systems and processor types that support CICS
Transaction Gateway.
v IBM System z® machine supported by Linux
v 32-bit or 64-bit IBM System p® supported by IBM AIX or Linux
v 32-bit or 64-bit Sun SPARC system supported by Sun Solaris
v 64-bit HP Itanium system supported by HP-UX
v Intel Pentium, AMD Opteron or Intel EM64T system supported by Linux

Supported software
CICS Transaction Gateway can be used with a range of operating systems, Web
browsers, CICS systems and JEE application servers.

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

We recommend that the latest maintenance is applied to any supported software
being used with CICS Transaction Gateway, according to the vendor's
documentation.

Supported operating systems
CICS Transaction Gateway is supported on the listed operating systems.

AIX

CICS Transaction Gateway is supported on:
v AIX 7.1
v AIX 6.1
v AIX 5.3

On AIX V6.1 and AIX V7.1, application WPARs (workload partitions) are
supported for remote Client applications, and for local Client applications
connected to CICS over IPIC. CICS Transaction Gateway can run in shared system
WPARs, and in private system WPARs. WPAR mobility is currently not supported.

© Copyright IBM Corp. 1998, 2011 9

|

|

|

|

|

|

|

|
|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

Linux

CICS Transaction Gateway is a 32-bit application and is supported running on
32-bit operating systems and on 64-bit operating systems that can run 32-bit
applications in native mode, leading to the following requirements for Linux:
v The 32-bit ncurses-lib package must be installed for running the Gateway

daemon.
v For application development in C, the 32-bit glibc-devel Linux package must be

installed and for C++ development, the 32-bit glibc-devel and libstdc++ Linux
packages must be installed.

All UNIX and Linux operating systems require the Korn shell to be installed before
you install CICS Transaction Gateway.

Note: CICS Transaction Gateway does not support Security-Enhanced Linux.

Linux on Intel

CICS Transaction Gateway is supported on:
v SuSE Linux Enterprise Desktop 11
v SuSE Linux Enterprise Desktop 10
v SuSe Linux Enterprise Server 11
v SuSe Linux Enterprise Server 10
v Red Hat Enterprise Linux Desktop 6
v Red Hat Enterprise Linux Desktop 5
v Red Hat Enterprise Linux 6
v Red Hat Enterprise Linux 5

Linux on POWER®

CICS Transaction Gateway is supported on:
v SuSE Linux Enterprise Server 11
v SuSE Linux Enterprise Server 10
v Red Hat Enterprise Linux 6
v Red Hat Enterprise Linux 5

Linux on System z

CICS Transaction Gateway is supported on:
v SuSE Linux Enterprise Server 11
v SuSE Linux Enterprise Server 10
v Red Hat Enterprise Linux 6
v Red Hat Enterprise Linux 5

Solaris on SPARC

CICS Transaction Gateway is supported on:
v Solaris 10

10 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

HP-UX on Itanium

CICS Transaction Gateway is supported on:
v HP-UX 11i V3
v HP-UX 11i V2

For the latest information on supported software see Supported software for CICS
Transaction Gateway products.

Web browsers
CICS Transaction Gateway supports any web browser that can run applets at Java
5 or higher.

For the latest information on supported software see Supported software for CICS
Transaction Gateway products.

Java support for the Gateway daemon
Java runtime environment support for CICS Transaction Gateway.

Service Release 9 is the minimum service level required and is shipped with CICS
Transaction Gateway. You are recommended to use the latest Service Release level.

CICS Transaction Gateway supports the following Java runtime environments:
v IBM 32-bit Runtime Environment for AIX, Java Technology Edition, Version 6.0.
v IBM 32-bit Runtime Environment for Linux on Intel, Java Technology Edition,

Version 6.0.
v IBM 32-bit Runtime Environment for Linux on iSeries® and pSeries®, Java

Technology Edition, Version 6.0.
v IBM 32-bit Runtime Environment for Linux on zArchitecture, Java Technology

Edition, Version 6.0.
v IBM 32-bit Runtime Environment for J2SE HP-UX 11i platform adapted by IBM

for IBM software, Java Technology Edition, Version 6.0.
v IBM 32-bit Runtime Environment for Solaris, Java 2 Technology Edition, Version

6.0.

For the latest information on supported software see Supported software for CICS
Transaction Gateway products.

Java support for Java Client applications
CICS Transaction Gateway supports these Java software development kits and
runtime environments for use with Java Client applications.

Windows
v IBM Runtime Environment for Windows, Java Technology Edition, Version 6.0
v IBM Runtime Environment for Windows, Java Technology Edition, Version 5.0

AIX
v IBM Runtime Environment for AIX, Java Technology Edition, Version 6.0
v IBM Runtime Environment for AIX, Java Technology Edition, Version 5.0

Chapter 2. Planning 11

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

Linux
v IBM Runtime Environment for Linux on Intel architecture, Java Technology

Edition, Version 6.0
v IBM Runtime Environment for Linux on Intel architecture, Java Technology

Edition, Version 5.0
v IBM Runtime Environment for Linux on iSeries and pSeries, Java Technology

Edition, Version 6.0
v IBM Runtime Environment for Linux on iSeries and pSeries, Java Technology

Edition, Version 5.0
v IBM Runtime Environment for Linux on zArchitecture, Java Technology Edition,

Version 6.0
v IBM Runtime Environment for Linux on zArchitecture, Java Technology Edition,

Version 5.0

Solaris
v IBM Runtime Environment for Solaris, Java Technology Edition, Version 6.0
v IBM Runtime Environment for Solaris, Java Technology Edition, Version 5.0

HP-UX
v HP Runtime Environment for J2SE HP-UX 11i platform, adapted by IBM for IBM

Software, Version 6.0
v HP Runtime Environment for J2SE HP-UX 11i platform, adapted by IBM for IBM

Software, Version 5.0

Notes
1. 32-bit and 64-bit Java Runtime Environments are supported.
2. Use of 64-bit Java in local mode is supported only when using IPIC to connect

to CICS.
3. Use the latest Java update for your Java Runtime Environment.

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

Supported CICS servers
CICS Transaction Gateway is supported by these CICS servers.
v CICS Transaction Server for z/OS V4.2
v CICS Transaction Server for z/OS V4.1
v CICS Transaction Server for z/OS V3.2
v CICS Transaction Server for z/OS V3.1
v CICS V/SE 2.3
v CICS Transaction Server for VSE/ESA V1.1.1
v CICS Transaction Server for i5/OS® V6.1
v CICS Transaction Server for i5/OS V5.4
v CICS Transaction Server for i V7.1
v TXSeries for Multiplatforms V7.1
v TXSeries for Multiplatforms V6.2
v TXSeries for Multiplatforms V6.1

12 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|

|

|
|

|

|
|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

For the latest details about supported software,visit: Supported software for CICS
Transaction Gateway products.

Restrictions on CICS Transaction Server for iSeries
Some restrictions apply to the use of CICS Transaction Gateway with CICS
Transaction Server for iSeries.

The following restrictions apply:
v DBCS languages are supported when communicating using ECI but not EPI.
v Sign-on capable terminals are not supported.
v You cannot start the CEDA transaction from a client terminal.
v You cannot use PF1 to obtain CICS online help from a client terminal.

Supported JEE application servers
The resource adapters supplied with CICS Transaction Gateway are supported by a
range of JEE application servers.

CICS Transaction Gateway resource adapters are supported in 64-bit application
servers when using remote mode or when using local mode and the IPIC protocol.
A 64-bit resource adapter used in remote mode can communicate with CICS
Transaction Gateway running in 32-bit mode. Application servers are not
supported by CICS Transaction Gateway Desktop Edition.

WebSphere Application Server
v WebSphere Application Server V8.0
v WebSphere Application Server V7.0 or earlier, only when used in remote mode

with resource adapters from Supportpac CC03

Other JEE application servers

The following application servers are supported if they successfully run the JCA
resource adapter installation verification test (IVT):
v JEE 6 certified application servers
v J2EE 1.4 or JEE 5 certified application servers, only when used in remote mode

with resource adapters from Supportpac CC03

For more information about the IVT see “JCA resource adapter installation
verification test (IVT)” on page 121.

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

Java base classes in J2EE application servers
Some restrictions apply to the base class APIs when used with servlets in the Web
container.

The CICS Transaction Gateway base class APIs (JavaGateway, ECIRequest,
EPIRequest) are no longer supported within the EJB container. The base class APIs
are supported for usage with servlets in the Web container with the following
limitations:
v All ECI requests must be non-transactional, meaning that only the field

ECI_NO_EXTEND is supported on the ECIRequest constructor as the
Extend_Mode.

Chapter 2. Planning 13

|

|
|

|
|
|
|
|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

v All ECI requests must be synchronous; that is, only the fields ECI_SYNC or
ECI_SYNC_TPN are supported as the call types.

v The EPIRequest class is not supported within an application server. Use the EPI
support classes (Terminal, Screen, and Field) instead.

Supported SNA communications products
To use SNA communications with CICS Transaction Gateway you must install one
of these products.

AIX
v IBM Communications Server for AIX V6.4.0
v IBM Communications Server for AIX V6.3.0

Linux
v IBM Communications Server for Linux on zSeries® V6.4.0
v IBM Communications Server for Linux on zSeries V6.2.1
v IBM Communications Server for Linux V6.4.0
v IBM Communications Server for Linux V6.2.1

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

Supported compilers and application development tools
CICS Transaction Gateway supports a range of compilers and application
development tools.

Windows

CICS Transaction Gateway supports the following products:
v Microsoft Visual Studio 2010
v Microsoft Visual Studio 2008
v Microsoft .NET framework 4.0
v Microsoft .NET framework 3.5
v IBM COBOL for Windows V7.6

AIX

CICS Transaction Gateway supports the following products:
v XL C/C++ for AIX V11.1
v XL C/C++ for AIX V10.1
v XL C/C++ Enterprise Edition for AIX, V9.0
v IBM COBOL for AIX V4.1
v IBM COBOL for AIX V3.1

Linux

CICS Transaction Gateway supports the following products:
v XL C/C++ for Linux, V11.1.0
v XL C/C++ for Linux, V10.1.0
v XL C/C++ Advanced Edition for Linux, v9.0

14 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

v gcc 4.1, 4.3, 4.4 for Linux

Solaris

CICS Transaction Gateway supports the following products:
v Oracle Solaris Studio 12.2
v Sun Studio 12.1
v Sun Studio 12
v Sun Studio 11

HP-UX
v ANSI C compiler for HP-UX
v aC++ compiler for HP-UX

Other supported compilers

32-bit ANSI compliant COBOL compilers, for example Micro Focus, are supported
by the CICS Transaction Gateway C APIs.

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

GPL licence and copyright issues on Linux
This product uses the following libraries from the glibc package: libnsl.so, libm.so,
libdl.so, ld.so, libc.so and libpthread.so.

Refer to the glibc package on your machine for the various copyright statements
and licensing terms for these libraries.

This product also uses libncurses.so from the ncurses package. Again, refer to this
package on your machine for the copyright statement and licensing terms
applicable to this library.

IMPORTANT: Your use of the libstdc++ or egcs-c++ packages is subject to the
GNU GPL licence terms which could require you to provide source code in certain
circumstances. Note that IBM will not supply source code, for example for the
CICS Gateways C++ libraries.

Virtualization
CICS Transaction Gateway supports virtualization solutions that can be
implemented either by the hardware, or by the operating system.

Hardware-based virtualization solutions

If CICS Transaction Gateway is running on one of the supported operating
systems, hardware-based virtualization can be provided by a hypervisor (virtual
machine manager). CICS Transaction Gateway supports the following hypervisors:
v IBM Processor Resource/System Manager (PR/SM™) hypervisor with IBM z/OS

or Linux operating systems
v IBM z/VM® hypervisor with z/OS or Linux operating systems
v IBM PowerVM™ hypervisor with IBM AIX or Linux operating systems
v VMware ESX Server with Windows or Linux operating systems

Chapter 2. Planning 15

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

v Red Hat KVM with Red Hat Enterprise Linux (RHEL) operating system

Operating system-based virtualization solutions

If CICS Transaction Gateway for Multiplatforms is running on AIX V6.1 or later,
operating system-based virtualization is available through workload partitioning
(WPAR).

For information about the types of application and topologies that can be used in a
WPAR virtualization environment, and the operating system versions that support
WPAR see “Supported operating systems” on page 9.

Dynamic logical partitioning on AIX

CICS Transaction Gateway is a DLPAR-safe application that does not fail as a
result of Dynamic Logical Partitioning (DLPAR) operations.

If resources are removed performance might be reduced, and if new resources are
added scaling might not be possible, but the product still works as expected.

CICS Transaction Gateway does not manage I/O devices such as network
adapters; before removing such devices dynamically, ensure that they are no longer
being used by CICS Transaction Gateway or any of its underlying network
components.

Which protocol can be used?
This table shows what support is available for connecting to different version CICS
servers over IPIC, TCP/IP and SNA.

To determine which connectivity scenarios are supported by CICS Transaction
Gateway, you should use this table in conjunction with the table “Which API can
be used?” on page 17.

Table 1.

Header IPIC IPv6 IPIC IPv4 TCI/IP IPv6
TCP/IP
IPv4 SNA

CICS Transaction
Server for z/OS
V4.2

XA ECI +
channels, ESI,
password
phrase

XA ECI +
channels, ESI,
password
phrase

ECI ECI ECI, EPI,
ESI

CICS Transaction
Server for z/OS
V4.1

XA ECI +
channels, ESI

XA ECI +
channels, ESI

ECI ECI ECI, EPI,
ESI

CICS Transaction
Server for z/OS
V3.2

Not supported ECI + channels Not supported ECI ECI, EPI,
ESI

CICS Transaction
Server for z/OS
V3.1

Not supported Not supported Not supported ECI ECI, EPI,
ESI

CICS Transaction
Server for VSE
V1.1 and
CICS/VSE V2.3

Not supported Not supported Not supported ECI ECI, EPI,
ESI

16 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|

|

|
|

|
|
|

||

||||
|
||

|
|
|

|
|
|
|

|
|
|
|

|||
|

|
|
|

|
|
|
|
|||
|

|
|
|

|||||
|

|
|
|

|||||
|

|
|
|
|

|||||
|

Table 1. (continued)

Header IPIC IPv6 IPIC IPv4 TCI/IP IPv6
TCP/IP
IPv4 SNA

TXSeries V6.0
and V6.1

Not supported Not supported Not supported ECI, EPI Not
supported

TXSeries V7.1 Not supported ECI + channels Not supported ECI, EPI Not
supported

CICS Transaction
Server for i5/OS
V5.4 and V6.1

Not supported Not supported Not supported ECI, EPI ECI, EPI,
ESI

CICS Transaction
Server for i V7.1

Not supported Not supported ECI, EPI ECI, EPI ECI, EPI,
ESI

Notes®:

v ECI denotes ECI COMMAREA application support.
v EPI denotes EPI API, CICS 3270 terminal emulator and CICS 3270 terminal

printer support.

Which API can be used?
This table shows which APIs are supported over the IPIC, TCP/IP and SNA
protocols in local and remote mode.

To determine which scenarios are supported by CICS Transaction Gateway, you
should use this table in conjunction with the table in “Which protocol can be
used?” on page 16

API IPIC local mode
IPIC remote
mode

TCP/IP
local
mode

TCP/IP
remote
mode

SNA
local
mode

SNA
remote
mode

Java ECI U (see Note 1) U (see Note 1) U U U U

Java ESI U U x x U U

Java EPI x x U U U U

JEE
non-XA

U (see Note 1,
Note 2)

U (see Note 1) U U U U

JEE XA U (see Note 1,
Note 2)

x x x x x

C/C++
ECI V1

x x U x U x

C/C++
ESI V1

x x x x U x

C/C++
EPI

x x U x U x

C ECI V2 x U (see Note 1) x U x U

C ESI V2 x U x x x U

.NET ECI x U (see Note 1) x U x U

.NET ESI x U x x x U

Notes:

Chapter 2. Planning 17

|

||||
|
||

|
|
|||||
|

||||||
|

|
|
|

|||||
|

|
|
|||||
|
|

|

|

|
|

|

|
|

|
|
|

|

||
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|||||||

|||||||

|||||||

|
|
|
|
|||||

||
|
|||||

|
|
||||||

|
|
||||||

|
|
||||||

|||||||

|||||||

|||||||

|||||||
|

|

1. Denotes channel application support. All ECI APIs and protocols support
COMMAREA based applications.

2. Denotes support for SSL over IPIC. This is available only when running in local
mode.

Compatibility
CICS Transaction Gateway provides a high level of interoperability between
components, enabling applications, Gateways and CICS systems to be easily
upgraded without the need for extensive changes.

For more information on CICS server compatibility see the CICS support page at:
http://www-01.ibm.com/software/htp/cics/ctg/support/

Application compatibility
Compatibility of different versions of CICS Transaction Gateway Client
applications with the Gateway daemon and when recompilation is required.

Java client application compatibility
Compatibility of Java client applications with different versions of the CICS
Transaction Gateway API.

You do not have to recompile Java client applications if you migrate them to a new
environment, for example if you:
v Upgrade the JVM on the client system
v Use a different operating system
v Update a remote CICS Transaction Gateway to a higher version
v Change the topology from local mode to remote mode

You must use a JRE version that is supported by the version of the ctgclient.jar that
you have deployed with your Java client application.

C application compatibility
Compatibility of C applications with different versions of the CICS Transaction
Gateway API.

C client applications do not have to be recompiled to run with a newer version of
CICS Transaction Gateway unless there is a specific requirement to do so for the
version of the product you are upgrading from.

If you already have ECI V2 applications deployed, and you upgrade your CICS
Transaction Gateway to a later level, you can continue to use the existing version
of ctgclient.dll on the remote machines or you can choose to upgrade it. You
should consider the following points when choosing whether to upgrade
ctgclient.dll on remote client machines:
v Is the latest maintenance required?
v Is the existing ctgclient.dll still at a supported level?
v Does the Client application connect to multiple CICS Transaction Gateways?

(ECI V2 Client applications cannot connect to back-level Gateways).

Statistics application compatibility
Compatibility of statistical applications with different versions of the CICS
Transaction Gateway API.

18 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

|
|

|

|
|

|
|
|

|
|

|

|

|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

C and Java statistics applications do not have to be recompiled to run with a
newer version of CICS Transaction Gateway. Statistics applications built using a
particular version of CICS Transaction Gateway can connect to both newer and
older version Gateway daemons.

If you already have a statistics application deployed, and you upgrade your CICS
Transaction Gateway to a later level, you can continue to use the existing version
of ctgclient.dll for C applications, or ctgstats.jar for Java applications on the remote
machines, or you can decide to upgrade. You should consider the following points
when deciding whether to upgrade ctgclient.dll or ctgstats.jar on remote client
machines:
v Is the latest maintenance required?
v Is the existing ctgclient.dll or ctgstats.jar still at a supported level?

For Java applications, you must use a JRE version supported by the version of the
ctgstats.jar that you have deployed.

User exit program compatibility
Compatibility of user exit programs with different versions of the CICS Transaction
Gateway API.

CICS request exit and request monitoring exit programs do not have to be
recompiled, if you upgrade CICS Transaction Gateway, and if the programs will
execute with the version of Java required by CICS Transaction Gateway.

Client API C exit programs do not have to be recompiled if you upgrade CICS
Transaction Gateway unless there is a specific requirement to do so for the version
of the product you are upgrading from.

Resource adapter compatibility
Compatibility of different version resource adapters with different versions of CICS
Transaction Gateway.

CICS Transaction Gateway can facilitate communications with CICS through
resource adapters that are at the same version as CICS Transaction Gateway or at
an earlier version. If you are migrating CICS Transaction Gateway to a later
version, you can optionally migrate the earlier version resource adapters to the
same level as CICS Transaction Gateway but this is not mandatory.

The following rules apply when using different versions of CICS Transaction
Gateway and resource adapters:
v You can use a remote Gateway daemon with earlier version resource adapters.
v You cannot use a remote Gateway daemon with later version resource adapters.
v You cannot use a local Gateway with a different version resource adapter.
v You cannot mix earlier and later versions of resource adapters on the same JEE

application server node.

Note: To find out which version number a resource adapter has, see the
information provided by the application server for the resource adapter version.
For example if you are using WebSphere Application Server, use the
Administration Console to view the deployment descriptor for the installed
resource adapter.

Chapter 2. Planning 19

|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|
|
|

Code page support
Information about the code page support provided for CICS clients and CICS
servers.

Server code page support
Some CICS servers do not support all the code pages that are supported by the
operating system on which CICS Transaction Gateway is running.

If the code page of an ECI application is different from the code page of the server,
data conversion must be performed at the CICS server. This restriction applies for
EBCDIC CICS servers such as CICS Transaction Server for z/OS. For more
information, see “Data conversion,” on page 285, the CICS server documentation,
and the IBM Redbooks® publication Java Connectors for CICS.

DBCS multibyte characters
Some characters in certain code pages are represented with 3 or more bytes. The
CICS Transaction Gateway does not support multibyte characters that are longer
than 2 bytes. If you try to display such characters on a CICS terminal, you will get
unpredictable results.

If you are running on a locale that is unique to AIX or Solaris, you might
experience problems when connecting to certain CICS servers. The following table
shows the client and server combinations.

CICS Client code page CICS Server operating
system

CICS Server code page

ja_JP (33722) AIX 932

ja_JP (33722) HP 932

ja_JP (33722) Linux 932

ja_JP (33722) Solaris 932

ja_JP (33722) Windows 932

ko_KR (970) AIX 949

ko_KR (970) HP 949

ko_KR (970) Linux 949

ko_KR (970) Solaris 949

ko_KR (970) Windows 949

zh_TW (964) AIX 950

zh_TW (964) HP 950

zh_TW (964) Linux 950

zh_TW (964) Solaris 950

zh_TW (964) Windows 950

zh_CN (1383) AIX 1381

zh_CN (1383) HP 1381

zh_CN (1383) Linux 1381

zh_CN (1383) Solaris 1381

zh_CN (1383) Windows 1381

20 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 3. Installing

Use the supplied SMP/E installation tape to transfer the CICS Transaction
Gateway code to your system, following the supplied program directory.

Preparing to install CICS Transaction Gateway
Various tasks must be completed before installing CICS Transaction Gateway.
1. Check that your operating system is supported; for more information see

“Supported software” on page 9.
2. Log on as root. Check the root user's umask to ensure that files created during

the installation are readable by the user IDs that run CICS Transaction Gateway.
A umask of 077 restricts access to the root user that installed CICS Transaction
Gateway; a umask of 022 allows all users to run CICS Transaction Gateway.

3. On Linux operating systems issue the following command:
umask 0022

4. Stop any programs that are running, for example the Client daemon if
upgrading from V7.2 or earlier (issue the CICSCLI -x command), the Gateway
daemon, or the Configuration Tool.

5. The installation process can upgrade from the CICS Transaction Gateway V6.0
or later. Remove any other versions of the CICS Transaction Gateway before
installing this product. Remove any beta versions of the product.

6. The installation process requires 200 MB of free space for temporary data. By
default, the installer uses the /tmp directory for the temporary data, or /root if
there is insufficient space in /tmp. You can override this behavior by setting
the IATEMPDIR environment variable before launching the installer, by issuing
the command:
export IATEMPDIR=/tempdir

The installer then uses the directory specified in IATEMPDIR to store the
temporary data.

Location of product files
The term <install_path> is used in file paths to represent the directory where you
installed the product.

The location of the installed files for new installations of CICS Transaction
Gateway is:

UNIX platforms
/opt/IBM/cicstg

Linux platforms
/opt/ibm/cicstg

Installing CICS Transaction Gateway
You can perform an attended install of CICS Transaction Gateway either from the
graphical user interface or from the command line. Alternatively you can perform
an unattended install, either with or without a response file.

© Copyright IBM Corp. 1998, 2011 21

Installing from the graphical user interface

When installing from the graphical user interface, it is not possible to cancel the
installation process if it has already started to copy files.

To install from the graphical user interface:
1. Insert the DVD into the drive. If you are installing from a network drive,

connect to the drive.
2. Navigate to the ctg/platform directory, where platform is your operating

system.
3. Double-click on the installer file to launch the installation program.
4. Follow the on-screen instructions to complete the GUI installation.

Installing from the command line

When installing from the command line, it is not possible to cancel the installation
process if it has already started to copy files.

To install from the command line:
1. Insert DVD into the drive. If you are installing from a network drive, connect

to the drive.
2. Issue a command like the following:

/DVD/platform/installer -i console

where DVD is the name of your mounted DVD drive and platform is your
operating system.

3. Follow the on-screen instructions to complete the installation.

Unattended installation using a response file

Unattended installation runs from the information stored in a response file; no user
input is required.

To perform an unattended install using a response file:
1. Create a response file in one of the following ways:

v Use the supplied sample file installResponseSamp.txt.
v You can create a response file using the -r option, this option creates a file in

the current working directory called installer.properties. To generate a
response file issue the command installer -r.

2. Make the response file and the installation image available to the computer on
which you are installing CICS Transaction Gateway.

3. Issue the following command:
installer -i silent -f /tmp/installer.properties >/tmp/installer.log 2>&1

If there is a file named installer.properties in the same location as the installer
executable file, it is used as a response file even if it is not specified on the
command line.

As part of the installation symbolic links are created in /usr/bin and /usr/lib so
that the product can run without any operating system configuration.

22 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Unattended installation without a response file

To perform an unattended install without using a response file:
installer -i silent -DLICENSE_ACCEPTED=true >/tmp/installer.log 2>&1

Installing a supported JVM
The CICS Transaction Gateway requires a supported version of Java. You can
configure the Gateway to use the Java supplied with the installer or you can install
Java independently of CICS Transaction Gateway.

You can install a supported version of Java from CICS Transaction Gateway DVD,
or as supplied in the product download files.

Uninstalling CICS Transaction Gateway
You can uninstall CICS Transaction Gateway either from the graphical user
interface or from the command line. Alternatively you can perform an unattended
uninstall either with or without a response file. The default uninstallation
procedure is the same as the installation procedure.

Uninstalling from the graphical user interface

To uninstall CICS Transaction Gateway, run the ctguninst script as the root user:
ctguninst -i gui

Uninstalling from the console

To uninstall from the consolecommand line:
ctguninst -i console

Unattended uninstall using a response file

To perform an unattended install using a response file:
1. Copy and modify the supplied sample file uninstallResponseSamp.txt to a

temporary file, for example: /tmp/responsefile.txt
2. Issue the following command:

ctguninst -i silent -f /tmp/responsefile.txt >/tmp/uninstall.log 2>&1

Unattended uninstall without a response file

To perform an unattended uninstall without a response file (preserves the
configuration, log, and trace files):
ctguninst -i silent >/tmp/uninstall.log 2>&1

To perform an unattended uninstall without using a response file (removes all files,
including configuration, log, and trace files):
ctguninst -i silent -DPRESERVE_CONFIG_1=0 >/tmp/uninstall.log 2>&1

Chapter 3. Installing 23

Location of the installation logs
Errors and warnings generated during the installation of CICS Transaction
Gateway are recorded in the appropriate log file.

The log files, if created, are at the following locations:

Installation
v /installlogs/cicstgInstall.log
v /installlogs/cicstgMessages.log
v /installlogs/cicstgSymlinks.log
v /installlogs/cicstgFind.log

If the installation fails or the install is cancelled
v /tmp/cicstgInstall.log
v /tmp/cicstgMessages.log
v /tmp/cicstgSymlinks.log
v /tmp/cicstgFind.log

If an existing CICS Transaction Gateway could not be removed
automatically during the upgrade the log below might also be created:
v /tmp/cicstgUninstall.log

If a log file already exists, it is overwritten.

Use the log to diagnose any problems that might have caused an installation to
fail, especially in unattended mode, which has no user interaction with the
program.

Redistributable components
You can develop C and .NET applications that access CICS servers using the CICS
Transaction Gateway.

The ctgredist package is located in the <install_path>/deployable directory and
provides components for developing C and .NET applications that access CICS
servers using the CICS Transaction Gateway. Runtime libraries are provided for
application deployment on systems remote to the CICS Transaction Gateway.

For information on installing the ctgredist package, see the ctgredist.txt file in the
<install_path>/deployable directory.

CICS Transaction Gateway Desktop Edition: Support is not provided.

Using X-Window System from a remote system
The X-Window System software and a network protocol together provide a
graphical user interface (GUI) for networked computers.

When using X-Window System from a remote system, for example, to access the
Configuration Tool, you must set up the DISPLAY environment variable to allow
the application to display its windows on that system.

On the display system (that is the one that will display the windows), enter the
command:
xhost +appl

24 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

where appl is the network name of the system being used to run the application.

On the application system, before you run the application, enter the command:
export DISPLAY=disp:0.0

where disp is the host name or IP address of the system where the windows will
be displayed (followed by a colon and the display id—normally 0.0). The
application windows are then displayed on the disp system.

Chapter 3. Installing 25

26 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 4. Upgrading

When upgrading to a newer version of CICS Transaction Gateway, you should
consider issues such as the installation directory location, whether your old version
configuration files will still work, and whether all the old version parameters are
still supported.

Upgrading from Version 8 Release 0
Considerations when upgrading from CICS Transaction Gateway Version 8 Release
0.

Using the JEE interfaces in nonmanaged mode

The JAR file cicsj2ee.jar file has been renamed to cicsjee.jar.

Upgrading from Version 7 Release 2
This information describes the issues to consider when upgrading from CICS
Transaction Gateway Version 7 Release 2.

Installation directory

When you upgrade, the installation process keeps your existing <install_path>.

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade; configuration checking has been improved to
ensure that the values used by CICS Transaction Gateway are the intended ones.
Protocol handlers are not started unless explicitly configured.

Parameters:

v The GATEWAY section parameters noinput and quiet are no longer supported
on Windows. Instances of these parameters that are found in a configuration file
from a previous release, or as an override parameter, are ignored and a log
message is produced.

v The GATEWAY section parameters ecigenericreplies, msgqualvalidation and
uowvalidation are only supported when their default value is set, no message is
generated for the unsupported value. The supported values are:
ECIGenericReplies=off
MsgQualValidation=on
UOWValidation=on

Java Version 6.0

Ensure that the PATH environment variable contains the location of the IBM Java
6.0 runtime environment, or set the CTG_JAVA environment variable to the full
path of the IBM Java 6.0 launcher program. If you use ctgd to launch the Gateway
daemon, set these variables in the configuration file (ctgd.conf).

© Copyright IBM Corp. 1998, 2011 27

Upgrading from Version 7 Release 1
The issues to consider when upgrading from CICS Transaction Gateway Version 7
Release 1.

Installation directory

When you upgrade, the installation process keeps your existing <install_path>.

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade; configuration checking has been improved to
ensure that the values used by CICS Transaction Gateway are the intended ones.
Protocol handlers are not started unless explicitly configured.

Parameters:

v The GATEWAY section parameters noinput and quiet are no longer supported
on Windows. Instances of these parameters that are found in a configuration file
from a previous release, or as an override parameter, are ignored and a log
message is produced.

v The GATEWAY section parameters ecigenericreplies, msgqualvalidation and
uowvalidation are only supported when their default value is set, no message is
generated for the unsupported value. The supported values are:
ECIGenericReplies=off
MsgQualValidation=on
UOWValidation=on

Java Version 6.0

Ensure that the PATH environment variable contains the location of the IBM Java
6.0 runtime environment, or set the CTG_JAVA environment variable to the full
path of the IBM Java 6.0 launcher program. If you use ctgd to launch the Gateway
daemon, set these variables in the ctgd.conf configuration file.

Upgrading a statistics API port definition

If you have configured a statistics API port defined by a statsport parameter in
the GATEWAY section of your configuration file, it is recommended that you
upgrade to using a full statsapi protocol handler definition.

Previous releases of CICS Transaction Gateway bound the statistics API port
exclusively to localhost. These monitoring applications were restricted to running
on the same machine as the Gateway daemon. If you define a full statsapi protocol
handler the remote monitoring applications can connect to the Gateway daemon.
See “Statistics API protocol settings” on page 103 for details on remote statistics
API connections.

Upgrading from Version 7 Release 0
This information describes the issues to consider when upgrading from CICS
Transaction Gateway Version 7 Release 0.

28 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Installation directory

When you upgrade, the installation process keeps your existing <install_path>.

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade; configuration checking has been improved to
ensure that the values used by CICS Transaction Gateway are the intended ones.
Protocol handlers are not started unless explicitly configured.

Parameters:

v The GATEWAY section parameters noinput and quiet are no longer supported
on Windows. Instances of these parameters that are found in a configuration file
from a previous release, or as an override parameter, are ignored and a log
message is produced.

v The GATEWAY section parameters ecigenericreplies, msgqualvalidation and
uowvalidation are only supported when their default value is set, no message is
generated for the unsupported value. The supported values are:
ECIGenericReplies=off
MsgQualValidation=on
UOWValidation=on

Java Version 6.0

Ensure that the PATH environment variable contains the location of the IBM Java
6.0 runtime environment, or set the CTG_JAVA environment variable to the full
path of the IBM Java 6.0 launcher program. If you use ctgd to launch the Gateway
daemon, set these variables in the ctgd.conf configuration file.

Removal of TCP62 support

The releases of CICS Transaction Gateway V7.0 and CICS Universal Client V7.0 are
the last releases that contained TCP62 support for the AnyNet® protocol
communicating with remote CICS systems using SNA over TCP/IP protocol
encapsulation. Accordingly, this capability has been removed from the V7.1 level of
the products. For continued use of SNA over TCP/IP, it is necessary to move
TCP62 server definitions to SNA and implement another IBM Communications
Server TCP/IP protocol encapsulation solution, such as Enterprise Extender or
Remote API client support.

For information about moving from TCP62 to Enterprise Extender support refer to
the IBM publication Migrating an SNA connection from TCP62 to Enterprise Extender -
GC34-6889-00.

For information about the removal of AnyNet support from z/OS Communications
Server, refer to the z/OS and z/OS.e statements of direction announcement,
Software Announcement 203-266, dated October 7, 2003, and the z/OS V1.7
preview announcement, Software Announcement 205-034, dated February 15, 2005.

Removal of SNA Server configuration setting LUALIASNAMES

LUALIASNAMES has been replaced by PARTNERLUALIAS.

If LUALIASNAMES is found in the configuration file after upgrade, the Client
daemon attempts to start the SNA Server connection and generates a warning in

Chapter 4. Upgrading 29

the Client daemon log file indicating that the deprecated entry LUALIASNAMES
exists.

Upgrading from Version 6 and earlier
Version 6 and earlier cannot be upgraded; you must uninstall the earlier version
before installing the later version.

Upgrading from CICS Universal Client
If you are upgrading from CICS Universal Client to CICS Transaction Gateway,
you can use your CICS Universal Client configuration file with CICS Transaction
Gateway.

No additional configuration is required unless you want to use features of CICS
Transaction Gateway that were not supplied with CICS Universal Client. However,
it is important to read the upgrading information for CICS Transaction Gateway to
see whether any parameters you were using are not supported by the upgrade.
You must also uninstall CICS Universal Client before installing CICS Transaction
Gateway.

For more information see the link that matches the version of the CICS Universal
Client from which you are upgrading:
v “Upgrading from Version 7 Release 0” on page 28
v “Upgrading from Version 7 Release 1” on page 28
v “Upgrading from Version 7 Release 2” on page 27

30 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 5. Configuring

The configuration tasks needed to set up a CICS Transaction Gateway installation
depend on factors such as network topology type, server connection type, and
transaction type. Additional factors that determine which configuration tasks must
be completed are the security, monitoring, and statics requirements.

Configuring the system environment
Perform these tasks to configure the system environment for CICS Transaction
Gateway.

Set the JVM
If more than one JVM is installed on the machine you must specify which JVM
CICS Transaction Gateway uses.

By default, CICS Transaction Gateway uses the first JVM defined on the PATH
environment variable.

To specify which JVM CICS Transaction Gateway uses, set the CTG_JAVA
environment variable.

For more information and an example, see “Environment variable reference” on
page 34.

Set the time
Ensure that the locale and time zones are set correctly so that time stamps display
the time accurately.

Changing the system locale
If you change the system locale you must change the language files.

To change the language in which user messages are displayed follow these steps:
1. Stop the CICS Transaction Gateway.
2. Change the locale of the machine to the locale in which messages are to be

displayed. See your operating system documentation for information on how to
do this.

3. Run the ctgmsgs command:
ctgmsgs XX <code set>

where XX is the two character message language. To obtain a list of available
languages, enter the command without parameters.

© Copyright IBM Corp. 1998, 2011 31

This also shows the locale and code set associated with the language.
4. Restart the CICS Transaction Gateway.

Using an alternative code set on AIX
On AIX issue the command smitty iconv to use an alternative code set. You can
view a list of the alternative code sets using the smitty lang command, which is
used to set the language environment.

This command provides the Convert Flat File screen, on which you can enter
parameters:

Convert Flat File

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CURRENT FILE / DIRECTORY name []
* CURRENT CODE set [] +
* NEW FILE / DIRECTORY name []
* NEW CODE set [] +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Fill in this screen as follows:

CURRENT FILE / DIRECTORY name
Enter <install_path>/bin/cclmsg.txt

This utility is used to change the language of user messages.

Language Locale Code Set
--------------------- -------------- ----------

en US English en_US ISO-8859-1
EN_US UTF-8

fr French fr_FR ISO-8859-1
FR_FR UTF-8

de German de_DE ISO-8859-1
DE_DE UTF-8

it Italian it_IT ISO-8859-1
IT_IT UTF-8

es Spanish es_ES ISO-8859-1
ES_ES UTF-8

tr Turkish tr_TR ISO-8859-9
TR_TR UTF-8

ja Japanese ja_JP EUCJP
JA_JP UTF-8

ko Korean ko_KR EUCKR
KO_KR UTF-8

zh Simplified Chinese zh_CN EUCCN

Figure 5. Output from the ctgmsgs command

32 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

CURRENT CODE set
Enter the code set for the language you selected with ctgmsgs.

NEW FILE / DIRECTORY name
Enter the name of the new file.

NEW CODE set
Enter the alternative code set. For example, the code set IBM-850 is an
alternative for the US English code set ISO8859-1.

When you have done the conversion, overwrite the cclmsg.txt file with the new
file.

Using an alternative code set on other operating systems
To use an alternative code set, use the iconv routine for the flat file
<install_path>/bin/cclmsg.txt.

For example, to convert <install_path>/bin/cclmsg.txt from code set ISO8859-1 to
code set ISO-850 enter:
iconv -f ISO8859-1 -t ISO-850 <install_path>/bin/cclmsg.txt > cclmsg.new

When you have done this conversion, overwrite the cclmsg.txt file with the new
file:
mv cclmsg.new <install_path>/bin/cclmsg.txt

Configuring inter-process communication message queues
In UNIX and Linux systems, the Client daemon communicates internally using
inter-process communication message queues. In systems other than AIX, the
default configuration settings for these queues are too small to allow for large
client data flows (such as 3270 maps or user COMMAREAs). Some symptoms of
this problem are:
v An ECI program gives return code -3 (ECI_ERR_NO_CICS)
v A cicsterm locks when a large map is sent to it
v A large number of concurrent ECI requests significantly degrades performance

Change the configuration settings of the message queues to allow for large client
data flows. The way that you do this depends on your operating system.

Message queues on HP-UX
The following settings are recommended:
msgssz 32 Message Segment Size
msgmnb 65535 Max Number of Bytes on Message Queue
msgmax 65535 Message Max Size (bytes)
msgseg 16384 Number of Segments Available for Messages

Set these values by using the SAM utility:
1. Type sam at the command prompt.
2. Select Kernel Configuration, Configurable Parameters.

This displays a list of kernel parameters that you can change.
3. Select a parameter, either by clicking on it with the mouse or by moving the

cursor to it and pressing the enter key.
4. Select Actions,Modify configurable parameter.
5. Enter the new value for the parameter in the Formula/Value field, and then

select OK.

Chapter 5. Configuring 33

If the value you entered is not valid, SAM displays a window explaining the
error.

6. When you have made all of the required changes, select Actions, Process New
Kernel.
SAM displays a window asking for confirmation; select Yes.

SAM then compiles the kernel and displays a window asking if you want to
replace the old kernel before restarting the system. You must restart the system for
the changes to take effect.

Message queues on Linux
You are recommended to place the following settings in file /etc/sysctl.conf.
kernel.msgmni=128 #Max # of msg queue identifiers
kernel.msgmnb=163840 #Size of message queue
kernel.msgmax=40960 #Max size of a message

v On Red Hat, the new settings are used after you restart the computer.
v On SuSE, issue the command chkconfig boot.sysctl on, and then reboot.
v To check that the new settings have been applied, issue the command sysctl -a.

The MSGMNI variable determines the maximum number of message queue
identifiers system wide. This is typically set to 128 which is sufficient for the
typical number of concurrent requests expected to be processed.

Message queues on Solaris
These settings are recommended for message queues on Solaris. You can set these
values by changing the entries in the /etc/system file.
set msgsys:msginfo_msgmax = 65535 Maximum size of System V message.
set msgsys:msginfo_msgmnb = 65535 Maximum number of bytes that can be on any

one message queue.
set msgsys:msginfo_msgssz = 32 Specifies size of chunks system uses to

manage space for message buffers.
Obsolete since the Solaris 8 release.

set msgsys:msginfo_msgseg = 16384 Number of msginfo_msgssz segments the system
uses as a pool for available message memory.
Total memory available for messages is
msginfo_msgseg * msginfo_msgssz.
Obsolete since the Solaris 8 release.

set semsys:seminfo_semmni = 4096 Maximum number of semaphore identifiers.
set msgsys:msginfo_msgtql = 10000 The maximum number of queue entries that

can be in the system at the same time.
A low value can adversely affect
system performance, or cause the
client to freeze. IBM recommends that
you set this value to the maximum (10000),
or at least double the maximum number of
concurrent requests. Stress load your
system, and then use the ipcs -qa command
to determine the setting.

Environment variable reference
Environment variables, along with the configuration file, control how the CICS
Transaction Gateway functions.

CICSCLI
Use the environment variable CICSCLI to specify an alternative
configuration file for the product. For example,
export CICSCLI=/etc/cicstg/cicstg.ini

When CICSCLI is not defined the default name for the configuration file is:

34 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

<install_path>/bin/ctg.ini

CTGDCONF
Use the environment variable CTGDCONF to specify an alternative
configuration file for the ctgd process. For example,
export CTGDCONF=/etc/cicstg/cicstgd.conf

When CTGDCONF is not defined the default name for the ctgd
configuration file is:
<install_path>/bin/ctgd.conf

For more details on ctgd see, “Running the Gateway daemon as a
background process” on page 196.

CTG_JAVA
Use the environment variable CTG_JAVA to specify the JVM used by the
CICS Transaction Gateway. When you specify CTG_JAVA you must specify
the full path and name of the Java launcher program. For example,
v AIX, Solaris and HP-UX

export CTG_JAVA=/opt/IBM/cicstg/jvm160/bin/java

v Linux
export CTG_JAVA=/opt/ibm/cicstg/jvm160/bin/java

If CTG_JAVA is not defined in the environment the PATH variable is used
to find the Java launcher program.

Configuring a local mode topology
In a local mode topology, settings directly related to the Gateway daemon are not
used. There are no thread pools or associated timeouts to configure. Requests are
passed directly from Client applications to the CICS connectivity components.

To configure a local mode topology, complete the following tasks:
1. Configure the CICS server connections, as described in “Configuring CICS

server connections” on page 48.
2. If you are using TCP/IP or SNA connections, configure the Client daemon

settings, as described in “Configuring Client daemon settings” on page 84.
3. If you are using a Java client, set the PATH environment variable to include the

<install_path>/bin subdirectory so that the application can find libctgjni.so.
4. If you are using a JEE application server, deploy the resource adapter that you

require, as described in “Deploying the CICS resource adapters” on page 36.

Configuring a remote mode topology

Configuring remote Client application environments
The files required for compiling and running applications on a client machine are
installed with CICS Transaction Gateway and must be copied to the client machine.

Java Client applications

The Java Virtual Machine (JVM) uses the CLASSPATH environment variable to
find classes and zip or jar archives containing classes. To allow the JVM to access
class files, specify the full path of directories containing class files or archives.

Chapter 5. Configuring 35

To compile and run Java applications on a client machine, add the full path of
ctgclient.jar to the CLASSPATH environment variable. This archive is in the
<install_path>/classes subdirectory. The JEE resource adapters are in the
<install_path>/deployable subdirectory.

You must use a supported version of Java for running Java Client applications, a
supported version of Java is provided on the CICS Transaction Gateway DVD, or
as part of the product download.

C Client applications

The files required for compiling and running C applications on a client machine
are in the ctgredist.tar.gz package in the <install_path>/deployable subdirectory.
Copy the package to the client machine before extracting.

To compile ECI version 2 C applications on a client machine you must include the
files ctgclient_eci.h, ctgclient.h and libctgclient in your C build environment. To run
the applications the shared object libctgclient is required in the library path.

For information on building the supplied sample programs see the CICS
Transaction Gateway for Multiplatforms: Application Programming GuideCICS
Transaction Gateway for z/OS: Application Programming Guide.

Recommended Java options for the Solaris JVM
You are recommended to use the -XX:+UseLWPSynchronization Java option with
Java Client applications.

Also ensure that /usr/lib/lwp appears before /usr/lib in the LD_LIBRARY_PATH
variable.

If you do not set these options, calls to the JavaGateway.open() method might hang
when either the TCP/IP or the SSL protocol is used. See your Solaris
documentation for more details.

Deploying CICS TG applications

Deploying the CICS resource adapters
The resource adapters are provided as standard modules ready for deployment
into a JEE application server. They can be packaged in JEE applications along with
other components such as Enterprise Java Beans, and can be used to create larger,
more complex systems.

CICS Transaction Gateway includes the following resource adapters which are
located in the <install_path>/deployable directory:
v ECI resource adapter (cicseci.rar)
v EPI resource adapter (cicsepi.rar)

The resource adapters can be deployed in 32-bit and 64-bit runtime environments.
For more information on supported environments see “Supported JEE application
servers” on page 13.

For information on how to deploy the CICS resource adapters in a managed
environment see your JEE application server documentation.

36 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|

For more information about nonmanaged environments see the CICS Transaction
Gateway Programming Guide.

If your JEE application server requires Java 2 Security permissions, or if you have
enabled Java 2 Security permissions on your JEE application server, consider
setting the security permissions that allow CICS Transaction Gateway to access
your key stores. For more information see the CICS Transaction Gateway
Programming Guide.

64-bit runtime environments
The CICS Transaction Gateway resource adapters can be used in local and remote
modes with WebSphere Application Server running in a 64-bit runtime
environment.

No additional configuration is required; the resource adapter automatically uses
the correct library for the 64-bit runtime environment.

A 64-bit resource adapter used in remote mode can communicate with CICS
Transaction Gateway running in 32-bit mode.

A 64-bit resource adapter used in local mode must use IPIC connections to CICS.

Transaction management models
CICS Transaction Gateway supports both the LocalTransaction and XATransaction
transaction management models.

The xasupport custom property on a ConnectionFactory determines whether
transactions use the XA protocol or not.
v To enable LocalTransaction support, set the xasupport custom property to off.
v To enable XATransaction support, set the xasupport custom property to on.

ECI resource adapter deployment parameters
The available deployment parameters for the ECI resource adapters and their effect
on the final deployed resource adapter. The tools used to configure these
parameters are server-specific. The default value is shown where appropriate.
Parameters are optional unless indicated as required.

Applid
In local mode, this parameter sets the APPLID used by the Client daemon
and IPIC for CICS connections. In remote mode, this field is used to
identify the client connection to the Gateway daemon.

ApplidQualifier
In local mode, this parameter sets the APPLID QUALIFIER used by the
Client daemon and IPIC for CICS connections. In remote mode, this field is
used to identify the client connection to the Gateway daemon.

ConnectionURL
The URL of the CICS Transaction Gateway instance with which the
resource adapter will communicate. The URL takes the form
protocol://address. This parameter is required. These protocols are
supported:

tcp
ssl
local

Chapter 5. Configuring 37

So, for example, in remote mode you might specify a URL of
tcp://ctg.business.com. In local mode specify local:.

PortNumber
The port on which the Gateway daemon is listening. The default value for
TCP/IP is 2006. This parameter is not relevant if you are running in local
mode.

ServerName
The name of the CICS server to connect to for all interactions through this
resource adapter. In remote mode, this name must be defined in the CICS
Transaction Gateway configuration file. If this parameter is left blank, the
default CICS server is used; For more information see “PRODUCT section
of the configuration file” on page 114. To use multiple servers within an
environment, you must deploy several Connection Factories, each with a
different ServerName attribute. Each Connection Factory can use the same
Resource Adapter. For an IPIC connection in local mode, this field specifies
the server details as a URL: protocol://hostname:port.

SocketConnectTimeout
When connecting to a Gateway daemon in remote mode, this value is the
maximum amount of time in milliseconds that the Java Client application
allows for the socket to connect successfully.

When a Java Client application is running in local mode and
communicating with a CICS server using the IPIC protocol, this value is
the maximum amount of time that is allowed for the socket connection to
CICS to happen successfully. If the Java Client application is using a
protocol other than IPIC to communicate with the CICS server in local
mode this value is ignored.

The default value of zero means that no timeout is applied when
applicable.

TranName
The name of the CICS transaction under which you want all programs
started by the resource adapter to run. The called program runs under a
mirror transaction, but is linked to under the TranName transaction name.
This name is available to the called program for querying the transaction
ID.

Setting the TranName in the ECIInteractionSpec overrides the value as set
at deployment (or on the ManagedConnectionFactory, if nonmanaged).

The TranName is equivalent to eci_transid. It does not affect the
transaction under which the mirror program runs, but it can be seen in the
exec interface block (EIB). When this option is used, the remote program
runs under the default mirror transaction id CSMI, but the EIBTRNID field
contains the eci_transid value.

TPNName
The name of the CICS TPN Transaction under which you want all
programs started by the resource adapter to run. TPNName takes
precedence if both TranName and TPNName are specified. If the
TPNName is set on the ECIInteractionSpec, this setting overrides any
values set at deployment time (or on the ManagedConnectionFactory, if
nonmanaged).

The TPNName is equivalent to eci_tpn; it specifies a transaction under
which the CICS mirror program runs. This option is like the TRANSID

38 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

option in an EXEC EXEC CICS LINK command. A transaction definition in
CICS for this TRANSID must point to the DFHMIRS program.

UserName
The CICS user ID to be used if no other security credentials are available.

Password
The password for the CICS user ID specified in the UserName parameter.

ClientSecurity
The fully-qualified name of the ClientSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ClientSecurity class is used. For more information about the use of
ClientSecurity classes and how to write them, see the information about
CICS Transaction Gateway security classes in the CICS Transaction Gateway
for Multiplatforms: Programming Guide.

ServerSecurity
The fully-qualified name of the ServerSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ServerSecurity class is used. For more information about the use of
ServerSecurity classes and how to write them, see the information about
CICS Transaction Gateway security classes in the CICS Transaction Gateway
for Multiplatforms: Programming Guide.

KeyRingClass
The fully-qualified name of the SSL keystore to use. The use of this field
depends on the type of connection from the resource adapter. If the
resource adapter is making an IPIC connection directly to CICS (local
mode), then KeyRingClass is the name associated with the IPIC connection.
If the resource adapter is using a remote mode SSL connection to a
Gateway daemon, then KeyRingClass is the name associated with the SSL
connection.

KeyRingPassword
The password for the keystore defined in KeyRingClass.

TraceLevel
The level of trace to be output by the resource adapter. For more details on
trace levels and tracing see “JEE Tracing” on page 253.

Cipher Suites
The "CipherSuites" can be used when establishing an SSL connection. In
the WebSphere Administration console, change the "CipherSuites" custom
property for the connection factory to a comma-separated list of the cipher
suites that this connection factory is restricted to use.

RequestExits
A list of fully-qualified request monitoring exit class names delimited from
each other by commas (","). Each class must implement the
com.ibm.ctg.monitoring.RequestExit interface and be on the class path. For
more information about the use of RequestExit classes and how to write
them, see the information about Java request monitoring user exits in the
CICS Transaction Gateway for Multiplatforms: Programming Guide.

In addition to these user-definable properties, the ECI resource adapters have a set
of predefined attributes that each deployed resource adapter inherits. These
properties are defined in the JEE/CA specification and are as follows:

Chapter 5. Configuring 39

Transaction support
The cicseci resource adapter's transactional support is defined as
LocalTransaction.

Reauthentication support
The ECI resource adapters support reauthentication. Reauthentication is the
ability to change the security credentials when a connection is requested
from the server and an already existing one is allocated without having to
disconnect and reconnect to the EIS. Reauthentication improves
performance.

The ECI resource adapters have a set of predefined attributes that each deployed
resource adapter inherits when in local mode connecting over IPIC. These
attributes cannot be defined by the user.

Server Idle Timeout
Inactive connections to a CICS server are disconnected after 60 minutes.

Send TCP KeepAlive packets
Periodically send keepalive messages to the server to check the connection.

Send Sessions
The number of simultaneous transactions, or CICS tasks, that are allowed
over the connection is determined by the IPCONN RECEIVECOUNT
parameter in CICS Transaction Server for z/OS.

XASupport
When using this connection, the transaction type to be used. If this is set to
off, Local transactions are used. If this is set to on, XA transactions are
used.

Deployment parameters for the EPI resource adapter
The EPI resource adapter has the following deployment parameters. The tools used
to configure these parameters are server specific. The default value is shown where
appropriate. Parameters are optional unless indicated as required.

Applid
In local mode, this parameter sets the APPLID used by the Client daemon
and IPIC for CICS connections. In remote mode, this field is used to
identify the client connection to the Gateway daemon.

ApplidQualifier
In local mode, this parameter sets the APPLID QUALIFIER used by the
Client daemon and IPIC for CICS connections. In remote mode, this field is
used to identify the client connection to the Gateway daemon.

ConnectionURL
The URL of the CICS Transaction Gateway with which the resource
adapter will communicate. The URL takes the form protocol://address.
This parameter is required. These protocols are supported:

tcp
ssl
local

For example, you might specify a URL of tcp://ctg.business.com. For the
local protocol specify local:.

40 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

|
|
|
|

PortNumber
The port on which the CICS Transaction Gateway is running. The default
value is 2006. This parameter is not relevant if you are using the local
protocol.

ServerName
The name of the CICS server to connect to for all interactions through this
resource adapter. If this parameter is left blank, the default CICS server is
used (see “Default server” on page 48). This name is defined in the CICS
Transaction Gateway configuration file. To use multiple servers within an
environment, you must deploy several Connection Factories, each with a
different ServerName attribute. Each Connection Factory can use the same
Resource Adapter.

SocketConnectTimeout
The maximum time in milliseconds that a Java Client application tries to
open a socket connection to a remote Gateway daemon. The default value
0 means that no timeout is applied. The timeout is ignored for attempts to
connect to a local Gateway.

UserName
The CICS user ID to be used if no other security credentials are available.
See the information about Programming using the J2EE Connector
Architecture in the CICS Transaction Gateway for Multiplatforms: Programming
Guide for more information.

A LogonLogoff class is required if:
v The requested terminal is sign-on capable, or
v The CICS Server does not support sign-on capable terminals (for

example, CICS Transaction Server for iSeries)

Password
The password for the CICS user ID defined above.

ClientSecurity
The fully qualified name of the ClientSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ClientSecurity class is used. For more information about the use of
ClientSecurity classes, and how to write them, see the information about
CICS Transaction Gateway security classes in the CICS Transaction Gateway
for Multiplatforms: Programming Guide.

ServerSecurity
The fully qualified name of the ServerSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ServerSecurity class is used. For more information about the use of
ServerSecurity classes, and how to write them, see the information about
CICS Transaction Gateway security classes in the CICS Transaction Gateway
for Multiplatforms: Programming Guide.

KeyRingClass
The fully qualified name of the SSL key ring to use. This applies only
when using the SSL protocol.

KeyRingPassword
The password for the key ring defined in KeyRingClass. Because it is
linked to KeyRingClass, it is also optional, and applies only to the SSL
protocol.

Chapter 5. Configuring 41

SignonType
The EPI resource adapter allows you to define whether the CICS terminals
used by the resource adapter are sign-on capable. Enter one of the
following:

0 Sign-on capable terminal (default)

1 Sign-on incapable terminal

For information about sign-on capability, see “Sign-on capable and sign-on
incapable terminals” on page 168.

Encoding
The Java Encoding to use when creating 3270 data streams. The encoding
is converted to the appropriate CCSID. See “Supported conversions” on
page 285 for a list of supported encodings. Ensure that your CICS Server
supports the CCSID for the given encoding.

LogonLogoffClass
The fully-qualified name of the Java Class that provides the logic to log on
to a CICS Server using sign-on transactions. This property is mandatory for
sign-on capable terminals and for CICS servers that do not support sign-on
capability (such as CICS Transaction Server for iSeries). See the information
about writing LogonLogoff classes in the CICS Transaction Gateway for
Multiplatforms: Programming Guide for information about LogonLogoff
classes.

DeviceType
The Terminal Model type, as defined in CICS, to be used by this resource
adapter.

ReadTimeout
The maximum time a CICS server waits for a response from a user or J2EE
component when taking part in a conversational transaction. Values for
this parameter are:

0 No timeout.

1– 3600
Time in seconds.

InstallTimeout
The timeout value for terminal installation on CICS. Values for this
parameter are as follows:

0 No timeout.

1– 3600
Time in seconds.

TraceLevel
The level of trace to be output by the resource adapter. For more details on
trace levels and tracing see “Tracing” on page 245.

Cipher Suites
The "CipherSuites"can be used when establishing an SSL connection. In the
WebSphere Administration console, change the "CipherSuites" custom
property for the connection factory to a comma-separated list of the cipher
suites that this connection factory is restricted to use.

RequestExits
This field is not used by the EPIResourceAdapter and should be left blank.

42 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

In addition to these user definable properties, the EPI resource adapter has a set of
predefined attributes that each deployed resource adapter inherit's. These
properties are defined in the J2EE/CA specification and are as follows:

Transaction support
The EPI resource adapter is nontransactional. It can be used within
transactional contexts, but does not react to commit or rollback requests.

Reauthentication Support
The EPI resource adapter supports re-authentication. Reauthentication is
the ability to change the security credentials when a connection is
requested from the server and an already existing one is allocated, without
having to disconnect and reconnect to the EIS. Reauthentication improves
performance. A LogonLogoff class is required if the terminal requested is
SignonCapable, or if the CICS Server does not support sign-on capable
terminals (such as CICS Transaction Server for iSeries).

Deploying ECI V2 and ESI V2 to remote systems
Remote ECI V2 and ESI V2 applications are deployed as executable files.

You are licensed to copy the following files to the machine that is running the ECI
V2 and ESI V2 application:

ECI V2 and ESI V2 CICS TG API runtime library:
v ctgclient.dll (Windows)
v libctgclient (Unix and Linux)

You can find this file in the <platform>/lib directory of the ctgredist package or in
the <install_path>\lib of an installed CICS TG.

At run time the ctgclient must be available on the system path or in the same
directory as the ECI V2 and ESI V2 application.

CICS Transaction Gateway Desktop Edition: Support is not provided.

Deploying .NET applications to remote systems
Remote .NET applications are deployed to the Windows runtime environment as
an executable (.exe) file.

You are licensed to copy the following file to the computer that is running the
.NET application:

.NET CICS Transaction Gateway API assembly: IBM.CTG.Client.dll

The CICS Transaction Gateway .NET API supports Microsoft .NET Framework
versions 3.5 and 4.0, and 32-bit and 64-bit Windows architectures. Support is
provided by a single DLL (IBM.CTG.Client.dll) which is included in the ctgredist
package in the directory Windows\lib or in <install_path>\lib on a Windows
machine with CICS Transaction Gateway installed.

You must deploy IBM.CTG.Client.dll in the Global Assembly Cache, or in the same
directory as the .NET application.

For further information on deploying assemblies in the Global Assembly Cache
refer to the Microsoft documentation.

Chapter 5. Configuring 43

|

|

|
|

|

|

|

|
|

|
|

|

|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

CICS Transaction Gateway Desktop Edition: Support is not provided.

Using the Configuration Tool
Use the Configuration Tool to configure CICS Transaction Gateway.

To use the Configuration Tool remotely, export the display using the commands
described in “Using X-Window System from a remote system” on page 24. To start
the Configuration Tool, enter the ctgcfg command.

Storing configuration details

Configuration details are stored by default in the ctg.ini file in the <install_path>.
You are recommended to use the Configuration Tool to create and update this file.

You can specify a different location and optionally change the name of the
configuration file ctg.ini by setting the CICSCLI environment variable. If this
variable is set, at startup the Configuration Tool loads the file referenced by
CICSCLI.

For example, if CICSCLI is set as CICSCLI=/u/userid/myconfig.ini, the
Configuration Tool tries to load /u/userid/myconfig.ini and /u/userid/ctg.env at
startup. The status bar shows which configuration file is being edited.

If the Configuration Tool fails to find the configuration files, it creates them; these
files must be edited and saved before use. If one of the files exists it reads in the
values from that file, and creates the missing file. It does not automatically create a
directory if the directory referenced by CICSCLI does not exist.

At startup the name and location of the configuration file is written to the
Gateway information log. CICS Transaction Gateway does not run if a
configuration file is not found.

Mixed-case values

The configuration tool allows parameter values to be entered in mixed-case and
also writes the values as mixed-case to the configuration file, ctg.ini.For both the
Gateway daemon and the Client daemon, some values are folded to uppercase at
run time.

Running the Configuration Tool for a different operating system

Proceed as follows:
1. Install the product on the workstation on which you want to run the

Configuration Tool.
2. To edit an existing configuration, copy ctg.ini to the UNIX and Linux on the

workstation, using FTP in ASCII mode.
3. Issue the following command to display help about the Configuration Tool:

ctgcfg -?

4. Issue the following command:
ctgcfg -PLAT OSCODE

where OSCODE represents the operating system that the Configuration Tool
should emulate, and is one of the values returned by the command that you
issued at step 3.

44 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

5. Make the required entries and click Save to create or update the ctg.ini file.
6. Use FTP in ASCII mode to transfer the file to your system.

Identification using APPLID
CICS Transaction Gateway supports identification using APPLID. This provides a
standard mechanism for identification of Gateway daemon and Java client
components in the CICSplex, and for subsequent task correlation in CICS.

Gateway identification has implications for the following:
v Qualification of log messages
v IPIC connections to identify the Gateway daemon to CICS
v Request monitoring data
v TCP/IP connections to identify the Gateway daemon to CICS

APPLID qualifier and APPLID

A fully-qualified APPLID is formed from an APPLID qualifier string and an
APPLID string separated by a period symbol:
<APPLID qualifier>.<APPLID>

Each part can be between 1 and 8 characters in length and is defined
independently. In certain configurations the defining of a fully-qualified APPLID is
mandatory. See “IPIC server connections” on page 46 for further details.

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see “Gateway APPLID qualifier.”

The APPLID parameter replaces the existing Client Application ID parameter. The
Client Application ID parameter is supported for migration purposes, but is
overridden by the new APPLID parameter.

Gateway APPLID
The applid parameter identifies the instance of the CICS Transaction Gateway on
server connections and tasks in a CICSplex.

Set a value of up to 8 characters in the APPLID field of the Configuration tool.
There is no restriction on the characters that can be used, however, to ensure that
the APPLID is valid for all scenarios, use characters in the range A through Z, and
0 through 9. The value that you set is converted to uppercase for SNA and TCP/IP
connections.

The value must be unique within the CICSplex. If you do not set a value, the
system automatically generates a value that is guaranteed to be unique.

This parameter is in the PRODUCT section of the configuration file, see PRODUCT
section of the configuration file for more information about other parameters in
this section.

Gateway APPLID qualifier
The applidqualifier parameter is used as a high-level qualifier for the APPLID.

Chapter 5. Configuring 45

Set the value up to 8 characters in the applidqualifier field of the Configuration
tool. There is no restriction on the characters that can be used, however, to ensure
that the applidqualifier is valid for use in all scenarios, use characters in the
range A through Z, and 0 through 9.

The default value is 9UNKNOWN.

The combination of applid and applidqualifier identifies CICS Transaction
Gateway to the CICS system to which it connects.

If the configuration file (ctg.ini) contains an applid but not an applidqualifier, the
system uses the default value 9UNKNOWN for applidqualifier. This value
matches the initial default in CICS Transaction Server. If the default is kept, the
value is included in messages generated in the Gateway daemon and in CICS, and
in statistics. Having a default provides a reference value that makes problem
diagnosis simpler. The default can be used in either a local mode or a remote
mode topology.

This parameter is in the PRODUCT section of the configuration file, see
“PRODUCT section of the configuration file” on page 114 for more information
about other parameters in this section.

IPIC server connections
CICS Transaction Gateway IPIC connections in CICS are identified by a
fully-qualified APPLID.

In remote mode set the fully-qualified APPLID to be used to identify CICS
Transaction Gateway to CICS in the configuration file, and in local mode set the
fully-qualified APPLID in the application or environment. If the APPLID and
APPLID qualifier specified in an IPCONN in CICS match this APPLID and
APPLID qualifier, the configuration of that IPCONN is applied to the connection
made by the Gateway daemon.

If there is no matching IPCONN definition, the connection is autoinstalled if the
CICS system has been configured to autoinstall IPCONN connections. If you
configure CICS not to allow autoinstall of IPCONN connections, only requests that
have APPLIDs that are set on the predefined IPCONN definitions are able to
connect.

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see “Gateway APPLID qualifier” on page 45.

IPIC connections with a defined fully-qualified APPLID

If the Gateway daemon or local mode application is configured with a
fully-qualified APPLID, and connects to a CICS server using the IPIC protocol, no
other Gateway daemon or local mode application configured with the same
fully-qualified APPLID can concurrently establish an IPIC connection with the
same CICS server. If the fully-qualified APPLID is not unique, attempts made to
connect to a CICS server might be rejected because another connection has already
been installed using the same fully-qualified APPLID.

When the Gateway daemon or local mode application is configured with a
fully-qualified APPLID, all application requests sent to a CICS server using the

46 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

IPIC protocol use that fully-qualified APPLID. There is no check of fully-qualified
APPLIDs for uniqueness, so you must choose a naming convention carefully to
ensure the uniqueness of fully-qualified APPLIDs across the enterprise.

IPIC connections without a defined fully-qualified APPLID

When a Gateway daemon or local mode application without a defined
fully-qualified APPLID connects to a CICS server using the IPIC protocol the CICS
server generates a fully-qualified APPLID that is unique to that connection. If this
Gateway daemon or local mode application connects to multiple CICS servers
using the IPIC protocol, each connections own fully-qualified APPLID is generated
independently. Each time that a Gateway daemon or local mode application
without a defined fully-qualified APPLID connects to a CICS server using the IPIC
protocol, the fully-qualified APPLID that is generated changes and cannot be relied
on to be consistent.

Establishing an IPIC Connection

If the APPLID and NETWORKID specified in a CICS IPCONN definition match
the Gateway daemon or local mode application's APPLID and APPLID qualifier,
the configuration of that IPCONN is applied to the connection made by the
Gateway daemon. If there is no matching IPCONN definition, the connection is
autoinstalled if the CICS system has been configured to allow autoinstall IPCONN
connections. If you configure CICS to prohibit the autoinstall of IPCONN
connections only requests that have APPLIDs that are set on the predefined
IPCONN definitions can connect.

If the APPLID qualifier defined for the Gateway daemon or local mode application
is left blank and the NETWORKID in the CICS IPCONN definition is left blank, a
match will not occur even if the APPLIDs match, because CICS defaults the blank
NETWORKID to the local network ID.

SNA and TCP/IP server connections
The Client daemon uses the APPLID value specified. If the APPLID is not set, and
the deprecated Application ID parameter on the CLIENT section is set to anything
other than “*”, this value is used.

If multiple Client daemon server connections are configured to a CICS server and
you specify an APPLID, that name must be unique. If the name is not unique,
attempts to connect to a server might be rejected because another connection has
already been installed using the same APPLID.If the Client daemon wants to
communicate with a given server over SNA, the APPLID might be overridden at
the time the client is installed at the server by the Local LU name for the client.
For TCP/IP connections, whether the APPLID is used to identify connections or
not is server implementation dependant.

The APPLID parameter replaces the existing Client Application ID parameter. The
Client Application ID parameter is supported for upgrade purposes, but is
overridden by the new APPLID parameter.

The APPLID qualifier is not used for SNA and TCP/IP connections.

Chapter 5. Configuring 47

Configuring CICS server connections
After you have installed the CICS Transaction Gateway and set up your CICS
servers for communication, your next step is to set up the communication links
between the CICS Transaction Gateway and your CICS servers.

Default server
The defaultserver parameter is used for requests in which no CICS server name is
specified.

The default server is not used by cicsterm or cicsprnt.

This parameter is in the PRODUCT section of the configuration file, see PRODUCT
section of the configuration file for more information about other parameters in
this section.

Configuring IPIC
Perform these steps to configure an IPIC server connection.

The TCP/IP stack on your local machine is typically already correctly configured.
Contact your system administrator if you encounter problems.

An IPIC connection between CICS Transaction Gateway and CICS Transaction
Server must not be load balanced through any TCP/IP port sharing or load
balancing software.

IP interconnectivity (IPIC)
IPIC provides ECI access to CICS applications over the TCP/IP protocol,
supporting both COMMAREA and CICS channel applications and two phase
commit. CICS channels and containers allow you to send and receive more than 32
KB of application data in a single ECI request. IPIC cannot be used with the EPI or
ESI interfaces.

Transactional support

IPIC supports two-phase commit XA transactions in local mode only.

For information about the transaction types supported by the IPIC protocol when
using CICS Transaction Gateway to connect to different CICS servers see “Which
protocol can be used?” on page 16

Connections to CICS

For IPIC communications between CICS Transaction Gateway and CICS
Transaction Server V4.1 (or higher), up to two sockets are used for each IPIC
connection. If the IPIC connection is defined to use a maximum of one session, a
single socket is used.

For IPIC communications between CICS Transaction Gateway and CICS
Transaction Server V3.2 or TXSeries systems, one socket is used for each IPIC
connection.

If you lose one or more of the sockets in use by an IPIC connection, for example,
because of a network error, all the sockets are lost and the IPIC connection is
released.

48 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Multiple sockets are automatically used for IPIC connections where they are
supported by the connected system. The use of multiple sockets is indicated by a
Gateway daemon log message, which is generated when the connection is
established.
Related information:
“Which API can be used?” on page 17
This table shows which APIs are supported over the IPIC, TCP/IP and SNA
protocols in local and remote mode.
“Which protocol can be used?” on page 16
This table shows what support is available for connecting to different version CICS
servers over IPIC, TCP/IP and SNA.
“IPIC connection security” on page 159
IPIC connections enforce link security to restrict the resources that can be accessed
over a connection to a CICS server, bind security to prevent an unauthorized client
system from connecting to CICS, and user security to restrict the CICS resources
that can be accessed by a user. If the CICS server supports password phrases, a
password phrase can be used for user security.

Verifying the TCP/IP installation
Perform these steps to verify that CICS Transaction Gateway can communicate
with CICS servers.
1. Use the TCP/IP PING command to check the route to the CICS server:

ping [machine address | name]

To start PING, enter a command like the following:
ping 192.113.36.200

where 192.113.36.200 is the IP address of your CICS server. If you are using a
Domain Name Server (DNS), you can specify the symbolic host name rather than
the IP address of the server.

2. If the statistics message returned shows a value other than 0% packet loss, it is
possible that TCP/IP is not correctly configured:
v Check for TCP/IP definition errors.
v Check the physical connection to the network.

The PING command differs slightly, depending on your operating system. For
more information, refer to the documentation supplied with your operating
system.

Configuring IPIC on CICS Transaction Server for z/OS
Perform these steps to configure IPIC on CICS Transaction Server for z/OS.

CICS Transaction Gateway can send IPIC requests over TCP/IP to CICS
Transaction Server for z/OS V3.2 and later. To perform this configuration:
1. Set the System Initialization (SIT) parameter TCPIP=YES.
2. Define the TCP/IP address and host name for the z/OS system. By default,

they are defined in the PROFILE.TCPIP and TCPIP.DATA data sets.
3. Add a TCP/IP listener to CICS. Use the following CEDA command to define a

TCPIPSERVICE in a group:
CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the startup
GRPLIST, so that the listener starts when CICS is started. Key fields are
explained as follows:

Chapter 5. Configuring 49

POrtnumber
The port on which the TCP/IP service listens.

PRotocol
The protocol of the service is IPIC.

TRansaction
The transaction that CICS runs to handle incoming IPIC requests. Set it
to CISS (the default).

Backlog
The number of TCP/IP requests that are queued before TCP/IP starts
to reject incoming requests.

Ipaddress
The IP address (in dotted decimal form) on which the TCPIPSERVICE
listens. For configurations with more than one IP stack, specify ANY to
make the TCPIPSERVICE listen on all addresses.

SOcketclose
Whether CICS waits before closing the socket after issuing a receive for
incoming data on that socket. NO is recommended for IPIC
connections, to ensure that the connection from the CICS Transaction
Gateway always remains open.

4. Use the following command to install the TCPIPSERVICE definition:
CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

5. Choose whether to predefine or to autoinstall IPIC connections in CICS
Transaction Server for z/OS. Specific inbound connections can be defined for
different configurations using the CICS definition, IPCONN, or the connection
can be autoinstalled using either the default or a customized autoinstall
program. When CICS TG connects to CICS it flows the fully-qualified APPLID
defined for the Gateway daemon or local mode application and if this matches
that defined on an IPCONN definition, that definition is used to install the
connection. If there is no matching IPCONN definition, the connection is
autoinstalled. For further information on setting the fully-qualified APPLID for
IPIC connections see “IPIC server connections” on page 46.
To customize autoinstalled IPIC connections, for example, to configure security,
an IPCONN definition must be created with the customized attributes to act as
a template and this definition must be referenced as the template in a
customized IPCONN autoinstall user program. The name of the autoinstall user
program must be specified on the URM option of the installed TCPIPSERVICE
definition. For further information on setting security on IPIC connections see
“IPIC connection security” on page 159.
When creating an IPCONN definition for a CICS TG to CICS connection, the
SENDCOUNT parameter must be set to zero, unlike CICS to CICS connections
for which the SENDCOUNT must not be zero.

Setting session limits

The number of simultaneous transactions, or CICS tasks, that are allowed over the
connection is determined as follows:

50 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 2. The number of simultaneous transactions allowed over an IPIC connection

SENDSESSIONS setting in
CICS Transaction Gateway

IPCONN Receive Count
setting in CICS Transaction
Server for z/OS

Number of simultaneous
transactions allowed

Set Set (on IPCONN resource
definition or customized
autoinstall)

The lesser of the two values
is used.

Set Not set (default autoinstall) The value of the CICS
Transaction Gateway
SENDSESSIONS setting is
used.

Not set Set (on IPCONN resource
definition or customized
autoinstall)

The value of the CICS
Transaction Server for z/OS
IPCONN Receive Count
setting is used.

Not set Not set (default autoinstall) A value of 100 is used.

Each active session uses one CICS task, so the maximum number of sessions
allowed is 999. CICS Transaction Gateway allocates 300 KB of memory for each
session. If all the defined sessions are in use, any new requests receive an
ECI_ERR_RESOURCE_SHORTAGE error.

For more information on configuration file definitions for IPIC, see “IPICSERVER
section of the configuration file” on page 119.

Configuring IPIC in local mode
For IPIC connections in local mode, the CICS server name (ServerName) is defined
as a URL. A URL allows you to specify a protocol, host name, and port number,
which is the minimum information you need to connect to CICS.

The URL has the following format:
Protocol://hostname:port
Protocol://hostname:port#CICSAPPLID
Protocol://hostname:port#CICSAPPLIDQUALIFIER.CICSAPPLID

where:
v Protocol is either tcp or ssl.
v hostname is the TCP address of the host.
v port is the port number of the TCPIPSERVICE listener in CICS.
v CICSAPPLID is the APPLID of the CICS server.
v CICSAPPLIDQUALIFIER is the network ID of the CICS server.

CICSAPPLID and CICSAPPLIDQUALIFIER are optional parameters. If specified,
these parameters are sent to CICS when the connection is established and are
validated by CICS. The connection is rejected if the CICSAPPLID and
CICSAPPLIDQUALIFIER do not match the CICS server. If you do not specify the
CICSAPPLID and CICSAPPLIDQUALIFIER parameters, no check is made.

Configuring IPIC in remote mode
In remote mode, the IPIC server definitions are stored in the configuration file
(ctg.ini). If the incoming server name found in the configuration file refers to an
IPIC definition, IPIC is used, otherwise the request is sent to the Client daemon for
processing.

Chapter 5. Configuring 51

Configuring an IPIC CICS Server definition
Use the CICS Transaction Gateway configuration tool to configure a new IPIC
CICS server definition, or edit the IPICSERVER section of the configuration file
directly.

To configure a new IPIC CICS Server definition, using the Configuration Tool:
1. Select New Server from the Options menu, or from the toolbar, or right click

the CICS Servers entry in the Navigation Panel.
2. Select a server in the navigation panel to display the Server connection panel.

The settings map to the parameters in a Server section of the configuration file.
Multiple identical server definitions are not permitted in the configuration file
of the CICS Transaction Gateway. The combination of fields that identify an
IPIC server are Hostname or IP address, Port, CICS APPLID and CICS APPLID
qualifier.
This ensures that every connection that the CICS server and the network
protocol see is represented by a unique server definition in the configuration
file.

3. Set the values required as described in the following sections.

To configure an IPIC server definition edit the configuration file directly, see
“IPICSERVER section of the configuration file” on page 119 for more information.

Server name:

The SECTION IPICSERVER parameter provides a server name that is independent of
the communications protocol for the server, local to the CICS Transaction Gateway.

Set the value in the range of 1 to 8 characters in the Server name field of the
Configuration tool.

Supported characters are in the ranges A-Z and 0-9, and '@', '#', '$', '-'. Lower case
characters you enter in the range a-z are converted to upper case. If you do not
use single-byte characters, other characters might not be displayed correctly.

Use this name for all requests to access the server from Client applications.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Description:

The description parameter specifies a description for the server.

Set the value in the range between 1 and 60 characters in the Description field of
the Configuration Tool, in single-byte characters. Use single-byte characters to
avoid other characters being displayed incorrectly. The value is optional.

The description is returned on list systems calls.

Depending on the configuration used, the value is defined in one of the following
locations:
v “IPICSERVER section of the configuration file” on page 119
v “SERVER section of the configuration file” on page 119

52 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Network protocol:

The protocol parameter specifies the protocol to be used for the server connection.

Select the protocol to be used for the server connection. This can be on of the
following values:
v TCP/IP
v SNA
v IPIC

You must include a SECTION DRIVER for the protocols listed above, excluding
IPIC, for example, SECTION DRIVER = SNA, and specify the correct drivername
parameter. See “DRIVER section of the configuration file” on page 120 for more
information.

If you use configuration tool, select the protocol to be used from the drop down
list in the in the Network protocol field.

Host name or IP address:

The hostname parameters identifies the host on which the CICS is running.

Set the value as a character or numeric TCP/IP identifier, for the host on which
CICS is running, for example, host name cicssrv2.company.com or IP Address
192.113.36.200. This field is mandatory.

Host names are mapped to IP addresses either by the name server or in the hosts
system file. It is better to use a host name in case the IP address changes.

The hosts system file is in the /etc directory.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

Port:

The PORT parameter defines the port number on which the target CICS server is
listening.

Set the value in the range 1 and 65,535.

This parameter is in the IPICSERVER section of the configuration file. For more
information about the parameters in this section see “IPICSERVER section of the
configuration file” on page 119.

IPIC send sessions:

The SENDSESSIONS parameter specifies the number of simultaneous transactions or
CICS tasks that are allowed over the CICS connection.

Set the value in the range 1 to 999.

Set the SENDSESSIONS in the CICS Transaction Gateway configuration file and the
Receive Count IPCONN definition in CICS Transaction Server for z/OS.

Chapter 5. Configuring 53

|

|

|

If SENDSESSIONS is not set in the configuration file, CICS TG defaults to
requesting 100 sessions. This might be negotiated down if RECEIVECOUNT is set
to a lower number on the server, if set at all.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

CICS Transaction Gateway Desktop Edition: The maximum value for this
parameter is 5.

Target CICS APPLID:

The CICSAPPLID parameter is optional unless the CICSAPPLIDQUALIFIER parameter is
specified. If specified, the CICSAPPLID must match the APPLID of the target CICS
server.

Set the value up to 8 characters in length, specifying the APPLID of the target
CICS server.

The CICSAPPLIDQUALIFIER is optional unless CICSAPPLID is specified. If specified,
the CICSAPPLIDQUALIFIER must match the network ID of the target CICS server. Set
the alphanumeric value up to 8 characters in length, specifying the network ID of
the target CICS server.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

Connection timeout:

The CONNECTTIMEOUT specifies the maximum time in seconds that establishing a
connection is allowed to take.

Set the value in the range 0 to 3600. The default value of 0 means that no limit is
set.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

Server retry interval:

The srvretryinterval parameter specifies the time in seconds between attempts by
the Gateway daemon to reconnect to a CICS server over an IPIC connection.

Set the value between 0 and 3600. The default is 60 seconds. The server retry
interval setting determines whether server re-connection attempts are made
exclusively at fixed timed intervals, or are made exclusively as a result of ECI
requests being directed to the server.

If the CICS server which is currently connected becomes inactive, an attempt is
made to reconnect one second after the CICS server becomes inactive. If the
connection attempt fails, additional attempts are made to connect at the interval
specified by the srvretryinterval parameter.

54 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|

|
|

|
|
|
|

|
|
|
|

Set the value to 0 to prevent automatic connection attempts. Each request directed
at the CICS server initiates a connection attempt if one is not already in progress.

This parameter is located in the IPICSERVER section of the configuration file. For
more information see “IPICSERVER section of the configuration file” on page 119.

Server idle timeout:

The SRVIDLETIMEOUT parameter specifies, in minutes, the period of inactivity after
which the connection between the Gateway daemon and the CICS server is closed.

Set the value in the range 0 to 1080.

A value of 0 means that no timeout is applied. The default value is 60 minutes.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

Send TCP KeepAlive packets:

The TCPKEEPALIVE parameter periodically sends keepalive messages to the server to
check the connection.

Set this value to YES if you want TCP/IP send keepalive messages to the server to
check the connection.

The CICS Transaction Gateway uses the interval specified by your operating
system.

The default is YES.

This parameter is in the IPICSERVER section of the configuration file, see
“IPICSERVER section of the configuration file” on page 119 for more information
about other parameters in this section.

Configuring TCP/IP
Perform these steps to configure a TCP/IP server connection.

The TCP/IP stack on your local machine should already be correctly configured.
Contact your system administrator if you encounter problems.

Verifying the TCP/IP installation
Perform these steps to verify that CICS Transaction Gateway can communicate
with CICS servers.
1. Use the TCP/IP PING command to check the route to the CICS server:

ping [machine address | name]

To start PING, enter a command like the following:
ping 192.113.36.200

where 192.113.36.200 is the IP address of your CICS server. If you are using a
Domain Name Server (DNS), you can specify the symbolic host name rather than
the IP address of the server.

2. If the statistics message returned shows a value other than 0% packet loss, it is
possible that TCP/IP is not correctly configured:

Chapter 5. Configuring 55

|
|

|
|

v Check for TCP/IP definition errors.
v Check the physical connection to the network.

The PING command differs slightly, depending on your operating system. For
more information, refer to the documentation supplied with your operating
system.

Configuring TCP/IP on CICS Transaction Server for z/OS
Perform these steps to configure TCP/IP on CICS Transaction Server for z/OS.

To perform this configuration:
1. Set the SIT parameter TCPIP=YES.
2. Install the following:

v CICS-supplied transient data queue CIEO, in group DFHDCTG
v Transaction CIEP in group DFHIPECI
v Program DFHIEP in group DFHIPECI

3. Define the TCP/IP address and host name for the z/OS system. By default they
are defined in the PROFILE.TCPIP and TCPIP.DATA data sets.

4. Add a TCP/IP listener to CICS. Use the following CEDA command to define a
TCPIPSERVICE in a group:
CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the startup
GRPLIST, so that the listener starts when CICS is started. Key fields are
explained as follows:

POrtnumber
The port on which the TCP/IP service listens.

PRotocol
The protocol of the service is ECI.

TRansaction
The transaction that CICS runs to handle incoming ECI requests. Set it
to CIEP.

Backlog
The number of TCP/IP requests that are queued before TCP/IP starts
to reject incoming requests

Ipaddress
The IP address (in dotted decimal form) on which the TCPIPSERVICE
listens. For configurations with more than one IP stack, specify ANY to
make the TCPIPSERVICE listen on all addresses.

SOcketclose
Whether CICS should wait before closing the socket after issuing a
receive for incoming data on that socket. NO is recommended for ECI
connections, to ensure that the connection from the Client daemon
always remains open.

ATtachsec
Specifies the level of attach-time security required for TCP/IP
connections.

5. Use the following command to install the TCPIPSERVICE definition:
CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

56 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

For information about configuring TCP/IP on other CICS servers, refer to your
server documentation.

Configuring a TCP/IP CICS Server definition
Use the CICS Transaction Gateway configuration tool to configure the a new
TCP/IP CICS server definition, or edit the SERVER section of the configuration file
directly.

To configure a new TCP/IP CICS Server definition using the Configuration Tool:
1. Select New Server from the Options menu, or from the toolbar, or right click

on the CICS Servers entry in the Navigation Panel.
2. Select a server in the navigation panel to display the Server connection panel.

The settings map to the parameters in a Server section of the configuration file.
Multiple identical server definitions are not permitted in the configuration file
of the CICS Transaction Gateway. The combination of fields that identify a
TCP/IP server are Host name or IP address and Port.
This ensures that every connection that the CICS server and the network
protocol see is represented by a unique server definition in the configuration
file. If you have existing Client applications that use different server names to
send requests to the same CICS server, you need to write a user exit to redirect
requests. This is demonstrated in sample user exits ecix2.c and epix2.c; for
more information, see the CICS Transaction Gateway for Multiplatforms:
Application Programming GuideCICS Transaction Gateway for z/OS: Application
Programming Guide.

3. Set the values required as described in the following sections.

To configure a TCP/IP server definition by editing the configuration file directly,
see “SERVER section of the configuration file” on page 119.

Server name:

The SECTION SERVER parameter provides a server name that is independent of the
communications protocol for the server, local to the CICS Transaction Gateway.

Set the value in the range of 1 to 8 characters in the Server name field of the
Configuration tool.

Supported characters are in the ranges A-Z and 0-9, and '@', '#', '$', '-'. Lower case
characters you enter in the range a-z are converted to upper case. If you do not
use single-byte characters, other characters might not be displayed correctly.

Use this name for all requests to access the server from Client applications.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Description:

The description parameter specifies a description for the server.

Set the value in the range between 1 and 60 characters in the Description field of
the Configuration Tool, in single-byte characters. Use single-byte characters to
avoid other characters being displayed incorrectly. The value is optional.

Chapter 5. Configuring 57

The description is returned on list systems calls.

Depending on the configuration used, the value is defined in one of the following
locations:
v “IPICSERVER section of the configuration file” on page 119
v “SERVER section of the configuration file” on page 119

Network protocol:

The protocol parameter specifies the protocol to be used for the server connection.

Select the protocol to be used for the server connection. This can be on of the
following values:
v TCP/IP
v SNA
v IPIC

You must include a SECTION DRIVER for the protocols listed above, excluding
IPIC, for example, SECTION DRIVER = SNA, and specify the correct drivername
parameter. See “DRIVER section of the configuration file” on page 120 for more
information.

If you use configuration tool, select the protocol to be used from the drop down
list in the in the Network protocol field.

Initial transaction:

The initialtransid parameter specifies a transaction identifier of between 1 and
128 characters.

This string is case-sensitive and identifies the initial transaction, and any
parameters, to be run when the terminal emulator connects to the server. If you do
not enter anything in the Initial transaction field of the Configuration tool, no
initial transaction is run. The first four characters, or the characters before the first
blank in the string are taken as the transaction. The remaining data is passed to the
transaction on its invocation.

Ensure that the transaction does not require terminal input.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Model terminal definition:

The modelterm parameter specifies the name of a model terminal definition at the
server.

Set the value of the string between 1 and 16 characters in the Model terminal
definition field of the Configuration tool. The string is case-sensitive and identifies
the characteristics of terminals to be autoinstalled from the client. If the model
cannot be located at the server, or you do not enter anything, a default terminal
definition is used. This default is server-specific.

58 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|

|

The interpretation of the Model terminal definition setting is server-specific. For
example, for a TXSeries for AIX server, the value is 1 to 16 characters, and is the
DevType for a CICS terminal definition entry to be used as the model.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Host name or IP address:

The netname parameter is the character or numeric TCP/IP identifier for the host
on which the CICS server is running.

For example enter, cicssrv2.company.com (host name) or 192.113.36.200 (IP
Address) in the Hostname or IP address field of the Configuration tool.

Host names are mapped to IP addresses either by the name server or in the hosts
system file. It is better to use a host name in case the IP address changes.

The hosts system file is in the /etc directory.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Port:

The port parameter defines the port number at the server to which the Client
daemon connects.

Set the value in the range 0 through 65,535 in the Port field of the Configuration
tool. The default value is 0.

A value of 0 indicates that the services system file must be used to locate the port
number for the CICS service using the TCP protocol. The services system file is in
the /etc directory.If an entry cannot be discovered in the services system file, a
value of 1435 is used (the number of the port assigned to the Client daemon in the
TCP/IP architecture).

This parameter is defined in the SERVER section of the configuration file. For
information about the other parameters in this section see “SERVER section of the
configuration file” on page 119.

Connection timeout:

The connecttimeout parameter specifies the maximum time in seconds that
establishing a connection is allowed to take.

Set the value in the range 0 through 3600, in the Connection timeout (s) field of
the Configuration tool,the default value of 0 means that no limit is set by the
Client daemon.

A timeout occurs if connection establishment takes longer than the specified time.
The TCP/IP socket is closed and the return code passed back to the client
application is either ECI_ERR_NO_CICS or CICS_EPI_ERR_FAILED.

Chapter 5. Configuring 59

Cleanup processing happens after a timeout only if the server has support for this
function installed.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Server idle timeout:

The srvidletimeout parameter specifies in minutes, the period of inactivity after
which the connection between the Client daemon and the CICS server is closed.

Set an integer in the range 1 through 1080 in the Server idle timeout (min) field of
the Configuration tool, a value of 0 means that no timeout is applied. The default
value is 0.

The field is available if one of the following network protocols is selected:
v TCP/IP
v SNA
v IPIC

The Server idle timeout (min) period is counted from when the number of
outstanding conversations (units of work) on the connection is zero. The
connection is automatically reestablished when a Client application sends the next
ECI, EPI or ESI request.

When a server connection times out, the Client daemon behaves as if the cicscli
-x=<servername> command had been issued. In particular, any value specified in
the “Server retry interval (Client daemon connections to CICS)” on page 87
configuration field is ignored, and no attempt is made to reestablish the
connection. The Server retry interval setting is re-enabled if the connection is
re-established.

If the network protocol for the server in question is not supported for this field,
the Client daemon ignores any entry in the configuration file for the Server idle
timeout (min) field.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.
Related information:
“Shutting down the Client daemon” on page 205
You can shut down the Client daemon for all connected servers, after all
outstanding units of work have completed or without completing outstanding
units of work, and shut down the session with a particular server.

Send TCP/IP KeepAlive packets:

The tcpkeepalive parameter specifies if you want TCP/IP to periodically send
keepalive messages to the server to check the connection.

Select Send TCP/IP KeepAlive packets in the Configuration tool, if you want
TCP/IP to periodically send keepalive messages to the server to check the
connection.

60 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|

|

Set to Y to enable. This setting is disabled by default.

The CICS Transaction Gateway uses the interval specified by your operating
system.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Use uppercase security:

The uppercasesecurity parameter specifies that the CICS Transaction Gateway
converts to uppercase any user ID or password from an ECI application or from a
user prompt.

Select Use uppercase security in the Configuration tool to specify that the CICS
Transaction Gateway converts to uppercase any user ID or password from an ECI
application or from a user prompt.

Set the value of uppercasesecurity to N in the configuration file to disable upper
casing of user IDs and passwords.

The default is for the setting is Y.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Configuring SNA
Perform these steps to configure an SNA server connection.

You can choose from two principal topologies:
v Full Communications Server installed on the local computer (full SNA stack).
v Communications Server Remote API Client (split SNA stack), supported only for

Linux and AIX Communication Servers.

You need to install and configure an SNA communications server, such as IBM
Communications Server. To set up communication over SNA define the following
in your SNA communications product.
v The local node characteristics that are common to all SNA users at the

workstation.
v A local logical unit (LU) for the CICS Transaction Gateway.
v A partner logical unit for each CICS server with which the CICS Transaction

Gateway will communicate. This is not required if you are using APPN and
specify the actual fully-qualified partner LU names in the CICS TG configuration
file.

v One or more modes to specify sets of session properties that are used in binding
SNA sessions.

v A transaction program (TP) for the CRSR transaction. You need this if the
following apply:
– The CICS servers support terminal emulation, and
– You require automatic transaction initiation (ATI) against the CICS

Transaction Gateway terminals.

Chapter 5. Configuring 61

The terms used to describe these definitions vary with the product used to provide
support. The terms used above are the ones used by IBM Communications Server.

SNA links to the CICS Transaction Gateway support data synchronization levels
(sync levels) 0 and 1.

Overview of SNA configuration definitions
To configure an SNA connection, you must make entries on VTAM, CICS,
Communications Server, and the CICS Transaction Gateway.

The following table shows the entries that you need to make.

Table 3. Matching definitions for SNA

VTAM CICS
Transaction
Server

SNA Server ctg.ini Example

NETID — First part of fully
qualified LU name
in Partner LU

— ABC3XYZ4

PU — Control Point alias
in Node Definition

— IYAMR021

LU Netname LU Name/LU alias
in independent LU
Type 6.2

Local LU name IYAMT210

XID — Last five digits of
Node identifier in
Node Definition

— 05d316fc

Token Ring
destination
address

— Adjacent node MAC
address in Link
Station

— 400045121088

Ethernet
port address

— MAC address 020070000428

Enterprise
Extender IP
address

— Communication end
point

192.113.36.200

APPL APPLID Second part of fully
qualified LU name
in Partner LU

— IYCQST34

LogMode Modename Name in Mode Mode name LU62PS

— — — Partner LU name IYCQST34

Note:

1. The NETID is the VTAM network name. It is defined for your VTAM network
in the VTAM start options.

2. The PU is the name of the Communications Server physical unit (PU). It is
named in the VTAM switched major node.

3. The LU is the independent LU6.2 used by the CICS Transaction Gateway. It
must also be defined to VTAM in a switched Major Node.

4. The XID (or node ID) is configured in the VTAM switched major node using
IDBLK and IDNUM. It is used in the XID exchange to activate the link station.

62 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

5. For IBM Communications Server, Token Ring, Ethernet and Enterprise Extender
are all valid communication link station types. Choose one or more as required.
For more details about link station configuration refer to the Communications
Server Task Guides.

6. The APPL is the CICS APPLID and also the VTAM APPL. It is defined in the
VTAM application major node used by the CICS server.

7. The LogMode is the mode group used to control LU6.2 session properties. It
must be defined in a VTAM logon mode table, which must be named on the
VTAM APPL definition.

8. The Host system control point name is the CP for the PU of the VTAM front
end processor.

More information on connecting the CICS Transaction Gateway to CICS
Transaction Server for z/OS is in CICS Transaction Gateway V5 - The WebSphere
Connector for CICS, SG24-6133.

Configuring IBM Communications Server for Linux
Communications Server for Linux requires a number of environment variables to
be defined.

Refer to the README file supplied with the SNA product and ensure that all
variables are correctly set, including LD_PRELOAD. It is recommended that you set
LD_PRELOAD in ctgd.conf so that the library is only loaded for the Client daemon
process. The LD_PRELOAD environment variable must be set to a 32-bit shared object
to allow the 32-bit Client daemon process to communicate with the SNA product.
Read the man page for ld.so for information about security issues associated with
LD variables.

To ensure that messages can be written to error logs, the user who starts the Client
daemon process must be a member of the “sna” group.

Using IBM Communications Server for Linux Remote API client V6.3

IBM Communications Server for Linux Remote API Client V6.3 and later does not
require the LD_PRELOAD environment variable of the Linux streams (LiS) library. To
stop the Client daemon generating warning CCL4678W, set LD_PRELOAD to an
empty string, for example:
export LD_PRELOAD=""

Configuring for ATI
To enable ATI against Communications Server client terminals, define the
transaction program CRSR on the Server.

To define the transaction program using X-Window System:
1. Start the administration application xsnapadmin on HP-UX or xsnaadmin on

all other platforms.
2. Select Services—>APPC—>Transaction Programs.
3. Select TP invocation.
4. Click Add or, on Linux, New.
5. Enter CRSR as the Application TP.
6. Indicate Parameters are for invocation on any LU Queue incoming allocates

and enter the path to the executable file as: <install_path>/bin/cclclnt
7. Set Arguments to CRSR

Chapter 5. Configuring 63

8. Set Userid and Group to the user ID and group that the application will run
under.

9. Click OK to close the TP definition window and save your parameters.
10. Click on Local LU > Properties > Advanced and ensure that the Attach

routing computer host name is entered in the Local LU advanced parameter.
The Attach routing computer name option is only available when the
Communications Server is running as part of a client/server domain.

11. If you are using a split SNA stack, on the remote API client ensure that
invoked_tps = YES is set in the sna_clnt.net configuration file.

Defining SNA connections on CICS Transaction Server for z/OS
This topic provides an overview of how to define SNA connections on CICS.

To define SNA connections on CICS do the following:
1. Specify the SIT parameter ISC=YES.
2. Install CSD groups DFHCLNT and DFHISC.
3. Create and install CICS connection and sessions definitions. For more

information see “Defining CICS sessions.”

For information about configuring SNA on other CICS servers, refer to your server
documentation.

Defining the location of the remote system:

Define the location of the remote CICS system and the parameters of the
connection to it, if you are not using autoinstalled connections.

Use CEDA to create a CONNECTION definition with the following settings:

ACcessmsmethod
Set to Vtam.

PRotocol
Set to Appc.

Singlesess
Set to No.

AUtoconnect
Specify whether CICS is to bind sessions (drive CNOS) when the connection is
installed. Set this to Yes.

ATtachsec
This defines the settings for SNA LU6.2 conversation-level security. Set it to
one of the following:
v Verify to flow a user ID and password from the CICS Transaction Gateway.
v Local if you do not want to flow a user ID and password.

Netname
Set to the LU name of the CICS TG, this is the LOCALLUNAME parameter
specified in the SERVER definition in the CICS TG configuration file.

If you change and reinstall the CICS connection definition, you must stop and
restart the connection.

Defining CICS sessions:

64 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

For each CICS connection definition, define one or more session definitions to
specify the SNA mode groups to be used within that connection, if you are not
using autoinstalled connections.

Use CEDA to create a SESSION definition with the following settings:

Connection
Set to the name of the associated connection definition.

MOdename
Specify the mode group as defined in a VTAM® LOGMODE. The modename
must be unique among the sessions definitions that relate to one connection
definition.

Protocol
Set to APPC.

MAximum
Specify the maximum number of sessions that are to be supported. The first
value is the maximum number of sessions that can be supported. The second
value specifies the number of contention-winner sessions (CICS-owned
sessions). These values are negotiated during change number of sessions
(CNOS) flows, when the sessions are actually bound; the negotiated values
depend on the settings specified in the partner SNA node.

Set the first value to be at least as big as the MAXREQUESTS parameter in the
ctg.ini file, to prevent a bottleneck to throughput. Set the second value to 001,
to ensure that START requests are shipped serially from the server to the client.

Autoconnect
Set to determine whether the sessions for this mode group will be bound when
the connection is installed. Set it to one of the following:
v Yes to bind only contention-winner sessions
v All to bind all sessions

Configuring CICS connection autoinstall:

Autoinstall of connections is particularly useful when dealing with many similar
connections or when you are unsure of the LU names (netnames) to be used.

To configure autoinstall of connection definitions:
1. Update the default autoinstall program from DFHZATDX to DFHZATDY, by

specifying the SIT parameter AIEXIT=DFHZATDY. Alternatively, write your
own autoinstall user-replaceable module based on the samples provided.

2. Configure model definitions. The supplied DFHZATDY autoinstall program
uses the template CBPS. CBPS is supplied in DFHAI62 group; copy it to your
own group and modify it accordingly. The parameters in the connection
definition template are the same as for a static definition (see “Defining the
location of the remote system” on page 64), except that the netname is not
needed.
The parameters for the sessions definition are the same as those listed in
“Defining CICS sessions” on page 64, except that the Connection parameter
must refer to the CBPS connection definition.

If you use the supplied connection autoinstall program (DFHZATDY), the
connection name generated is based on the last four characters of the Netname. To
change the connection name, create your own user-replaceable module from the
sample provided in CICSTSxx.CICS.SDFHSAMP, where xx is the release of your

Chapter 5. Configuring 65

CICS TS server. For example, xx is replaced by 22 for CICS TS 2.2
(CICSTS22.CICS.SDFHSAMP), 23 for CICS TS 2.3, 31 for CICS TS 3.1, and 32 for
CICS TS 3.2.

Configuring an SNA CICS Server definition
Use the CICS Transaction Gateway configuration tool to configure a new SNA
CICS server definition, or edit the SERVER section of the configuration file directly.

To configure a new SNA CICS Server definition using the Configuration Tool:
1. Select New Server from the Options menu, or from the toolbar, or right click

on the CICS Servers entry in the Navigation Panel.
2. Select a server in the navigation panel to display the Server connection panel.

The settings map to the parameters in a Server section of the configuration file.
Multiple identical server definitions are not permitted in the configuration file
of the CICS Transaction Gateway. The combination of fields that identify an
SNA server are Partner LU name, Local LU name and Mode name.
This ensures that every connection that the CICS server and the network
protocol see is represented by a unique server definition in the configuration
file. If you have existing Client applications that use different server names to
send requests to the same CICS server, you need to write a user exit to redirect
requests. This is demonstrated in sample user exits ecix2.c and epix2.c; for
more information, see the CICS Transaction Gateway for Multiplatforms:
Application Programming GuideCICS Transaction Gateway for z/OS: Application
Programming Guide.

3. Set the values required as described in the following sections.

To configure an SNA server definition by editing the configuration file directly, see
“SERVER section of the configuration file” on page 119.

Server name:

The SECTION SERVER parameter provides a server name that is independent of the
communications protocol for the server, local to the CICS Transaction Gateway.

Set the value in the range of 1 to 8 characters in the Server name field of the
Configuration tool.

Supported characters are in the ranges A-Z and 0-9, and '@', '#', '$', '-'. Lower case
characters you enter in the range a-z are converted to upper case. If you do not
use single-byte characters, other characters might not be displayed correctly.

Use this name for all requests to access the server from Client applications.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Description:

The description parameter specifies a description for the server.

Set the value in the range between 1 and 60 characters in the Description field of
the Configuration Tool, in single-byte characters. Use single-byte characters to
avoid other characters being displayed incorrectly. The value is optional.

66 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The description is returned on list systems calls.

Depending on the configuration used, the value is defined in one of the following
locations:
v “IPICSERVER section of the configuration file” on page 119
v “SERVER section of the configuration file” on page 119

Network protocol:

The protocol parameter specifies the protocol to be used for the server connection.

Select the protocol to be used for the server connection. This can be on of the
following values:
v TCP/IP
v SNA
v IPIC

You must include a SECTION DRIVER for the protocols listed above, excluding
IPIC, for example, SECTION DRIVER = SNA, and specify the correct drivername
parameter. See “DRIVER section of the configuration file” on page 120 for more
information.

If you use configuration tool, select the protocol to be used from the drop down
list in the in the Network protocol field.

Initial transaction:

The initialtransid parameter specifies a transaction identifier of between 1 and
128 characters.

This string is case-sensitive and identifies the initial transaction, and any
parameters, to be run when the terminal emulator connects to the server. If you do
not enter anything in the Initial transaction field of the Configuration tool, no
initial transaction is run. The first four characters, or the characters before the first
blank in the string are taken as the transaction. The remaining data is passed to the
transaction on its invocation.

Ensure that the transaction does not require terminal input.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Model terminal definition:

The modelterm parameter specifies the name of a model terminal definition at the
server.

Set the value of the string between 1 and 16 characters in the Model terminal
definition field of the Configuration tool. The string is case-sensitive and identifies
the characteristics of terminals to be autoinstalled from the client. If the model
cannot be located at the server, or you do not enter anything, a default terminal
definition is used. This default is server-specific.

Chapter 5. Configuring 67

|

|

|

The interpretation of the Model terminal definition setting is server-specific. For
example, for a TXSeries for AIX server, the value is 1 to 16 characters, and is the
DevType for a CICS terminal definition entry to be used as the model.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Local LU name:

The localluname parameter specifies the local LU name alias as it is known to the
SNA Communications Server.

Set the value in the Local LU name alias field of the Configuration tool. The value
must be 8 characters or less and is used when connecting to the server.

For the Client daemon: this parameter is in the SERVER section of the
configuration file. For information about the other parameters in this section, see
“SERVER section of the configuration file” on page 119.

Partner LU name:

The netname parameter specifies the LU name of the CICS server as it is defined
for the SNA network.
v If you selected Use Partner LU alias name, enter an alias name of eight

characters or less in the Partner LU name field of the Configuration tool.
v If you did not select Use Partner LU alias name, enter a qualified name of up to

17 characters in the Partner LU name field of the Configuration tool ,for
example, ABC3XYZ4.PQRS1234

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Use Partner LU alias name:

The partnerlualias parameter specifies that the Partner LU name is an alias.

Select Use Partner LU alias name in the Configuration tool to specify that the
Partner LU name is an alias.

Set the value to Y to enable.

On UNIX and Linux operating systems: The default is for this to be selected.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Mode name:

The modename parameter specifies the mode name to be used when connecting to
the server.

Set the value between 1 and 8 characters in the Mode name field of the
Configuration tool. Enter * if you want the mode name to be filled with spaces.

68 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Server idle timeout:

The srvidletimeout parameter specifies in minutes, the period of inactivity after
which the connection between the Client daemon and the CICS server is closed.

Set an integer in the range 1 through 1080 in the Server idle timeout (min) field of
the Configuration tool, a value of 0 means that no timeout is applied. The default
value is 0.

The field is available if one of the following network protocols is selected:
v TCP/IP
v SNA
v IPIC

The Server idle timeout (min) period is counted from when the number of
outstanding conversations (units of work) on the connection is zero. The
connection is automatically reestablished when a Client application sends the next
ECI, EPI or ESI request.

When a server connection times out, the Client daemon behaves as if the cicscli
-x=<servername> command had been issued. In particular, any value specified in
the “Server retry interval (Client daemon connections to CICS)” on page 87
configuration field is ignored, and no attempt is made to reestablish the
connection. The Server retry interval setting is re-enabled if the connection is
re-established.

If the network protocol for the server in question is not supported for this field,
the Client daemon ignores any entry in the configuration file for the Server idle
timeout (min) field.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.
Related information:
“Shutting down the Client daemon” on page 205
You can shut down the Client daemon for all connected servers, after all
outstanding units of work have completed or without completing outstanding
units of work, and shut down the session with a particular server.

Use uppercase security:

The uppercasesecurity parameter specifies that the CICS Transaction Gateway
converts to uppercase any user ID or password from an ECI application or from a
user prompt.

Select Use uppercase security in the Configuration tool to specify that the CICS
Transaction Gateway converts to uppercase any user ID or password from an ECI
application or from a user prompt.

Set the value of uppercasesecurity to N in the configuration file to disable upper
casing of user IDs and passwords.

Chapter 5. Configuring 69

|

|

|

The default is for the setting is Y.

This parameter is in the SERVER section of the configuration file, see “SERVER
section of the configuration file” on page 119 for more information about other
parameters in this section.

Configuring Gateway daemon settings
The Gateway daemon settings are defined in the ctg.ini configuration file and are
used for remote mode scenarios. The settings control the Gateway daemon and its
protocol handlers for remote client connections.

Gateway daemon resources
Use the CICS Transaction Gateway configuration tool to configure the Gateway
daemon resources, or edit the GATEWAY section of the configuration file directly.

Initial number of connection manager threads
The initconnect parameter controls the number of connection manager threads
created on start up which are available for client connections. Set the value to the
usual number of JavaGateway objects opened by all connected clients.

Set the value in the range 1 through 1,000,000, in the Initial number of connection
manager threads field of the Configuration tool, to specify the initial number of
connection manager threads. The default is 1. You might need to set this number to
less than the supported maximum value because of constraints on memory or
other system resources.

You can override this setting with the ctgstart -initconnect=number command.
See “Starting the Gateway daemon with override options” on page 193 for more
information.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum number of connection manager threads
The maxconnect parameter limits the maximum number of JavaGateway objects
opened by all connected Client applications. Set it to the maximum number of
JavaGateway objects that could be open at any one time from all the remotely
connected Client applications.

Set the value in the range 1 through 1,000,000 in the Maximum number of
connection manager threads field of the Configuration tool, to specify the
maximum number of connection manager threads. The default is 100. You might
need to set this number to less than the supported maximum value because of
constraints on memory or other system resources.

If you select Unrestricted, in the Configuration tool, no limits are applied to the
number of connection manager threads.

You can override this setting with the ctgstart -maxconnect=number command.

For information on threading limits, see “Threading model” on page 176.

70 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

CICS Transaction Gateway Desktop Edition: The maximum value for this
parameter is 5.

Initial number of worker threads
The initworker parameter controls the number of worker threads created on start
up, which are available for processing client requests. Set the value to the usual
number of concurrent requests expected to be processed concurrently by the
Gateway daemon.

Set the value in the range 1 through 1,000,000, in the Initial number of worker
threads field of the Configuration tool, to specify the initial number of worker
threads. The default is 1. You might need to set this number to less than the
supported maximum value because of constraints on memory or other system
resources.

You can override this setting with the ctgstart -initworker=number command.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum number of worker threads
The maxworker parameter limits the maximum number of parallel ECI, ESI, and EPI
requests that CICS Transaction Gateway can process.

Set the value in the range 1 through 1,000,000, in the Maximum number of worker
threads field of the Configuration tool, . The default is 100. You might need to set
this parameter to a value less than the maximum because of limitations on
memory or other system resources.

You can override this setting with the ctgstart -maxworker=number command.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

CICS Transaction Gateway Desktop Edition: The maximum value for this
parameter is 5.

Enable reading input from console
The noinput parameter enables the reading of input from the console.

The Enable reading input from console field of the Configuration tool is enabled
by default.

See also the -quiet command line option (“Starting the Gateway daemon with
preset options” on page 193).

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Chapter 5. Configuring 71

ECI generic replies
The ecigenericreplies parameter allows Java Client applications to obtain generic
ECI replies from the CICS Transaction Gateway. The default is that generic replies
are not enabled; enabling generic replies is not supported.

Set ecigenericreplies=off to disallow ECI generic replies. The use of the call
types ECI_GET_REPLY or ECI_GET_REPLY_WAIT by Java client applications to
obtain generic ECI replies is no longer supported. Do not select Let Java Clients
obtain generic ECI replies in the Configuration tool, because this allows generic
replies.

Generic replies are those obtained using the Call_Type: ECI_GET_REPLY or
ECI_GET_REPLY_WAIT. Specific replies are those obtained using the Call_Type:
ECI_GET_SPECIFIC_REPLY or ECI_GET_SPECIFIC_REPLY_WAIT.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Validate Units of Work
Set the uowvalidation parameter to validate logical units of work (LUWs). The
default is that LUW validation is enabled; disabling validation is not supported.

Do not clear Validate Units of Work in the Configuration tool because this
disables validation.

Set uowvalidation=on to validate LUWs, this ensures that an LUW ID can be used
only on the JavaGateway connection to which it was allocated.

If you disable validation, the following are true:
v LUWs can be accessed by any connection to the same remote Gateway.
v The CICS Transaction Gateway cannot clean up used LUWs when a connection

is closed or breaks.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Validate message qualifiers
The msgqualvalidation parameter specifies if you want the CICS Transaction
Gateway to validate message qualifiers. The default is that message qualifier
validation is enabled; disabling validation is not supported.

This ensures that a message qualifier ID can be used only on the JavaGateway
connection to which it was allocated. A message qualifier that has been assigned
on an asynchronous call cannot be used by any connection using the same remote
Gateway until the reply has been received. Set msgqualvalidation=on to enable
validation. Do not clear Validate message qualifiers in the Configuration tool
because this disables validation.

If you disable validation the following are true:
v ECI asynchronous calls tagged with a message qualifier on one connection can

have a call of the GET_SPECIFIC_REPLY type made from another connection to
the same remote gateway.

72 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v A message qualifier can be used on an asynchronous call even if a reply with
the same message qualifier is still outstanding in the remote Gateway.

v The CICS Transaction Gateway cannot clean up used message qualifiers when a
connection is closed or breaks. In some circumstances logical units of work
(LUWs) will also not be cleaned up: because the Gateway cannot clean up the
message qualifier, it cannot determine if the LUW is still active.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Timeout for in-progress requests to complete
The closetimeout parameter specifies the timeout for in-progress requests to
complete in milliseconds.

Set the value in the range 0 through 1,000,000, in the Timeout for in-progress
requests to complete field of the Configuration tool, to specify the value in
milliseconds. The default timeout is 10,000 milliseconds.

When a Java Client application disconnects from the CICS Transaction Gateway,
the Gateway might still be processing requests on behalf of that program, for one
of the following reasons.
v The connection manager thread that was managing requests on behalf of the

Java Client application waits for outstanding requests to complete for up to the
timeout period. If this field is set to zero, the connection manager thread moves
immediately to the following step.

v After the timeout has expired, the connection manager thread closes the protocol
handler and returns any worker threads without in-progress requests to the
pool.

v When all in-progress requests have completed, the connection manager thread
returns itself to the pool for reuse.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Worker thread availability timeout
The workertimeout parameter specifies the timeout period for a worker thread to
become available, in milliseconds. When a connection manager thread accepts a
request, it must allocate a worker thread to run that request. If a worker thread
does not become available within the timeout period, an error message is sent
rejecting that request and the request is not run.

Set the workertimeout parameter in the range 0 through 1,000,000, in the Worker
thread available timeout (ms) field of the Configuration tool, to specify the value
in milliseconds.

The default timeout is set to 10,000 milliseconds, but you can set a value to
override that default.

If you set this value to zero, the request is rejected unless a worker thread is
immediately available.

Chapter 5. Configuring 73

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Port for local administration
The adminport parameter specifies the port for local administration.

Set the value in the range 1 through 65,535, in the Port for local administration
field of the Configuration tool, to specify the port number on which to listen for
administration requests. The default is 2810.

You can override this setting with the ctgstart -adminport=number command.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum number of connections
The maxconn parameter specifies the maximum number of applications that can be
connected at the same time to perform statistic queries.

Set the value in the Maximum number of connections field of the Configuration
tool, to the maximum number of connections. The default is 5.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Gateway daemon logging
Use the CICS Transaction Gateway configuration tool to configure the Gateway
daemon logging resources, or edit the GATEWAY section of the configuration file
directly.

Log destinations
The log@error.dest parameter specifies the destination for error and warning
messages displayed by the Gateway daemon. The log@info.dest parameter
specifies the destination for informational messages displayed by the Gateway
daemon.

Specify the destination for error and warning messages in the Error and warning
log destination field of the Configuration tool. Specify the destination for
information messages in the Information log destination field of the Configuration
tool.

The File destination must be used when the Gateway daemon is run as a
background process. The Console option sends output to stderr.

These parameters are in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Log file names
The log@error.parameters filename parameter specifies the name of the error and
warning log file to be used for problem diagnosis. The log@info.parameters
filename parameter specifies the name of the information log file to be used for
information messages.

74 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

By default, information messages are logged to the error and warning log file.

The file name cannot contain the percent sign (%) character. Use either a forward
slash (/) character or double backslash (\\) characters as a separator in the path
name on all platforms.

Specify the name of the log file to be used for error and warning messages in the
Error log file name field of the Configuration tool. Specify the name of the log file
to be used for information messages in the Information log file name field of the
Configuration tool.

For example:
/var/logs/cicstg.log

The directory specified in the filename must exist before the Gateway daemon is
started.

When the filename parameter is defined without a directory the log file is created
in the <install_path>/bin directory.

See “Location of product files” on page 21 for more information.

These parameters are in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum file sizes
The log@error.parameters filesize parameter specifies the maximum size in
kilobytes of the error log file. The log@info.parameters filesize parameter
specifies the maximum size in kilobytes of the information log file.

Set the value in the range 0 through 2,097,151 in the Error log maximum size (KB)
field of the Configuration tool and the Information log maximum size (KB) field
of the Configuration tool. A value of 0 means that no limit is placed on the file
size. The default value is 0. When filesize is greater than 0 maxfiles must be
changed to be greater than 1.

If you set the maximum size field for a log, you must also set the number of
archived logs to keep field greater than 1. Do not set a maximum file size and set
the number of archived logs to 1. This results in the issue of error message
CTG8413E and all messages are redirected to the console. No log file is created..

These parameters are in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum number of files
The log@error.parameters maxfiles parameter specifies the maximum number of
error log files that are maintained. The log@info.parameters maxfiles parameter
specifies the maximum number of information log files that are maintained.

Set the value in the range 1 through 9999, in the Maximum number of error log
files and Maximum number of information log files fields of the Configuration
tool. The default value is 1. Any entry in this field is ignored if the “Maximum file
sizes” field has a value of 0.

Chapter 5. Configuring 75

When Error log maximum size (KB) or Information log maximum size (KB) is
greater than 0 you must set Maximum number of error log files or Maximum
number of information log files to be greater than 1. A value greater than 1
results in the file name of the log file being suffixed by sequence numbers until the
number of files specified in maxfiles have been created. For example, if you set
“Log file names” on page 74 to ctg.log, and the Maximum number of error log
files or Maximum number of information log files field to 4, at most the
following files will be created:
ctg.log.3 This is the oldest log file.
ctg.log.2
ctg.log.1
ctg.log.0 This is the log file currently being written to.

In other words, the smaller the filename suffix the newer the log file.

These parameters are in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Log Client connections and disconnections
The connectionlogging parameter controls whether or not the CICS Transaction
Gateway writes a message to the log each time that a Client application connects
to, or disconnects from, the Gateway daemon.

Set the value to on to enable this option. If you are using the configuration tool,
select the Log Client connections and disconnections check box. The default is for
these messages not to be written.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Log CICS messages
The cicslogging parameter controls whether or not messages returned from CICS
in IPIC error flows are logged to the CICS TG error log.

Set the value to on to enable logging of messages returned from CICS. The
messages are logged within a CICS Transaction Gateway warning message. If you
are using the Configuration Tool select the Log messages received from CICS
check box. The default is for these messages not to be written.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Display TCP/IP hostnames
The dnsnames parameter allow you to choose how TCP/IP addresses are displayed
in messages.

By default, CICS Transaction Gateway displays TCP/IP addresses in messages in
numeric form. If you enable this option, CICS Transaction Gateway uses the
Domain Name System (DNS) to convert numeric TCP/IP addresses to symbolic
TCP/IP host names in messages. This conversion makes the messages easier to
read but might cause a significant reduction in performance.

Set the dnsnames parameter to on to enable this option. If you are using the
Configuration tool select the Display TCP/IP hostnames check box.

76 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|

|
|
|
|

|
|
|

Note: The dnsnames parameter supersedes the nonames parameter.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Timing information
The notime parameter disables timing information in messages.

Set the Timing information field of the Configuration tool to on to disable timing
information messages.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Console output
The quiet parameter suppresses all console output.

Set the Console output field of the Configuration tool to on to suppress console
output.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

TCP protocol settings

Use the CICS Transaction Gateway configuration tool to configure the TCP
protocol settings, or edit the TCP protocol parameters in the GATEWAY section of
the configuration file directly.

Bind address
The bind parameter sets the IP address or name of the host to which the protocol
handler is to be bound.

If you set a host name in the Bind address field of the Configuration tool, it is
resolved on startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

The IP address can be in IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Port
The port parameter specifies the number of the TCP/IP port on which the protocol
handler listens for incoming client requests.

Set the value in the range 1 through 65,535 in the Port field of the Configuration
tool.

The default port for TCP/IP is 2006, for SSL the default is 8050, and for the
statistics API protocol the default is 2980.

Chapter 5. Configuring 77

|
|
|

You can override the port setting as follows:
v For TCP/IP use the ctgstart -port=number command
v For SSL use the ctgstart -sslport=number command
v For the statistics API use the ctgstart -statsport=number command

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Connection timeout (ms)
The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

Set the value in the range 0 through 65,536 in the Connection timeout (ms) field of
the Configuration tool, to specify the value in milliseconds. The default is 2000.

When a new connection has been accepted, the protocol handler waits for a
connection manager thread to become available. If a connection manager thread
does not become available within this time, the connection is refused. If this value
is set to zero, a connection is refused if a connection manager thread is not
immediately available.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Idle timeout (ms)
The idletimeout parameter specifies in milliseconds how long a connection is
allowed to remain idle.

Set the value in milliseconds between 0 and 9,999,999 in the Idle timeout (ms)
field of the Configuration tool.

The idle timeout period is counted from the time when a request was last flowed
down the connection. When the idle timeout has expired, the client application is
disconnected, although, if work is still in progress on behalf of the connection, the
client application might remain connected, depending on the setting of the “Drop
working connections” on page 79 parameter. If the idle timeout parameter is not
set or is set to zero, idle connections are not disconnected.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Ping frequency interval (ms)
The pingfrequency parameter specifies how often a ping message is sent by the
Gateway to an attached client to check that client is still active.

Set the value in the range 0 through 65,536 in the Ping frequency interval (ms)
field of the Configuration tool, to specify the value in milliseconds.

If a reply has not been received by the time the next ping message is due to be
sent, the connection is disconnected. Again, if work is still in progress on behalf of
the connection it might, depending on the dropworking parameter value setting, be
left connected. If this value is not set, or is set to zero, ping messages are not sent.

78 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Drop working connections
The dropworking parameter specifies that a connection can be disconnected due to
an idle timeout or a PING/PONG failure, even if work is still in progress on
behalf of this connection.

Check Drop working connections in the Configuration tool to specify that a
connection can be disconnected due to an idle timeout or a PING/PONG failure,
even if work is still in progress on behalf of this connection.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

SO_LINGER setting
The solinger parameter sets the delay value in seconds for closing a socket.

Set the value in the range 0 through 65,536 in the SO_LINGER setting field of the
Configuration tool, to specify the SO_LINGER setting for any socket used by this
handler. If this value is not entered or is set to zero, SO_LINGER is disabled for
any sockets used by this protocol handler.

If SO_LINGER is enabled, and data transmission has not finished, a call to close
the socket blocks the calling program until the data is transmitted or until the
connection times out. If SO_LINGER is disabled, a call to close the socket returns
without blocking the caller and TCP/IP still tries to send the data. Normally, this
transfer is successful, but it cannot be guaranteed, because TCP/IP repeats the
Send request for only a specified period of time.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Require Java Clients to use security classes
The requiresecurity parameter allows your Gateway to accept only connections
that use security classes.

Check Require Java Clients to use security classes in the Configuration tool to
allow your Gateway to accept only connections that use security classes.

When a Java Client application connects to the Gateway, it can specify a pair of
security classes for use on the connection. However, by default, a Gateway also
accepts connections from programs that do not specify this pair of security classes.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

SSL protocol settings

Use the CICS Transaction Gateway configuration tool to configure the SSL protocol
settings, or edit the SSL protocol parameters in the GATEWAY section of the
configuration file directly.

Chapter 5. Configuring 79

|
|
|

Bind address
The bind parameter sets the IP address or name of the host to which the protocol
handler is to be bound.

If you set a host name in the Bind address field of the Configuration tool, it is
resolved on startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

The IP address can be in IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Port
The port parameter specifies the number of the TCP/IP port on which the protocol
handler listens for incoming client requests.

Set the value in the range 1 through 65,535 in the Port field of the Configuration
tool.

The default port for TCP/IP is 2006, for SSL the default is 8050, and for the
statistics API protocol the default is 2980.

You can override the port setting as follows:
v For TCP/IP use the ctgstart -port=number command
v For SSL use the ctgstart -sslport=number command
v For the statistics API use the ctgstart -statsport=number command

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Connection timeout (ms)
The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

Set the value in the range 0 through 65,536 in the Connection timeout (ms) field of
the Configuration tool, to specify the value in milliseconds. The default is 2000.

When a new connection has been accepted, the protocol handler waits for a
connection manager thread to become available. If a connection manager thread
does not become available within this time, the connection is refused. If this value
is set to zero, a connection is refused if a connection manager thread is not
immediately available.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Idle timeout (ms)
The idletimeout parameter specifies in milliseconds how long a connection is
allowed to remain idle.

80 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Set the value in milliseconds between 0 and 9,999,999 in the Idle timeout (ms)
field of the Configuration tool.

The idle timeout period is counted from the time when a request was last flowed
down the connection. When the idle timeout has expired, the client application is
disconnected, although, if work is still in progress on behalf of the connection, the
client application might remain connected, depending on the setting of the “Drop
working connections” on page 79 parameter. If the idle timeout parameter is not
set or is set to zero, idle connections are not disconnected.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Ping frequency interval (ms)
The pingfrequency parameter specifies how often a ping message is sent by the
Gateway to an attached client to check that client is still active.

Set the value in the range 0 through 65,536 in the Ping frequency interval (ms)
field of the Configuration tool, to specify the value in milliseconds.

If a reply has not been received by the time the next ping message is due to be
sent, the connection is disconnected. Again, if work is still in progress on behalf of
the connection it might, depending on the dropworking parameter value setting, be
left connected. If this value is not set, or is set to zero, ping messages are not sent.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Drop working connections
The dropworking parameter specifies that a connection can be disconnected due to
an idle timeout or a PING/PONG failure, even if work is still in progress on
behalf of this connection.

Check Drop working connections in the Configuration tool to specify that a
connection can be disconnected due to an idle timeout or a PING/PONG failure,
even if work is still in progress on behalf of this connection.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

SO_LINGER setting
The solinger parameter sets the delay value in seconds for closing a socket.

Set the value in the range 0 through 65,536 in the SO_LINGER setting field of the
Configuration tool, to specify the SO_LINGER setting for any socket used by this
handler. If this value is not entered or is set to zero, SO_LINGER is disabled for
any sockets used by this protocol handler.

If SO_LINGER is enabled, and data transmission has not finished, a call to close
the socket blocks the calling program until the data is transmitted or until the
connection times out. If SO_LINGER is disabled, a call to close the socket returns
without blocking the caller and TCP/IP still tries to send the data. Normally, this

Chapter 5. Configuring 81

transfer is successful, but it cannot be guaranteed, because TCP/IP repeats the
Send request for only a specified period of time.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Require Java Clients to use security classes
The requiresecurity parameter allows your Gateway to accept only connections
that use security classes.

Check Require Java Clients to use security classes in the Configuration tool to
allow your Gateway to accept only connections that use security classes.

When a Java Client application connects to the Gateway, it can specify a pair of
security classes for use on the connection. However, by default, a Gateway also
accepts connections from programs that do not specify this pair of security classes.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Use client authentication
The clientauth parameter enables client authentication.

Check Use client authentication in the Configuration tool to use client
authentication.

The default is for client authentication to be disabled.

When client authentication is enabled, any connection attempted to the ssl: handler
requires the client to present its own Client Certificate (also known as a digital ID).

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Key ring file
The keyring parameter specifies the key ring server key ring name.

Set the value in the Key ring file field of the Configuration tool, as either the full
path name, or the path name of the file relative to the CICS Transaction Gateway
bin directory. Use either a forward slash (/) character or double backslash (\\)
characters as a separator in the path name on all operating systems.

For example:
/mykeys/jsse/keystore.jks
\\mykeys\\jsse\\keystore.jks

The server key ring consists of a valid x.509 certificate that identifies this server to
connecting clients. This key ring is generated using the SSL tools supplied with
this product.

You can override the SSL key ring path and file name with the ctgstart
-keyring=keyring command.

82 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

If you are using a RACF keyring, the keyring parameter value is the name of the
RACF key ring.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Key ring password
The keyringpw parameter value is the password that you specified for the server
key ring. The keyringpwscrambled parameter specifies whether the keyringpw
parameter value is encrypted. The default is off.

Set the value in the Key ring password field of the Configuration tool. The
Configuration tool writes the password to the configuration file in a form that
prevents an observer from easily reading it and sets keyringpwscrambled to on.

You can override the SSL password with the ctgstart -keyring=keyring
-keyringpw=keyringpw command. An error message is generated if the keyringpw
parameter is used on its own without the corresponding keyring parameter in the
ctgstart - command line. This error message does not affect the Gateway operation
and the password is ignored.

The following example shows a command line with parameters:
ctgstart -sslport=port_number -keyring=keyring -keyringpw=keyringpw

To encrypt this entry, ensure that the keyringpwscrambled parameter is set to on.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Use only these ciphers
Use the ciphersuites parameter to restrict the set of cipher suites that can be used
with the SSL protocol.

If you do not want to restrict the set of cipher suites used, omit the ciphersuites
parameter.

Click Add to add the cipher to the list of ciphers, below the entry field. Click
Remove to remove all selected entries in the ciphers list. To restrict the cipher
suites that can be used with the SSL protocol, enter a comma-separated list of
cipher suites. To allow all available cipher suites to be used, omit the entry. CICS
Transaction Gateway uses cipher suites provided by the Java runtime environment
for the SSL protocol. The cipher suites available to be used are dependant on the
Java version. See the documentation supplied with your Java runtime environment
for valid cipher suites, or do the following:
1. Remove any entries from the Use only these ciphers list.
2. Save the configuration file.
3. Run ctgstart.

If the SSL protocol is correctly configured, CICS Transaction Gateway displays a
list of valid cipher suites that Java client applications can use when connecting to
the CICS Transaction Gateway.

Chapter 5. Configuring 83

If the Use only these ciphers list contains entries, a Java client application can
connect to the CICS Transaction Gateway only by using the cipher suites listed. If
the Java client application does not support any of the cipher suites listed, it
cannot connect.

If the list contains no entries, a Java client application can connect using any
available cipher suite.

Use of the ciphersuites=128bitonly parameter is deprecated.

If you use the Configuration Tool to open a configuration file that contains this
entry, the entry is replaced by these cipher suites:

TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_DHE_DSS_WITH_RC4_128_SHA

Cipher suites entered as TLS_ are converted to SSL_ when CICS Transaction
Gateway starts. You can find the protocol used by checking the log or trace when a
client connects.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Configuring Client daemon settings
Use the CICS Transaction Gateway configuration tool to configure the Client
daemon settings, or edit the CLIENT section of the configuration file directly.

To display the Client daemon settings panel, select the Client daemon icon in the
navigation panel tree structure.

Using the Configuration Tool, you can provide preset values for any parameter
that can be specified using a Client command-line option.

If a parameter that has been defined using the Configuration Tool is subsequently
specified by the associated command-line option when the Client is started, the
command-line setting takes precedence.

Maximum buffer size
The maxbuffersize parameter specifies the size of the transmission buffers in
which application data or terminal data flows.

Set the number of kilobytes value in the range 4 through 32 in the Maximum
buffer size field of the Configuration tool. The default is 32 KB.

The value should be large enough to accept the largest possible COMMAREA or
terminal input/output area (TIOA) to be used. The maximum COMMAREA size
might be less than the Maximum buffer size, because certain protocols have an
overhead of 512 bytes.

Leave this setting at the default unless the CICS Transaction Gateway is running
on a machine that is short of memory.

84 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Terminal exit
The terminalexit parameter specifies a character string that when entered in place
of a transaction name in a terminal emulator, causes the terminal emulator to
terminate.

Set the value of the character string between 1 and 4 characters in the Terminal
exit field of the Configuration tool. The default is EXIT.

The string, when entered at a terminal emulator at any time and place where a
transaction name can be entered, causes the terminal emulator to terminate. The
string must not contain any blank characters.

The string is case-sensitive. If a terminal emulator has uppercase translation in its
CICS terminal definition, enter this string in uppercase.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Maximum servers
The maxservers parameter specifies the maximum number of servers that can be
accessed concurrently from the client.

Set the value in the range 1 through 256 in the Maximum servers field of the
Configuration tool. The default is 10.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Maximum requests
The maxrequests parameter specifies the maximum number of concurrent requests
that might be executing on the Client daemon.

Set the value in the range 1 through 10,000 in the Maximum requests field of the
Configuration tool. The default is 256.

An item is defined as one of the following:
v A request to install or uninstall a terminal emulator
v A request to install or uninstall an EPI terminal
v A transaction invoked by a terminal
v An ECI unit of work
v An ESI unit of work

The value is used to detect runaway conditions where an application could, in
error, submit an excessive number of requests to a server. The actual limit might be
less than this setting if other operating system limits (for example, memory
constraint or communication sessions), come into effect.

Chapter 5. Configuring 85

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

CICS Transaction Gateway Desktop Edition: The maximum value for this
parameter is 32.

Print command
The printcommand parameter specified string is a command specific to the
operating system under which the CICS Transaction Gateway is running. When a
request to print is received, the Client daemon generates a temporary print file
with a unique name.

Set the character string, from 1 to 256 characters long in the Print command field
of the Configuration tool.

The parameter string is appended with the temporary file name, and the resultant
command executed. This allows, for example, print requests to be copied to a file,
directed to a local printer, formatted for inclusion into documentation, and other
similar actions.

It is the responsibility of the Print command to delete the temporary print file after
it has finished processing it.

Use a shell script with the Print command (for example, lpr) followed by the
command to delete (rm).

See also the Print file description for more information.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Print file
The printfile parameter identifies a file to which output from print requests
received at the Client daemon is directed.

Set the file name to a character string of 1 to 256 characters long in the Print file
field of the Configuration tool.

This option applies only if you make no entry in the Print command setting.

Each print request is appended to the end of the current file.

This setting acts only as a default. The cicsterm and cicsprnt commands provide
options to override this value.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

86 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Code page identifier override
The CCSID parameter indicates the Coded Character Set Identifier (CCSID) that
identifies the coded graphic character set used by the client application for 3270
data flowed in EPI requests.

Use the Codepage identifier override field of the Configuration tool if your
platform has been updated for euro support, and the CICS Server has euro
support. For example, for Latin-1 countries, use a CCSID value of 858 to indicate
that the code page 850 includes euro support. For code page 1252, specify a CCSID
value of 5348.

Note:

1. Regardless of the value in the Code page identifier override setting, cicsterm
always displays characters based on the local code page of the workstation.

2. If you use the CCSID to change the code page identifier, data that is already
stored on the server might be modified when retrieved by the CICS Transaction
Gateway, if it includes characters for which the code points produce different
characters.

3. AIX operating system: On AIX 4.3.2 and above, support for Ja_JP locale uses
CCSID=943. If the CICS Server does not support this CCSID, enter a code page
identifier override of 932, or add the statement 'CCSID=932' to the Client
Section of the configuration file ctg.ini.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Server retry interval (Client daemon connections to CICS)
The srvretryinterval parameter specifies the time in seconds between attempts by
the Client daemon to reconnect to a CICS server.

Set the value between 0 and 3600 in the Server retry interval (sec) field of the
Configuration tool. The default is 60 seconds.

If the CICS server which is currently connected becomes inactive, an attempt is
made to reconnect one second after the CICS server becomes inactive. If the
connection attempt fails, additional attempts are made to connect at the interval
specified by the srvretryinterval parameter.

Set the value to 0 to prevent automatic connection attempts. Each request directed
at the CICS server initiates a connection attempt if one is not already in progress.

This parameter is located in the CLIENT section of the configuration file. For more
information see “CLIENT section of the configuration file” on page 118.

Client daemon logging
You can change the file destination for log messages generated by the Client
daemon.

Error, warning, and informational messages are output to the same log file by
default, the log file is specified by the logfile parameter, see “Error and warning
log file” on page 88. The destination of informational messages can be changed to
be a separate file, see “Information log file” on page 88 for more information.

Chapter 5. Configuring 87

The language of the log messages can be changed by running the ctgmsgs
command, see “Changing the system locale” on page 31 for more information. The
log files can be viewed using any standard text editor. The following steps show
how to change the settings.
1. Launch the Configuration Tool and navigate to the Logging tab of the Client

daemon node.
2. Complete the fields on the tab as appropriate. You can choose to:

v Log terminal installations and deletions.
v Change the name of the Error and warning log file from the default

cicscli.log.
v Specify a different log for information messages.

3. Save the configuration file.
Related information:
“Client daemon logging” on page 87
You can change the file destination for log messages generated by the Client
daemon.

Error and warning log file
The logfile parameter specifies the name of the log file to be used for error and
warning messages.

Set the name of the logfile in the Error log file name field of the Configuration
tool. If not specified, the log file name defaults to cicscli.log in the subdirectory
/var/cicscli.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Information log file
The logfileinfo parameter specifies the name of the file to which information
messages will be logged.

By default, information messages are logged to the “Error and warning log file.”

To configure a separate information log file, clear Use the same file for
information messages in the Configuration tool, and then complete the
Information log file field.

If you do not specify a path to the file, the log is created in the following directory:
/var/cicscli

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Log terminal installations and deletions
The terminstlogging parameter specifies whether or not terminal installation and
deletion requests are logged.

To activate logging of terminal installation and deletion requests, either select Log
terminal installations and deletions in the Configuration Tool, or edit the
configuration file to set the terminstlogging parameter to Y.

88 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|

|
|
|

To deactivate logging, either deselect Log terminal installations and deletions in
the Configuration Tool, or edit the configuration file to set the terminstlogging
parameter to N.

Logging of terminal installation and deletion requests is deactivated by default.

The terminstlogging parameter is located in the CLIENT section of the
configuration file. For information about the other parameters in this section see
“CLIENT section of the configuration file” on page 118.

Configuring SSL
You can configure CICS Transaction Gateway to use the SSL cryptographic protocol
for security and data integrity of communications over a TCP/IP connection.

If you are using IPIC connections, SSL is available in local mode only, using the
resource adapter or base class API.

Creating and maintaining digital certificates
Digital certificates are used for identifying either end of a an SSL connection and
contain information required to establish trust.

A digital certificate is a digitally signed data structure that binds a public key to
the identity of the private key's owner. The use of digital certificates ensures that
the user of a public key can be confident of the ownership of the corresponding
private key. If you intend using SSL, you must always configure server
authentication.

Server authentication tasks (mandatory for SSL)
1. Create a CA certificate on your Server which is self signed, or send a certificate

request to an external CA and have it signed by them.
2. Generate a personal certificate on the Server and sign it with your CA

certificate.
3. Export the personal certificate to a file on your Server.
4. Transfer the file to your Client.
5. Create a keystore/key ring on your Client and import the server personal

certificate from the file into it.

Client authentication tasks (optional for SSL)
1. Create a CA certificate on your Client which is self signed, or send a certificate

request to an external CA and have it signed by them.
2. Generate a personal certificate on the Client and sign it with your CA

certificate.
3. Export the personal certificate to a file on your Client.
4. Transfer the file to your Server.
5. Import the Server personal certificate to the Client.

Tools for working with digital certificates

Use these tools to work with digital certificates in different scenarios:

The keytool utility is a command line tool; iKeyman is a graphical tool.
v keytool

Chapter 5. Configuring 89

|
|
|

|

|
|
|

v iKeyman

iKeyman and iKeytool are shipped in both the JRE and SDK packages.
Related information:
“Using keytool for certificate management” on page 93
The keytool command line application, provided with the SDK, is an accessible
alternative to iKeyMan for managing self-signed certificates.

Configuring server authentication with iKeyman
You configure server authentication by creating a client keyring, importing the
server's signer certificate, creating a server keyring and certificate, and exporting
the server's signer certificate.

For information about configuring server authentication from the command line,
see “Configuring your SSL server” on page 93.

Creating a server keyring

The key ring contains your server certificate, with its associated private key, and
several signer certificates. SSL uses the certificate to identify the server to
connecting clients.
1. Start iKeyMan.
2. Select Key Database File —> New.
3. From Key Database Type, select JKS.
4. In File name type a name for your key ring, such as MyServerkey ring.jks.
5. In Location, type a suitable location to store your server key ring.
6. Select OK.
7. Type a password for the key ring file.

iKeyMan gives you an indication of the “strength” of your password. You
might use a mixture of letters and numbers for your password which makes
the password more resistant to “brute force” dictionary attacks.

8. Select OK.

The generated file MyServerkey ring.jks contains, by default, a selection of popular
signer certificates as follows:

VeriSign Class 3 Public Primary Certificate Authority
VeriSign Class 2 Public Primary Certificate Authority
VeriSign Class 1 Public Primary Certificate Authority
RSA Secure Server Certificate Authority
Thawte Personal Basic CA
VeriSign Test CA Root Certificate
Thawte Personal Premium CA
Thawte Premium Server CA
Thawte Server CA
Thawte Personal Freemail CA

The server can verify clients with the VeriSign Class 1 through 3 Public Primary
Certificate Authority signer certificates .

Creating a server certificate

Now you are ready to create the self-signed Server Certificate and store it along
with its private key in your server key ring:

90 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

1. In iKeyMan, select Create-> New Self-Signed Certificate

2. Complete the certificate request. Some fields are optional, but you must fill in
at least the following (examples are shown):

Key Label
exampleServerCert

Version
select X509 V3

Key Size
select 1024

Common Name
This defaults to the name of the machine you are using

Validity Period
The default is 365 days

3. Select OK.
iKeyMan generates a public/private key pair.

4. The self-signed Server Certificate appears in the Personal Certificates window.
The certificate has the name you typed in the Key Label field, in this example
exampleServerCert.

5. With exampleServerCert highlighted, select View/Edit.
Notice that the information in the issued to (certificate requester) textbox is the
same as that in the issued by (signer) textbox. To establish SSL connections
with a server presenting this certificate, the client must trust the signer. To do
this the client key repository must contain the signer certificate of the server
presenting exampleServerCert.

Exporting the server's signer certificate
1. With exampleServerCert highlighted, select Extract Certificate...

2. In the Data type pull-down menu, select Base64-encoded ASCII.
3. Type the name and location of the text file containing your Server Certificate

data. Our example uses exampleServercert.arm

4. Select OK.

Store the exported certificate in a safe place. Import it into any client repository
that needs to communicate with this SSL server.

Creating a client keyring

A client key ring contains as a minimum, the signer certificate of the SSL server, and
a client x.509 certificate, if client authentication is required. The process for creating
a client key ring is similar to that for a server:
1. Start iKeyMan
2. Select Key Database File —> New

3. From Key Database Type, select JKS

4. In File name type a name for your key ring, such as MyClientkey ring.jks

5. In Location, type a suitable location to store your client key ring
6. Select OK

7. Type a password for the key ring file.
8. Select OK

Chapter 5. Configuring 91

Like the server key ring, the client key ring contains a default selection of popular
signer certificates.

Importing the server's signer certificate
1. In iKeyMan select Add

2. Locate the stored Server Base64-encoded ASCII certificate file. In our example,
this is exampleServercert.arm.

3. Select OK.
4. Give this signer certificate a unique label, for example, My Self-Signed Server

Authority.
5. Select OK.

This new signer certificate is added to the list of default signers.

Configuring client authentication with iKeyman
You configure client authentication by creating a client certificate and exporting the
client's signer certificate.

For information about configuring client authentication from the command line,
see “Configuring your SSL clients” on page 95.

Creating a client certificate

If the SSL handler used by the CICS Transaction Gateway is configured to support
just server authentication, you do not have to create a client certificate as described
here because the client key ring needs to contain just the signer certificate of the
server, which you have just imported. You can use the generated MyClient key
ring.jks file with CICS Transaction Gateway's SSL protocol, which is configured to
support server authentication.

Client authentication requires the client key ring also to contain a self-signed
Certificate that is used to identify the connecting client.
1. In iKeyMan, select Personal Certificates from the pull-down menu below the

Key database content label.
2. Select New Self-Signed...

3. Complete the certificate request. Some fields are optional, but you must fill in
at least the following (examples are shown):

Key Label
exampleClientCert

Version
Select X509 V3

Key Size
Select 1024

Common Name
This defaults to the name of the machine you are using

Organization
The name of your organization

Country
Select a two character ID from the list

Validity Period
The default is 365 days

92 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

4. Select OK.
iKeyMan generates a public/private key pair.

5. The self-signed Client Certificate appears in the Personal Certificates window.
The certificate has the name you typed in the Key Label field, in this example
exampleClientCert.

Exporting the client's signer certificate
1. With exampleClientCert highlighted, select Extract Certificate...

2. In the Data type pull-down, select Base64-encoded ASCII

3. Type the name and location of the text file containing your Server Certificate
data. Our example uses exampleClientcert.arm

4. Select OK.

Store the exported certificate in a safe place. It must be imported into any server
repository that needs to communicate with this SSL client.

Using keytool for certificate management
The keytool command line application, provided with the SDK, is an accessible
alternative to iKeyMan for managing self-signed certificates.

In the production environment you might choose to use externally signed
certificates, which are managed in a similar way.

Configuring your SSL server
To configure your SSL server you create a server key ring and certificate, export
the server's signer certificate, and transfer the server certificate to the client.

Create a server key ring and server certificate

Issue the following command to create both the KeyStore and certificate:
keytool -genkey -alias aliasname -keysize numericvalue -dname distname

-keystore location -keypass password -storepass password
-keyalg algorithm

The options are:

-genkey
Generates a key pair and wraps the public key into a self-signed certificate.

-alias aliasname
Defines the alias name that identifies the store containing the self-signed
certificate and private key.

-keysize numericvalue
Defines the size of the key.

-dname distname
Specifies the X.500 distinguished name to be associated with the alias. This
is used as the issuer and subject fields of the self-signed certificate. The
distinguished name consists of a number of fields separated by commas in
the following format:

Each strvalue is a string value. The meaning of the abbreviations is as
follows:
v cn = common name
v o = organization

Chapter 5. Configuring 93

v ou = organization unit
v l = city/locality
v s = state/province
v c = country name

An example of an X.500 distinguished name is shown here:

-keystore location
The key ring file location. For example: ktserverss.jks

-keypass password
The password used to protect the private key. Set this to the same value as
the -storepass password, to enable the CICS Transaction Gateway to
establish a connection over SSL.

-storepass password
The password used to protect the integrity of the key ring. Set this to the
same value as the -keypass password, to enable the CICS Transaction
Gateway to establish a connection over SSL.

-keyalg algorithm
The algorithm to be used to generate the key pair.

An example of this command is shown here:

View the newly created certificate

Use a command similar to the following to view all certificates in the key ring,
including the one you just created:
keytool -list -keystore storename -storepass password -v

Where the options are:

-list List the contents of the key ring.

-keystore storename
The name of the key ring containing the certificates you want to view.

-storepass password
The password needed to access the key ring.

-v Show details of the certificates in the key ring.

An example of the keytool command to view certificates is shown here:

"cn=someserver.location.ibm.com,o=IBM,ou=IBMGB,
l=Winchester,s=Hants,c=GB"

Figure 6. An X.500 distinguished name

keytool -genkey -alias exampleServerCert -keysize 1024
-dname "cn=vmware2.location.ibm.com,o=IBM,ou=IBMGB,l=Winchester,s=Hants,c=GB"
-keystore ktserverss.jks -keypass default -storepass default
-keyalg RSA

Figure 7. Using the keytool command to create a key ring containing a single self-signed certificate

keytool -list -keystore ktserverss.jks -storepass default -v

Figure 8. Using the keytool command to view certificates

94 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Export the server's signer certificatd

The next step is to export the signer certificate and store it in a safe place. This can
then be imported into the repository of any client that needs to connect to this SSL
server.

The certificate is exported by using the following instance of the keytool command:
keytool -export -alias aliasname -keystore location

-storepass password -file filename -rfc

Where the options are:

-export
Export a certificate.

-alias aliasname
Name of the key (in the key ring) to export.

-keystore location
The key ring location.

-storepass password
The password used to protect the integrity of the key ring.

-file filename
The name of the file to export the certificate to.

-rfc Export the certificate in RFC format (Base64 encoded ASCII).

An example of the keytool command to export a signer certificate is shown here:

Transfer the server certificate to the client

If you use FTP to transfer the file, ensure that your FTP client is in binary mode.

Configuring your SSL clients
To configure your SSL clients you create a client key ring and import the server's
signer certificate, create a self-signed certificate in the client. Next you export the
client's signer certificate, and transfer the server certificate to the client. Finally you
import the client signer certificate into the server's key ring file.

If your server does not use client authentication you complete the first task (create
a client key ring and import the server's signer certificate) but you do not have to
complete the other tasks.

Create a client key ring and import the server's signer certificate.

Issuing the following command to create the key ring and import the certificate:
keytool -import -alias aliasname -file certfile -keystore keystorefile

-storepass password -noprompt

Where the options are:

-import
Import a certificate.

keytool -export -alias exampleServerCert -keystore ktserverss.jks -storepass default
-file exampleServerCertKT.arm -rfc

Figure 9. Using the keytool command to export the signer certificate

Chapter 5. Configuring 95

-alias aliasname
The name under which the certificate is to be stored.

-file certfile
The file that contains the certificate.

-keystore keystorefile
The key ring into which the certificate is to be imported.

-storepass password
The password used to protect the integrity of the key ring.

-noprompt
Removes the need to confirm that the certificate is imported.

An example of this command is shown here:

Create a self-signed certificate in the client key ring

To create a new keystore containing a self-signed certificate use the following
instance of the keytool command:
keytool -genkey -alias aliasname -keysize numericvalue -dname distname

-keystore location -keypass password -storepass password
-keyalg algorithm

The options are:

-genkey
Generates a key pair and wraps the public key into a self-signed certificate.

-alias aliasname
Defines the alias name that identifies the store containing the self-signed
certificate and private key.

-keysize numericvalue
Defines the size of the key.

-dname distname
Specifies the X.500 distinguished name to be associated with the alias. This
is used as the issuer and subject fields of the self-signed certificate. The
distinguished name consists of a number of fields separated by commas in
the following format:

Each strvalue is a string value. The meaning of the abbreviations is as
follows:
v cn = common name
v o = organization
v ou = organization unit
v l = city/locality
v s = state/province
v c = country name

An example of an X.500 distinguished name is shown here:

keytool -import -alias exampleServer -file exampleServerCertKT.arm -keystore clientStore.jks
-storepass default -noprompt

Figure 10. Using the keytool command to create a key ring containing the server's signer certificate

96 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

-keystore location
The key ring file location. For example: ktserverss.jks

-keypass password
The password used to protect the private key. Set this to the same value as
the -storepass password, to enable the CICS Transaction Gateway to
establish a connection over SSL.

-storepass password
The password used to protect the integrity of the key ring. Set this to the
same value as the -keypass password, to enable the CICS Transaction
Gateway to establish a connection over SSL.

-keyalg algorithm
The algorithm to be used to generate the key pair.

An example of the keytool command is shown here:

Export the client's signer certificate

This certificate must be imported into the keystores of all servers that the SSL
client needs to connect to.

To export the certificate use the following instance of the keytool command:
keytool -export -alias aliasname -keystore location

-storepass password -file filename -rfc

Where the options are:

-export
Export a certificate.

-alias aliasname
Name of the key (in the key ring) to export.

-keystore location
The key ring location.

-storepass password
The password used to protect the integrity of the key ring.

-file filename
The name of the file to export the certificate to.

-rfc Export the certificate in RFC format (Base64 encoded ASCII).

An example instance of the keytool command to export a signer certificate is
shown here:

"cn=someserver.location.ibm.com,o=IBM,ou=IBMGB,
l=Winchester,s=Hants,c=GB"

Figure 11. An X.500 distinguished name

keytool -genkey -alias exampleClientCert -keysize 1024
-dname "cn=John Doe,o=IBM,ou=IBMGB,l=Winchester,s=Hants,c=GB"
-keystore clientStore.jks -keypass default -storepass default
-keyalg RSA

Figure 12. Using the keytool command to create a key ring containing a single self-signed certificate

Chapter 5. Configuring 97

Transfer the server certificate to the client

If you use FTP to transfer the file, ensure that your FTP client is in binary mode.
For details on importing the certificate, see step Create a client key ring and import
the server's signer certificate.

Gateway daemon SSL configuration
To use SSL for connections between Java client applications and the Gateway
daemon you must configure the SSL protocol in the configuration file, ctg.ini.

For more information see SSL protocol settings and Configuring SSL security
between a Java Client and the Gateway daemon.

Using hardware cryptography
Cryptography within the existing JCE architecture gives Java 2 programmers
security and performance advantages of hardware cryptography with minimal
changes to existing Java applications.

To use hardware cryptographic function provided by the IBMJCECCA provider:
1. Edit the java.security file in the ${java-home}/lib/security directory so that it

contains the following lines:
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.crypto.provider.IBMJCE

2. Copy the unrestricted policy files from the ${java-home}/demo/
jce/policy-files/unrestricted directory to the ${java-home}/lib/security
directory.

If you intend to use the keytool command to create JKS files that do not use
hardware encryption:
1. Edit the java.security file to remove the line that references JCE4758.
2. Create the keystores.
3. If you intend to use hardware cryptography as well, reinstate the line in the

java.security file.

Using the SSL protocol
To make a connection to CICS Transaction Gateway, the client application flows a
request which specifies a URL.

Typically, the URL might be similar to this:
ssl://transGatewayMachine:8050

SSL configuration for IPIC connections
To enable SSL for IPIC connections you define a key ring and password, either for
the Java base classes or for the resource adapter. SSL is supported only in local
mode.

Configuring SSL for the Java base classes

To configure SSL for the Java base classes:

keytool -export -alias exampleClientCert -keystore clientStore.jks -storepass default
-file exampleClientCertKT.arm -rfc

Figure 13. Using the keytool command to export the signer certificate

98 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

1. Create a java.util.Properties object
2. Add the following properties:

a. JavaGateway.SSL_KEYRING_CLASS, <keyring file location>

b. JavaGateway.SSL_KEYRING_PASSWORD, <password>

3. Set the properties on the JavaGateway by calling the setProtocolProperties()
method, passing the java.util.Properties object.

4. Define the server name as ssl://<server_name>:<port>. Set the server name on
the ECIRequest object and not on the JavaGateway object.

Configuring SSL for a resource adapter

To configure SSL connection for a resource adapter:
1. Define ServerName as ssl://<server_name>:<port>.
2. Set the KeyRingClass property to the location of the key ring file.
3. Set the KeyRingPassword property to the password of the key ring file.

Configuring identity propagation
Identity propagation configuration tasks are required on RACF®, CICS Transaction
Server and WebSphere Application server. Identity propagation must also be
activated in CICS Transaction Gateway. WebSphere Application Server must be
configured to specify a user registry to enable user ID and password verification
for applications. Prerequisites and configuration tasks are also required for CICS
and RACF.

Configuring identity propagation on CICS
The steps required to configure identity propagation on CICS Transaction Server.

CICS Transaction Server requires the following:
v The z/OS identity propagation function provided in z/OS, Version 1.11 or later
v CICS Transaction Server for z/OS Version 4.1 or later with the APAR fixes

described in “Configurations that support identity propagation” on page 170. To
download these fixes, go to Fix list for CICS Transaction Server for z/OS V4.1

v An IPIC connection with USERAUTH set to IDENTIFY

If the CICS Transaction Gateway making the request and the CICS server are not
in the same sysplex (for example when a resource adapter using a local Gateway
issues requests directly to CICS), an SSL connection is required to allow the use of
USERAUTH=IDENTIFY. For more information, see the “User security” section of
“IPIC connection security” on page 159.

Configuring identity propagation on WebSphere Application
Server

Configuration is required on WebSphere Application Server to enable identity
propagation.

Setting up the identity propagation login module

WebSphere Application Server must be configured to specify a user registry to
enable user ID and password verification for applications. Any registry supported
by WebSphere Application Server is supported by CICS Transaction Gateway.
Examples of the registries supported by WebSphere Application Server are:

Chapter 5. Configuring 99

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg27016053

v IBM Tivoli Directory Server (ITDS)
v Microsoft Active Directory
v SunOS Directory
v Novel Directory Service

For more information about supported registries, see the WebSphere Application
Server Information Center.

All JEE applications that call the CICS Transaction Gateway ECI resource adapter
must be configured for container-managed security.

CICS Transaction Gateway includes a JAAS (Java Authentication and Authorization
Service) login module in the ECI resource adapter RAR (cicseci.rar). You must
install the login module into WebSphere Application Server to enable identity
propagation. Install the login module by creating a new JAAS Application Login
alias that refers to the fully-qualified name of the login module:
com.ibm.ctg.security.idprop.LoginModule

One of the following must be configured to use the CICS Transaction Gateway
identity propagation login module:
v The JEE application must be configured to use a custom login configuration that

refers to the CICS Transaction Gateway identity propagation login module. This
is accessed via the connection factory resource references on the application's
configuration panel.

v The connection factory that is used by the application must have a mapping
configuration alias that refers to the CICS Transaction Gateway identity
propagation login module. This is accessed by the connection factory's
configuration panel.

For more information about configuring WebSphere Application Server, see the
WebSphere Application Server information center.

Specifying the authentication information to propagate

If identity propagation has been configured and activated, the identity information
that can be propagated with a request can be either the identity of the user who
invoked the application, or the identity under which the application programmer
has configured the application to run.
v The identity of the user who invoked the application is known as the “caller” or

“received” identity.
v The identity under which the application programmer has configured the

application to run is known as the “run as” or “invocation” identity.

To specify the identity to propagate CICS, you set the propIdentity custom
property on the CICS Transaction Gateway identity propagation login module. You
do this from the WebSphere Application Server admin console by setting one of
the following name-value pairs:
propIdentity=Caller

or
propIdentity=RunAs

For example, if you want the “run as” identity to be propagated to CICS, do this:

100 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|
|
|
|

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

1. From the WebSphere administrative console; navigate to Security > Global
security and select JAAS - Application logins > CTG_idprop >
com.ibm.ctg.security.idprop.LoginModule.

2. Ensure the “Use login module proxy” check box is deselected.
3. Select REQUIRED from the “Authentication strategy” drop down list.
4. Create the name-value pair propIdentity-RunAs.
5. Click OK.

If you do not specify a setting or if you specify an invalid key or value, the system
propagates the “run as” identity by default for application users. The propIdentity
key, and the values RunAs and Caller are not case-sensitive.

Configuring identity propagation on RACF
The steps required to configure RACF for identity propagation.

RACF must contain mappings of distinguished names to RACF user IDs. The
distinguished names defined in the mappings must have the same format as they
have in the user registry.

For more information about configuring IPIC connections and RACF, see the CICS
Transaction Server information center.

A command RACMAP is available for creating, deleting, and listing a distributed
identity filter. If changes are required, you can delete the filter, and define a new
one. The RACMAP command has the following functions:

MAP creates a distributed identity filter

DELMAP
deletes a distributed identity filter

LISTMAP
lists information about a distributed identity filter

Examples:
RACMAP ID(GUSKI) MAP

USERDIDFILTER(NAME(’UID=RICH,OU=Web Sales,O=Rich Radio Ham,L=Internet’))
REGISTRY(NAME(’us.richradioham.com’))
WITHLABEL(’Rich’’s name filter’)

RACMAP ID(SMITH) MAP
USERDIDFILTER(NAME(’uid=JIM,ou=Web Sales,dc=CTGSales, o=HEADOFFICECTG’)) -
REGISTRY(NAME(’uk.websales.com’))

For more information about the RACMAP command, see thez/OS Security Server
RACF Command Language Reference.

Note: It is not possible to modify a distributed identity filter.

Configuring identity propagation for CICS Transaction
Gateway

Identity propagation must be activated so that CICS Transaction Gateway can flow
distributed identities to CICS Transaction Server. Activation involves completing
several installation and configuration tasks.

To activate identity propagation for CICS Transaction Gateway:

Chapter 5. Configuring 101

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

1. Install a CICS Transaction Gateway ECI resource adapter in WebSphere
Application Server. For more information, see “Deploying the CICS resource
adapters” on page 36.

2. Configure an IPIC server definition from CICS Transaction Gateway into a
CICS server. Alternatively you can configure an IPIC connection from a local
Gateway directly into CICS, using SSL.

3. Install the CICS Transaction Gateway identity propagation login module in
WebSphere Application Server. For more information, see “Configuring identity
propagation on WebSphere Application Server” on page 99.

4. Configure the Java client application resource references, or the connection
factories used by the applications, to use the CICS Transaction Gateway
identity propagation login module. When applications have been enabled to
use the module, identity propagation is active. For more information about
configuring WebSphere Application Server, see the documentation for
WebSphere Application Server.

Configuring high availability

High availability is supported by the default server, and the CICS request exit.

Configuring a CICS request exit

The cicsrequestexit parameter specifies a class that performs dynamic CICS
server selection for ECI requests and ESI requests.

You must specify a fully qualified class that implements the
com.ibm.ctg.ha.CICSRequestExit interface and must be on the class path of the
Gateway daemon. The Gateway daemon supports a single exit at any one time.

For more information see “CICS request exit” on page 189.

Configuring monitoring and statistics

Configuring the request monitoring exits for a Gateway
daemon

The requestexits parameter specifies a list of one or more classes that perform
request monitoring.

Use the configuration tool to set the request monitors to use, or set the
requestexits parameter to a valid class name for a request monitor class:

requestexits=fully_qualified_class_name

For example:
requestexits=com.ibm.ctg.samples.requestexit.MyMonitor

You can define multiple exits by separating them with a comma:

For example:
requestexits=com.ibm.ctg.samples.requestexit.1stMonitor,com.ibm.ctg.samples.requestexit.2ndMonitor

102 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Configuring the request monitoring exits for Gateway classes
The configuration for the Gateway classes uses a JVM property, or if using a
resource adapter, a custom property.

The JVM property requestExits supports monitoring of base classes without
modifying user application code. The resource adapter custom property
RequestExits can be configured to allow individual definition of exits for
connection factories. The precedents for the two properties are defined in the
following table:

Table 4. JVM and resource adapter custom property precedents

JVM property set Custom property set Exits loaded from:

No No None

Yes No JVM property

No Yes Custom property

Yes Yes Custom property

Set the JVM property to enable a request monitoring exit:
-DrequestExits=fully_qualified_class_name

For example:
java -DrequestExits=com.ibm.ctg.samples.requestexit.BasicMonitor com.ibm.ctg.samples.eci.EciB1

You can define multiple exits by separating them with a comma:
-DrequestExits=first_exit_name,second_exit_name

For example:
java -DrequestExits=com.ibm.ctg.samples.requestexit.BasicMonitor,com.ibm.ctg.samples.requestexit.ThreadedMonitor
com.ibm.ctg.samples.eci.EciB1

Related information:
“ECI resource adapter deployment parameters” on page 37
The available deployment parameters for the ECI resource adapters and their effect
on the final deployed resource adapter. The tools used to configure these
parameters are server-specific. The default value is shown where appropriate.
Parameters are optional unless indicated as required.

Configuring statistics settings
Use the CICS Transaction Gateway configuration tool to configure the Gateway
daemon monitoring resources, or edit the GATEWAY section of the configuration
file directly.

Statistics API protocol settings

Use the CICS Transaction Gateway configuration tool to configure the statistics API
protocol settings, or edit the statistics API protocol parameters in the GATEWAY
section of the configuration file directly.

Bind address:

Chapter 5. Configuring 103

|
|
|

The bind parameter sets the IP address or name of the host to which the protocol
handler is to be bound.

If you set a host name in the Bind address field of the Configuration tool, it is
resolved on startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

The IP address can be in IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Port:

The port parameter specifies the number of the TCP/IP port on which the protocol
handler listens for incoming client requests.

Set the value in the range 1 through 65,535 in the Port field of the Configuration
tool.

The default port for TCP/IP is 2006, for SSL the default is 8050, and for the
statistics API protocol the default is 2980.

You can override the port setting as follows:
v For TCP/IP use the ctgstart -port=number command
v For SSL use the ctgstart -sslport=number command
v For the statistics API use the ctgstart -statsport=number command

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Connection timeout (ms):

The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

Set the value in the range 0 through 65,536 in the Connection timeout (ms) field of
the Configuration tool, to specify the value in milliseconds. The default is 2000.

When a new connection has been accepted, the protocol handler waits for a
connection manager thread to become available. If a connection manager thread
does not become available within this time, the connection is refused. If this value
is set to zero, a connection is refused if a connection manager thread is not
immediately available.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Maximum number of connections:

104 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The maxconn parameter specifies the maximum number of applications that can be
connected at the same time to perform statistic queries.

Set the value in the Maximum number of connections field of the Configuration
tool, to the maximum number of connections. The default is 5.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Statistics Interval (HHMMSS)
The statint parameter specifies the recording interval for system statistics. The
default is three hours. The interval must be at least one minute and cannot be
more than 24 hours.

Set the value between 1 minute and 24 hours, including seconds granularity. The
Statistics Interval (HHMMSS) field of the Configuration tool, field requires the
interval to be specified in the format HHMMSS, and within the range 000100 to
240000. The hours (HH) part of the value must be specified in the range 0 to 24,
and the minutes (MM) and seconds (SS) part of the value must be specified in the
range 00 to 59. The default value is 3 hours (030000). If the value set is less than
the minimum it is changed to the minimum, or if the value set is greater than the
maximum, it is changed to the maximum. If the value set does not have the correct
format, it is changed to the default value.

Set the statint parameter in one of these ways:
v Use the Configuration Tool.
v Use the Gateway daemon settings, see Gateway daemon settings.
v Edit the Gateway settings.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Statistics End of Day time (HHMMSS)
The stateod parameter specifies the end-of-day time. The End of Day time is used
as a point of reference for the clock. Intervals are aligned to this rather than to the
CICS Transaction Gateway startup time. This also determines the point at which
statistics are reset and potentially recorded, and occurs at least once every 24
hours.

Set the value between 000000 and 235959, in the Statistics End of Day time
(HHMMSS) field of the Configuration tool, to define the CICS Transaction
Gateway End of Day time, in local time. The field requires the interval to be
specified in the format HHMMSS and within the range between midnight (000000)
and 1 second before midnight (235959). The hours (HH) part of the value must be
specified in the range 0 to 23, and the minutes (MM) and seconds (SS) part of the
value must be specified in the range 00 to 59. The default is midnight (000000). If
the value set is less than the minimum it is changed to the minimum, or if the
value set is greater than the maximum, it is changed to the maximum. If the value
set does not have the correct format, it is changed to the default value.

Set the stateod parameter in one of these ways:
v Use the Configuration Tool.
v Use the Gateway daemon settings; see Gateway daemon settings.

Chapter 5. Configuring 105

v Edit the Gateway settings in the configuration file; see .

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Configuring the terminal emulator
Perform these tasks to configure the terminal emulator for CICS Transaction
Gateway.

Keyboard mapping for cicsterm
The keyboard mapping for terminal emulator operation is defined in a keyboard
mapping file.

A sample key mapping file named cicskeysamp.ini is supplied in the
<install_path>/samples/configuration subdirectory. It is recommended that you
create your own customized mapping file.

The keyboard mapping file can be specified by:
v Using the -k option on the cicsterm command.
v Setting the CICSKEY environment variable. For example:

export CICSKEY=/var/cicscli/mykeys.ini

If you do not specify otherwise, a file name of cicskey.ini in the <install_path>/bin
subdirectory is assumed.

You can change the keyboard mapping file at any time, although changes do not
take effect until the next time the terminal emulator is started.

Keyboard mapping file syntax
This section describes the syntax of the keyboard mapping file.

A statement must be provided for each key that is needed, because there are no
default assignments (except for the alphabetic and numeric keys). There is no case
sensitivity. Each binding must be on a separate line, and of the following form:
BIND 3270function [modifier+] key [;comment|#comment]

For example, to map the 3270 function EraseEof to the Ctrl+Delete keys pressed
together the binding is as follows:

The keyboard mapping file
In the mapping file, 3270function can be any one of the following values.

bind EraseEof Ctrl+Delete ;erase to end of field

106 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The value of ignore is provided to permit unwanted control keys on the keyboard
to be ignored. (Unexpected glyphs are not generated.)

The Modifier can be either:

The Key can be any one of the keys shown in Table 5, (but some combinations of
modifier+key are not supported — see “Key combinations”):

Table 5. Keys that you can map

Group Keys

Escape key Escape

Function keys f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

Numeric keys 0 1 2 3 4 5 6 7 8 9

Alphabetic keys
a b c d e f g h i j k l m
n o p q r s t u v w x y z

Tab key Tab

Movement keys
newline backspace
insert home pageup
delete end pagedown
up-left-down-right

Keypad keys
keypad/ keypad* keypad-
keypad7 keypad8 keypad9
keypad4 keypad5 keypad6 keypad+
keypad1 keypad2 keypad3
keypad0 keypad. keypadenter

Note: For the Client daemon, the Ctrl/Act, Print Screen, Scroll Lock and Pause
keys are not available. The 3270 function Clear is assigned to the Esc key by
default.

Key combinations:

The following combinations of modifier and key can be mapped.

backspace pa1 pf1 pf13
backtab pa2 pf2 pf14
clear pa3 pf3 pf15
cursordown pf4 pf16
cursorleft printscreen pf5 pf17
cursorright reset pf6 pf18
cursorselect tab pf7 pf19
cursorup pf8 pf20
delete ignore pf9 pf21
enter pf10 pf22
eraseeof pf11 pf23
eraseinput pf12 pf24
home
insert
newline

Ctrl
Shift

Chapter 5. Configuring 107

No modifier
All keys available for mapping.

Ctrl modifier
Only function keys, movement keys, alphabetic keys, tab key, and keypad
keys can be mapped.

Shift modifier
Only function keys, numeric keys, tab key, and alphabetic keys can be
mapped.

Customizing the screen colors for cicsterm
Screen colors and attributes are defined in a color mapping file.

A sample color mapping file named cicscolsamp.ini is supplied in the
<install_path>/samples/configuration subdirectory. It is recommended that you
create your own customized mapping file.

The color mapping file can be identified by:
v Using the -c option on the cicsterm command. For more information see

“cicsterm command reference” on page 217.
v Setting the CICSCOL environment variable: For example:

export CICSCOL=/var/cicscli/mycols.ini

If you do not specify otherwise, a file name of cicscol.ini in the <install_path>/bin
subdirectory is assumed.

A color mapping file provides alternative representations in hardware
environments where it is not possible exactly to replicate 3270 screen attributes, for
example, blinking or underscore. The color mapping file therefore defines how
3270 screen attributes are emulated on the client hardware. If the color mapping
file specifies a mapping for an attribute, this mapping is used even if the hardware
upon which CICS Transaction Gateway is running actually supports the screen
attribute.

The color mapping file defines the default colors to use when there is no color
information contained within the 3270 data stream, as well as allowing the
remapping of colors. By default, fields in data streams that do not contain any
extended attributes are displayed in four colors based on the field intensity and
protection attributes. These four colors are defined by the following bind settings
in the color mapping file:

normal_unprotected

intensified_unprotected

normal_protected

intensified_protected

By default, fields in data streams that contain extended attributes are displayed in
only two colors based on the field intensity attribute. These two colors are defined
by the default and default_highlight bind settings in the color mapping file. You
can use the cicsterm -e option to specify that the four default colors are used even
when the 3270 data stream contains extended attributes.

If an application requests a 3270 field to be displayed with, for example,
underscore, and no emulation setting has been specified, and the hardware cannot
display underscore, the field is displayed without any highlighting at all.

108 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

You can change the color mapping file at any time, although changes do not take
effect until the next time the terminal emulator is started.

Color mapping syntax
The syntax of the color mapping file is as follows.

Each binding must be on a separate line, in this form:
BIND 3270attrib fg_color[/bg_color] [;comment|#comment]

Specifying a space between fg_color and /bg_color causes bg_color to be ignored.

The file is not case-sensitive.

The color mapping file
In the color mapping file, 3270attrib can be any one of the following values.

Each of fg_color and bg_color (foreground color and background color) can be any
one of the following:

If bg_color is omitted, a default value of black is taken.

Configuring trace settings
Use the CICS Transaction Gateway configuration tool to configure the product
settings, or edit the trace attributes in the GATEWAY or CLIENT section of the
configuration file directly.

To configure the trace settings, select the Trace Settings option from the Tools
menu.

You must restart the Client daemon and the Gateway daemon for any changes to
the configuration file to take effect.

normal_protected intensified_protected
normal_unprotected intensified_unprotected

default blinking_default underscored_default
blue blinking_blue underscored_blue
green blinking_green underscored_green
cyan blinking_cyan underscored_cyan
red blinking_red underscored_red
magenta blinking_magenta underscored_magenta
white blinking_white underscored_white
yellow blinking_yellow underscored_yellow

default_highlight

operator_information_area

black light_gray
blue light_blue
brown yellow
cyan light_cyan
green light_green
magenta light_magenta
red light_red
gray white

Chapter 5. Configuring 109

Gateway trace file
The tfile parameter is the path name of the trace file where Gateway trace
messages are written if tracing is enabled.

By default trace output is written to stderr. To specify a file destination, set the
Gateway trace file field of the Configuration tool. If you specify a file name
without a path, the file is created in the <install_path>/bin directory.

No trace is written if the CICS Transaction Gateway does not have permission to
write to the file you specify. The trace file is overwritten, not appended to, each
time the CICS Transaction Gateway starts.

You can also specify a trace file using the tfile option on the ctgstart command.

Performance: Turning on the Gateway trace has a significant impact on
performance. It is not recommended that Gateway trace is enabled in a production
environment.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Gateway trace file wrap size (KB)
The tfilesize parameter specifies the size in kilobytes to which the Gateway trace
file grows. When the file reaches this size, subsequent trace entries continue to be
written from the beginning of the file.

Set the value in the range 0 through 1,000,000 in the Gateway trace file wrap size
(KB) field of the Configuration tool.
v The default value 0 disables wrapping.
v If you set a value in the range 1 through 39, the CICS Transaction Gateway uses

a value of 40 instead, to guarantee an adequate minimum trace size.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Data byte offset in trace data
The dumpoffset parameter specifies the byte offset in data to start trace output.

The default value of the dumpoffset parameter is zero.

This parameter is in the GATEWAY section of the configuration file. For more
information about the other parameters see “GATEWAY section of the
configuration file” on page 115

Maximum size of trace data blocks
The truncationsize parameter specifies the maximum size of trace data blocks in
bytes.

The default value of the truncationsize parameter is 80.

110 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Exception stack tracing
The stack parameter enables exception stack tracing.

Set the stack parameter to on to enable exception stack tracing.

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Client trace file
The tracefile parameter specifies the path name for the trace file where client
trace messages will be written, if tracing is enabled.

You do not have to enter an extension for the file name in the Client trace file
field of the Configuration tool, because a file of type .BIN is always generated (or
.WRP if the trace file wraps).

If no path is specified, the trace is written as follows:

/var/cicscli/cicscli.bin

To minimize any performance impact, the trace file is written out in binary format.
To read it, convert the file to ASCII using the cicsftrc command.

For more information about tracing, see “Tracing” on page 245.

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Client trace file wrap size (KB)
The maxwrapsize parameter determines how much storage (KB) is reserved for
trace data.

The value is a number in the range 0 - 2,000,000. The default is 0. If you do not
specify a value greater than 0, wrapping is disabled. For any value you specify
between 1 and 99, 100 KB of storage is reserved by default.
v If you intend using memory mapped tracing you must specify a value greater

than 0, otherwise memory mapped tracing is disabled and disk tracing is used
instead.

v If you specify a value that is too low and the reserved storage overflows during
tracing, subsequent trace records are written to the top of the trace file and
overwrite the existing records.

You specify a value for maxwrapsize by editing the “CLIENT section of the
configuration file” on page 118.

If you are using the Gateway daemon configuration tool, you specify a value for
maxwrapsize in the Client trace file wrap size (KB) field.

Chapter 5. Configuring 111

Client trace components
The trace parameter specifies the Client components to trace when tracing is
enabled.

The possible entries for a comma-separated list of components to trace are as
follows:

Configuration tool fields ctg.ini file trace parameters Description

ALL Trace everything

Client API level 1 API Client API layer level 1

Client API level 2 API.2 Client API layer level 1 and
2

CICSCLI command line CLI cicscli command interface

CICSTERM and CICSPRINT EMU cicsterm and cicsprnt
emulators

CPP classes CPP C++ class libraries

Client daemon CCL Client daemon

Transport layer level 1 TRN.1 Interprocess communication.
The TRN.1 component
traces the internal
interprocess transport
between Client processes.
Use it if entries in the Client
log refer to functions such
as FaarqStart, FaarqStop.

Transport layer level 2 TRN.2 Interprocess communication.
The TRN.2 component
traces the internal
interprocess transport
between Client processes.
Use it if entries in the Client
log refer to functions such
as FaarqGetMsg,
FaarqPutMsg. TRN.2 is the
most verbose tracing
component.

Protocol drivers level 1 DRV Protocol drivers, for
example, TCP. This traces
data sent and received and
provides supplementary
information about failures.

Protocol drivers level 2 DRV.2 This traces internal flows
through the protocol drivers
and interactions with other
software components. This
enhanced tracking level
currently has the same
functionality as level 1.

You can also use the -m parameter of the cicscli command to specify trace
components (excluding the Gateway daemon). This overrides any settings in the
configuration file. For more information about the cicscli command, see
“Administering the Client daemon” on page 204.

112 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|||

|||
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|

You can also use the check boxes in the configuration tool to set trace components.

If you enable tracing without specifying the components in either the cicscli
command or in ctg.ini, a default set of components is traced:
v Protocol drivers
v The Client daemon
v Client API level 1
v Transport layer level 1

This parameter is in the CLIENT section of the configuration file, see “CLIENT
section of the configuration file” on page 118 for more information about other
parameters in this section.

Starting JNI trace
Use one of the methods described here to enable JNI trace.

Use one of the following methods to enable JNI trace:
v Set the following environment variables before you start CICS Transaction

Gateway:

CTG_JNI_TRACE
Use this environment variable to set the name of the JNI trace file. This
environment variable only defines the name of the JNI trace file; it does not
enable trace. JNI trace is output as plain text, and there is no requirement to
use a particular extension for the file name.

CTG_JNI_TRACE_ON
Set this environment variable to YES (case-insensitive) to enable JNI trace
when CICS Transaction Gateway is started.

v While CICS Transaction Gateway is running, use the system administration
functions. See “Gateway daemon administration” on page 197 for details of how
to enable JNI trace dynamically.

If the previous methods are not suitable, use one of the following methods:
v For Java client applications running in local mode, use Java to launch your

application and set the system property gateway.T.setJNITFile, as shown in the
following example:
java -Dgateway.T.setJNITFile=filename application

where
– filename is the name of the file to which trace output is to be sent
– application is the application to launch

v When you start CICS Transaction Gateway, issue this command:
ctgstart -j-Dgateway.T.setJNITFile=filename

where filename is the name of the file to which trace output is to be sent. If you
do not specify a full path to the file, the location is <install_path>/.

You cannot enable JNI trace through the Configuration Tool.

Configuration parameter reference
The configuration file contains the values used by CICS Transaction Gateway
during initialization.

Chapter 5. Configuring 113

|

The configuration file
The configuration file contains the values used by CICS Transaction Gateway
during initialization.

The configuration file has the default filename ctg.ini. .

To create a new configuration file, either use the Configuration Tool, or edit a copy
of the sample configuration file supplied in <install_path>/samples/
configuration\ctgsamp.ini and put it in the <install_path>/bi directory.

For more information about the Configuration Tool see “Using the Configuration
Tool” on page 44.

The configuration file is a text file that contains a number of sections. Each section
begins with SECTION as the first entry on a line, and ends with ENDSECTION.
You must define at least one section otherwise CICS Transaction Gateway does not
start. The section is typically either a SERVER section or an IPICSERVER section.
Any parameters that you do not explicitly define in the configuration file take
default values; information about the default values is provided in the individual
parameter descriptions.

To denote comments in the configuration file use the hash (#) character. You must
put the hash (#) character at the start of the line, or put a space or tab character
before it. Some names, for example modename, can begin with a hash (#) character.

There is no restriction on line length in the configuration file.

PRODUCT section of the configuration file
The PRODUCT section of the configuration file defines the applid, applidqualifier,
and defaultserver for the Gateway daemon.

Table 6. SECTION PRODUCT

Entry in the configuration file Description

applid “Gateway APPLID” on page 45

applidqualifier “Gateway APPLID qualifier” on page 45

defaultserver “Default server” on page 48

The following template shows the configuration file definition:
SECTION PRODUCT

APPLID = cccccccc
APPLIDQUALIFIER = cccccccc
DEFAULTSERVER=CICSSRV

ENDSECTION

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see “Gateway APPLID qualifier” on page 45.

Use of the backslash (\) character to split lines in the PRODUCT section of the
configuration file is not supported.

114 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

GATEWAY section of the configuration file
This table provides the names and descriptions for all parameters that can be set in
the GATEWAY section of the configuration file.

There must be one GATEWAY section in the configuration file. Entries correspond
to fields in the Gateway daemon settings panel of the Configuration Tool:

Table 7. SECTION GATEWAY

Entry in the
configuration file

Description

adminport “Port for local administration” on page 74.

cicslogging “Log CICS messages” on page 76

closetimeout “Timeout for in-progress requests to complete” on page 73.

connectionlogging “Log Client connections and disconnections” on page 76.

DNSNames “Display TCP/IP hostnames” on page 76.

dumpoffset “Data byte offset in trace data” on page 110.

ecigenericreplies “ECI generic replies” on page 72. Enabling generic replies is not supported.

initconnect “Initial number of connection manager threads” on page 70.

initworker “Initial number of worker threads” on page 71.

log@error.dest “Log destinations” on page 74.

log@error.parameters “Log file names” on page 74 and “Maximum file sizes” on page 75, and “Maximum
number of files” on page 75.

log@info.dest “Log destinations” on page 74.

log@info.parameters “Log file names” on page 74, “Maximum file sizes” on page 75 and “Maximum number of
files” on page 75.

maxconnect “Maximum number of connection manager threads” on page 70.

maxworker “Maximum number of worker threads” on page 71.

msgqualvalidation “Validate message qualifiers” on page 72. Disabling validation is not supported.

noinput “Enable reading input from console” on page 71.

notime “Timing information” on page 77.

quiet .

requestexits “Configuring the request monitoring exits for a Gateway daemon” on page 102.

stack “Exception stack tracing” on page 111.

stateod “Statistics End of Day time (HHMMSS)” on page 105.

statint “Statistics Interval (HHMMSS)” on page 105.

tfile “Gateway trace file” on page 110.

tfilesize “Gateway trace file wrap size (KB)” on page 110.

truncationsize “Maximum size of trace data blocks” on page 110.

uowvalidation “Validate Units of Work” on page 72. Disabling validation is not supported.

workertimeout “Worker thread availability timeout” on page 73.

If you use the Configuration Tool, do not split long lines. If you do not intend to
use the Configuration Tool, you can split long lines by placing the backslash
character (\) after a semicolon, as shown:
protocol@tcp.parameters=connecttimeout=2000;\

idletimeout=600000;

Chapter 5. Configuring 115

||

|
|
|

|
|

Two lines are present in the configuration file for each protocol that is enabled.
Protocol settings take this form:
v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

TCP protocol parameters

To enable the TCP protocol, add the name of the TCP protocol handler to the
ctg.ini configuration file.

Insert this line:
protocol@tcp.handler=com.ibm.ctg.server.TCPHandler

Follow it with this:
protocol@tcp.parameters=bind=host.domain.org;connecttimeout=3;dropworking;\
idletimeout=4;pingfrequency=5;port=1;requiresecurity;\
solinger=6;

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. If you do not intend to use the

Configuration Tool, you can split long lines by placing the backslash character \
at the end of a line, to indicate that the following line is a continuation.

v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Entries correspond to fields in the TCP settings panel:

Table 8. TCP protocol

Entry in the ctg.ini file Description

bind “Bind address” on page 77

connecttimeout “Connection timeout (ms)” on page 78

dropworking “Drop working connections” on page 79

idletimeout “Idle timeout (ms)” on page 78

pingfrequency “Ping frequency interval (ms)” on page 78

port “Port” on page 77

requiresecurity “Require Java Clients to use security classes” on page 79

solinger “SO_LINGER setting” on page 79

SSL protocol parameters

To enable the SSL protocol, add the name of the SSL protocol handler to the ctg.ini
configuration file.

Insert this line:
protocol@ssl.handler=com.ibm.ctg.server.SslHandler

Follow it with this:

116 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|

|
|
|

|
|

protocol@ssl.parameters=clientauth=on;connecttimeout=9;\
dropworking;idletimeout=10;keyring=Key ring or Keystore name;\
keyringpw=a2V5cmluZyBvciBLZXlzdG9yZSBwYXNzd29yZA==;keyringpwscrambled=on;\
pingfrequency=11;port=7;requiresecurity;solinger=12;\
ciphersuites=SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA,SSL_DH_anon_WITH_3DES_EDE_CBC_SHA;

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. If you do not intend to use the

Configuration Tool, you can split long lines by placing the backslash character \
after a semicolon.

v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Entries correspond to fields in the SSL settings panel:

Table 9. SSL protocol

Entry in the configuration file Description

bind “Bind address” on page 77

ciphersuites “Use only these ciphers” on page 83

clientauth “Use client authentication” on page 82

connecttimeout “Connection timeout (ms)” on page 78

dropworking “Drop working connections” on page 79.

idletimeout “Idle timeout (ms)” on page 78

keyring “Key ring file” on page 82

keyringpw “Key ring password” on page 83

keyringpwscrambled “Key ring password” on page 83.

pingfrequency “Ping frequency interval (ms)” on page 78

port “Port” on page 77

requiresecurity “Require Java Clients to use security classes” on page 79

solinger “SO_LINGER setting” on page 79

Statistics API protocol parameters
To enable the statistics API protocol, include a protocol handler definition in the
GATEWAY section of the configuration file.

The statsport parameter in the GATEWAY section of the configuration file is
deprecated. If you specify the statsport parameter in addition to specifying a
statistics API protocol handler definition, the statistics API protocol handler
definition takes precedence. You can use the parameter override -statsport to
override the port number for the statistics API listener port.

To enable the protocol, include a protocol handler definition in the GATEWAY
section of the configuration file, for example:

protocol@statsapi.handler=com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters=connecttimeout=2000;port=2980;bind=;maxconn=5;

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. If you do not intend to use the

Configuration Tool, you can split long lines by placing the backslash character \
after a semicolon.

Chapter 5. Configuring 117

v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Table 10. Statistics API protocol parameters

Entry in the ctg.ini file Description

bind “Bind address” on page 77

connecttimeout “Connection timeout (ms)” on page 78

port “Port” on page 77

maxconn “Maximum number of connections” on page 74

CLIENT section of the configuration file
The CLIENT section of the configuration file defines the Client daemon settings.

There must be one CLIENT section of the configuration file. Entries correspond to
fields in the Client Configuration and Trace settings panels of the Configuration
Tool. The section name also stores the value entered in the Application ID field of
the Configuration Tool.

Table 11. SECTION CLIENT

Entry in the configuration file Description

SECTION CLIENT The Application ID entry is deprecated, it has been
replaced by the “Gateway APPLID” on page 45
parameter which now takes precedence. Existing
configuration files with the Application ID parameter set
are still supported for compatibility with earlier versions.
Note: SECTION CLIENT must be set to * when creating
a new configuration file.

ccsid CCSID

logfile “Error and warning log file” on page 88

logfileinfo “Information log file” on page 88

maxbuffersize “Maximum buffer size” on page 84

maxrequests “Maximum requests” on page 85

maxservers “Maximum servers” on page 85

maxwrapsize “Client trace file wrap size (KB)” on page 111

printcommand “Print command” on page 86

printfile “Print file” on page 86

srvretryinterval “Server retry interval (Client daemon connections to
CICS)” on page 87

terminalexit “Terminal exit” on page 85

terminstlogging “Log terminal installations and deletions” on page 88

trace “Client trace components” on page 112

tracefile “Client trace file” on page 111

Use of the backslash (\) character to split lines in the CLIENT section of the
configuration file is not supported.

118 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

IPICSERVER section of the configuration file
The IPICSERVER section of the configuration file defines the CICS server to which
the Gateway daemon can connect over IPIC.

The section name also stores the value entered in the Server name field of the
Configuration Tool.

Table 12. SECTION IPICSERVER

Entry in the configuration file Description

SECTION IPICSERVER=<Server name> “Server name” on page 52

CICSAPPLID “Target CICS APPLID” on page 54

CICSAPPLIDQUALIFIER “Target CICS APPLID” on page 54

CONNECTTIMEOUT “Connection timeout” on page 54

DESCRIPTION “Description” on page 52

HOSTNAME “Host name or IP address” on page 53

PORT “Port” on page 53

SENDSESSIONS “IPIC send sessions” on page 53

SRVIDLETIMEOUT “Server idle timeout” on page 55

SRVRETRYINTERVAL “Server retry interval” on page 54

TCPKEEPALIVE “Send TCP KeepAlive packets” on page 55

The following template shows the configuration file definition for an IPIC server:
SECTION IPICSERVER=PayrollA

DESCRIPTION=Payroll
HOSTNAME=cicssrv2.com
PORT=99
TCPKEEPALIVE=YES
SRVIDLETIMEOUT=100
SRVRETRYINTERVAL=60
CONNECTTIMEOUT=250
SENDSESSIONS=100
CICSAPPLID=CTGTEST1
CICSAPPLIDQUALIFIER=MYNETWRK

ENDSECTION

Use of the backslash (\) character to split lines in the IPICSERVER section of the
configuration file is not supported.

SERVER section of the configuration file
The SERVER section of the configuration file defines a server to which the Client
daemon can connect.

There might be more than one SERVER section. The first server listed is the
default. The section name also stores the value entered in the Server name field of
the Configuration Tool.

Table 13. SECTION SERVER

Entry in the configuration file Description

SECTION SERVER “Server name” on page 57

DESCRIPTION “Description” on page 52

INITIALTRANSID “Initial transaction” on page 58

Chapter 5. Configuring 119

||

|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 13. SECTION SERVER (continued)

Entry in the configuration file Description

MODELTERM “Model terminal definition” on page 58

PROTOCOL “DRIVER section of the configuration file.”

UPPERCASESECURITY “Use uppercase security” on page 61.

Other entries in this section depend upon the protocol selected.

Table 14. SECTION SERVER: additional entries for the TCP protocol

Entry in the configuration file Description

CONNECTTIMEOUT “Connection timeout” on page 59

NETNAME “Host name or IP address” on page 59

PORT “Port” on page 59

SRVIDLETIMEOUT “Server idle timeout” on page 60

TCPKEEPALIVE “Send TCP/IP KeepAlive packets” on page 60.

Table 15. SECTION SERVER: additional entries for the SNA protocol

Entry in the configuration file Description

LOCALLUNAME “Local LU name” on page 68

MODENAME “Mode name” on page 68

NETNAME “Partner LU name” on page 68

PARTNERLUALIAS “Use Partner LU alias name” on page 68.

SRVIDLETIMEOUT “Server idle timeout” on page 60

Use of the backslash (\) character to split lines in the SERVER section of the
configuration file is not supported.

DRIVER section of the configuration file
The DRIVER section of the configuration file determines which communications
protocol DLL is used for communicating with a CICS server. The DRIVER section
of the configuration file does not have an equivalent configuration panel in the
Configuration Tool (the tool automatically selects the correct protocol drivers).

One DRIVER section must exist in the configuration file for each network protocol
used with your CICS servers. For more information see “SERVER section of the
configuration file” on page 119.

Here is an example of the DRIVER section of the configuration file:
SECTION DRIVER=<protocol>

DRIVERNAME=<library>
ENDSECTION

The following table shows valid values for protocol and the corresponding DLL:

Table 16. SECTION DRIVER

Valid entries for <protocol> Corresponding DLL

SNA CCLIBMSN

120 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

Table 16. SECTION DRIVER (continued)

Valid entries for <protocol> Corresponding DLL

TCPIP CCLIBMIP

The network protocol must correspond to an entry in the DRIVER section of the
configuration file.

Use of the backslash (\) character to split lines in the DRIVER section of the
configuration file is not supported.

Summary of environment variables
The table lists the environment variables for controlling how CICS Transaction
Gateway functions.

Table 17. Environment variables

Environment variable Description

CICSCLI Environment variable reference

CTGDCONF Environment variable reference

CTG_JAVA Environment variable reference

CTG_JNI_TRACE “JNI tracing” on page 252

CTG_JNI_TRACE_ON “JNI tracing” on page 252

LD_PRELOAD Configuring IBM Communications Server for Linux

Testing your configuration
Run a test to check that CICS Transaction Gateway has been configured correctly.
v Run the JCA resource adapter installation verification test to verify whether the

CICS Transaction Gateway ECI resource adapters can be used with your J2EE 1.4
or JEE 5, or later, application server.

v Run the sample programs supplied with CICS Transaction Gateway.

JCA resource adapter installation verification test (IVT)

The JCA resource adapter installation verification test (IVT) verifies whether an ECI
resource adapter can be used with a particular application server.

The IVT can be used to verify the use of an ECI resource adapter with an
application server as follows:
v The CICS Transaction Gateway V8.1 ECI resource adapter (cicseci.rar) with a JEE

6 certified application server
v Resource adapters supplied in Supportpac CC03 with a J2EE 1.4 certified

application server or JEE 5 certified application server

The IVT runs as a servlet within a JEE application server and calls program EC01
on the CICS server. The IVT sends two ECI requests to CICS:
1. A non-transactional request, which is not coordinated by the transaction

manager.
2. A transactional request, which uses the global transaction support provided by

the application server.

Chapter 5. Configuring 121

|
|

|
|

|
|

IBM has successfully tested the ECI resource adapters on those application servers
listed on the IBM support page. For other JEE application servers, if you
experience problems after you have successfully run this IVT, you can report
problems to IBM for investigation. If the IVT does not run successfully, problems
you encounter are likely to be caused by incorrect deployment of the ECI resource
adapter. Investigate the problem using your JEE application server documentation
and support organization.

CICS Transaction Gateway Desktop Edition: Support is not provided for the JCA
resource adapters.

Prerequisites for running the JCA IVT
Before running the JCA resource adapter installation verification test (IVT) ensure
that the JEE application server is compatible, and that the necessary components
have been installed and configured correctly. To complete these tasks, you should
be able to create deployment plans for the chosen JEE application server, configure
CICS Transaction Gateway, and build and install CICS applications.

JEE application server compatibility

The JEE application server you intend using must have passed the J2EE 1.4 or JEE
5 (or later) compatibility test suite. For more information see:
http://java.sun.com/javaee/overview/compatibility.jsp

Prerequisites

Complete the following tasks:
v Compile and install the EC01 sample CICS COBOL program on the CICS server.
v Ensure that the CICS Transaction Gateway resource adapter archive RAR file

(cicseci.rar) is available.
v Ensure that the JCA IVT enterprise archive (EAR) file is available and has the

filename ECIIVT.ear.
v Configure a CICS server connection for CICS Transaction Gateway.

The source for EC01 is shipped with CICS Transaction Gateway as a COBOL file in
<install_path>/samples/server/ec01.ccp. Both the RAR files and the EAR files are
shipped with the CICS Transaction Gateway in the <install_path>/deployable
directory.

To ensure you have correctly configured the CICS Transaction Gateway, follow the
instructions in the CICS Transaction Gateway for Multiplatforms: Application
Programming GuideCICS Transaction Gateway for z/OS: Application Programming Guide
to run the EciB1 sample program. The sample program can be found in
<install_path>/samples.

Deploying and configuring the JCA IVT
To complete this task you install the resource adapter archive file (.rar), define a
connection factory, and set the connection factory properties.
1. Install the ECI resource adapter (cicseci.rar) into your JEE application server. If

you want to enable XA support, this can be done by setting the custom
property xasupport on the connection factory.

2. Define a connection factory that has the JNDI name set to ECI.
3. Define the connection factory custom properties:

122 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

Connection URL
The URL of the CICS Transaction Gateway with which the resource
adapter will communicate. In local mode, set the Connection URL to
“local:”. In remote mode, set the Connection URL to
“protocol://address”, where protocol is tcp or ssl.

Port number
In remote mode this is the TCP/IP or SSL port on which the Gateway
daemon is configured to listen. Set port number to the port number
defined in the configuration file (ctg.ini).

This property is not required in local mode.

Server name
The name of the CICS server to which CICS Transaction Gateway will
connect.
v For IPIC in local mode, set the Server Name to “protocol://

hostname:port” where protocol is tcp or ssl.
v For all other configurations, set the server name to the server defined

in the configuration file (ctg.ini).
4. Install the application ECIIVT.ear with a target resource JNDI name of

ECIIVTBean1. The ECIIVT.ear is located within the <install_path>/deployable
directory.

Running the JCA IVT
To run the JCA IVT.
1. Use a Web browser to display the first IVT Web page index.jsp. For example,

on WebSphere point your browser at: http://app_server_host:port/ECIIVTWeb/
index.jsp

2. Click Run IVT.

If the test is successful, it returns a Web page that displays the date and time on
the CICS server and a success confirmation message. If the test fails, it returns a
Web page with a failure message containing details of the failure including a stack
trace option. Capture this data for possible use by the application server support
team.

Using the sample programs to check your configuration
After you have configured your system, you can use the sample programs to check
that it is configured correctly.
1. Start the CICS Transaction Gateway.
2. Run one of the sample programs supplied. See the CICS Transaction Gateway for

Multiplatforms: Application Programming GuideCICS Transaction Gateway for z/OS:
Application Programming Guide for details, including compilation instructions
and information on compiler considerations.

Chapter 5. Configuring 123

124 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 6. Scenarios

Follow the steps in these scenarios to learn how to perform tasks such as
configuring connections to CICS, or configuring SSL security. As you work through
each scenario you use real values provided in a reference table. When you have
completed the configuration part of a scenario, you can then test the scenario by
sending a simple ECI request to a CICS server.

Sample files
Sample files containing CICS Transaction Gateway configuration parameter values
and environment variables are provided for the scenarios. The sample files are
installed as part of the product package, and can be accessed from the scenarios
through download links.

Each sample file contains values specific to that scenario; The sample files that
contain configuration parameters have the common file name ctg.ini. The sample
files that contain environment variables have unique filenames such as CTGS05NV.
Environment variables are not required for all scenarios.

To open a sample file and view the contents:
1. Open the introductory topic for the scenario, for example “Configuring a secure

autoinstalled IPIC connection (SC01).”
2. Scroll down to the sample file link (the link is located immediately below the

table of values).
3. Double-click the link.

To download and save a sample file onto your local machine:
1. Right-click the sample file link and select Save Target As...
2. Specify the location where you want to save the sample file.

The samples for UNIX and Windows are installed in the following location:
<install_path>/samples/scenarios/scnn

Where nn is the scenario number, for example:
<install_path>/samples/scenarios/sc01

Configuring a secure autoinstalled IPIC connection (SC01)
You can configure secure autoinstalled IPIC connections using a template. Using a
template allows you to change the default connection settings for IPIC
autoinstalled connections. To implement an IPCONN template so that IPIC
connections are autoinstalled with link security and user security, follow the
step-by-step instructions in this scenario.

To configure secure autoinstalled IPIC connections, you must modify the CICS TS
sample user-replaceable module (URM) to point to an IPCONN template.

This scenario uses CICS TG connecting to CICS TS V3.2 over IPIC in remote mode.
It uses the default name ctg.ini for the configuration file.

© Copyright IBM Corp. 1998, 2011 125

Table 18. Values used in this scenario

Component Parameter Where set Example value
Matching
values

CICS TG Server name IPICSERVER section
of ctg.ini

CICSA

CICS TG Hostname IPICSERVER section
of ctg.ini

cicssrv2.company.com

CICS TG Port �1� IPICSERVER section
of ctg.ini

50889 This value
must be
the same
as �3�

CICS TS IPCONN
template

In DFHISCIP
(autoinstall user
program)

SECTEMPL

CICS TS TCPIPService
�2�

TCPIPService
definition

Srv50889 This value
must be
the same
as �4�

CICS TS Portnumber �3� TCPIPService
definition

50889 This value
must be
the same
as�1�

CICS TS TCPIPService
�4�

IPCONN definition Srv50889 This value
must be
the same
as �2�

RACF User ID for link
security

IPCONN definition
in CICS TS

LINKUSER

RACF User ID for
user security

Client application USERID

RACF Password for
user security

Client application PASSWORD

Prerequisites
You must satisfy these system requirements.

Here are the system requirements for CICS TS for z/OS:
v The server must be CICS V3.2 or later because IPIC is not available in earlier

releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCP system initialization parameter to YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS TG for z/OS and the

CICS server exist on different LPARs.
v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS TG:

126 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v CICS TG must be installed.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires:
v The sample CICS TG server program EC01 must be compiled, defined, and

installed on CICS.
v The CICS TG supplied Java sample EciB2 available on the client machine.

Testing your TCP/IP network

At the transport layer, issue ping requests between the operating system that is
hosting your CICS TG and the LPAR where your CICS server resides. The ping
request response, as shown in the example below, confirms that the TCP/IP
communications are working. The ping request also works if you are using
multiple IP stacks on the same LPAR.
ping cicssrv2.company.com

Pinging cicssrv2.company.com [1.23.456.789] with 32 bytes of data:

Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61

Ping statistics for 1.23.456.789:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Configuring the IPIC server on CICS TG
You must define a server definition for the Gateway daemon to communicate to
CICS over IPIC in remote mode.

To define a server definition for the Gateway daemon:
1. Edit the ctg.ini file and define an IPICSERVER definition for your CICS server:

a. Set HOSTNAME to the name of the z/OS machine that hosts your CICS
server.

b. Set PORT to the port number that your CICS server uses to listen for
incoming IPIC requests.

For example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

2. Save your updated ctg.ini file.
3. Start CICS TG to apply the new IPICSERVER definition.

Configuring the IPCONN autoinstall user program DFHISCIP
on CICS TS

To enable the autoinstall of multiple secure IPCONNs, you must modify the
sample IPCONN autoinstall program.

CICS provides the IPCONN autoinstall sample program called DFHISxIP in
Assembler, C, COBOL, and PL/I , where 'x' denotes the language, which is A, D,

Chapter 6. Scenarios 127

C, and P respectively. The sample program does not use a template by default, so,
for autoinstall requests to use a template you must update the program. In this
example, the COBOL user program DFHISCIP is updated.
1. Add the MOVE statement to the autoinstall user program DFHISCIP in the

A010-INSTALL-IPCONN section. This statement requests CICS to use the
IPCONN template SECTEMPL each time the autoinstall user program is called.
* - - - - - - - - - -
* Install processing
* - - - - - - - - - -
A010-INSTALL-IPCONN SECTION.
* Template for secure IPCONN

MOVE ’SECTEMPL’ TO ISAIC-TEMPLATE

2. Compile and link-edit your program into a data set that will be picked up by
your CICS server.

Configuring the TCPIPSERVICE on CICS TS
The TCPIPSERVICE is a resource that defines the attributes of the IPIC connection,
including the listening port and the IPCONN autoinstall user program, referred to
as a user replaceable module (URM).
1. Use CEDA to define a TCPIPSERVICE; for example, SRV50889. These values

are important:
v The URM is set to point to your compiled IPCONN autoinstall user program.
v The port number is set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

All other values can be left to default. The security section of the
TCPIPSERVICE is not applicable for the IPIC protocol; security is applied in the
IPCONN definition.
CEDA DEFine TCpipservice(SRV50889)
TCpipservice : SRV50889
GROup : HOLLTCPA
DEscription ==>
Urm ==> DFHISCIP
POrtnumber ==> 50889 1-65535
STatus ==> Open Open | Closed
PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

2. Install the CEDA definition.
3. Check that the TCPIPSERVICE is active. On CICS TS, issue the command:

CEMT INQ TCPIPSERVICE

Check these values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is Ipic.
v The URM shows the IPCONN autoinstall program that you modified.

For example:

128 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00000) Bac(00128) Max(000000) Urm(DFHISCIP)

Note: You can configure CICS resources using the CICS Explorer , see the CICS
Explorer information in the CICS TS Information Center for more information.

Configuring the IPCONN template on CICS TS
You must define the IPCONN template that each incoming IPIC connection uses.
This example implements both link security and user security.
1. Use CEDA to define an IPCONN. The name of the IPCONN must match the

name of the template specified in the IPCONN autoinstall user program; for
example, SECTEMPL. These values are important:

TCPIPService
Set this value to match the name of the TCPIPService defined earlier.

Receivecount
Set this value to specify the number of parallel IPCONN sessions.

SENdcount
Set this value to zero because IPIC connections are always inbound to
CICS TS from CICS TG.

Inservice
Set this value to Yes.

Linkauth
Set this value to Secuser.

SECurityname
Set this value to an authorized RACF user ID. The user ID must be in a
RACF group that is authorized to establish IPIC connections.

Userauth
Set this value to Verify.

The APPLID field is relevant only for predefined IPCONN connections. The
APPLID field is ignored for autoinstalled IPCONN connections. CICS populates
this field with the name of the IPCONN by default.
This panel is an example of an IPCONN template defined using the CEDA
transaction:
CEDA View Ipconn(SECTEMPL)
Ipconn : SECTEMPL
Group : HOLLIPIC
Description :
IPIC CONNECTION IDENTIFIERS
APplid : SECTEMPL
Networkid :
Host :
(Lower Case) :
Port : No No | 1-65535
Tcpipservice : SRV50889
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
Inservice : Yes Yes | No
SECURITY

Chapter 6. Scenarios 129

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html

SSl : No No | Yes
CErtificate : (Mixed Case)
CIphers :
Linkauth : Secuser Secuser | Certuser
SECurityname : LINKUSER
Userauth : Verify Local | Identify | Verify | Defaultuser
RECOVERY
Xlnaction : Keep Keep | Force

2. Install the IPCONN definition and check that the output from the CEMT INQ
IPCONN(SECTEMPL) command identifies it as INService RELeased.
CEMT I IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

Testing your scenario
To test that your scenario is configured correctly, use the CICS TG Java sample
EciB2 to call CICS server program EC01.
1. To test your scenario using a valid user ID and password, issue the following

command from a command prompt on the machine on which CICS TG is
running. In this example command, the Gateway daemon TCP handler is
listening on the default port.
java com.ibm.ctg.samples.eci.EciB2

jgate=localhost server=CICSA prog0=EC01 commarealength=18
userid=USERID password=PASSWORD ebcdic

The ebcdic option is not required if you have set up a definition for EC01 in
the DFHCNV data conversion macro on CICS.
The output from the command is as follows:
CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006
Client security : null
Server security : null
CICS Server : CICSA
UserId : USERID
Password : PASSWORD
Data Conversion : ASCII
Commarea : null
Commarea length : 18

Number of programs given : 1
[0] : EC01

Connect to Gateway

Successfully created JavaGateway

CICS servers defined:

System : CICSA

Call Programs

About to call : EC01
Commarea :
Extend_Mode : 0
Luw_Token : 0
Commarea : 22/05/09 10:05:18

Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

130 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

In the CICS job log you will see this message:
DFHIS3000 ... IPCONN 00000006 with applid .00000006 autoinstalled
successfully using autoinstall user program DFHISCIP and template
(SECTEMPL) after a connection request was received on tcpipservice 50889
from host 1.23.456.789

where 00000006 is the name of the IPCONN automatically generated by the
autoinstall template.
If you issue the command CEMT INQ IPCONN, the output is as follows:
CEMT INQ IPCONN

STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(00000001) App(00000001) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(00000002) App(00000002) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)

The example shows two active IPCONN connections autoinstalled from
different Gateway daemons. Note that the IPCONN autoinstall template
remains INS REL.

2. If you test your scenario using an incorrect user ID and password combination,
you receive an ECI_ERR_SECURITY_ERROR RC=27 message. In the CICS job log, the
following message is displayed:
DFHIS1027 ... Security violation has been detected using IPCONN 0000006 and
transaction id CPMI by userid CICSUSER

Optional: using the APPLID to identify your CICS TG
To identify your CICS TG to CICS when connecting over IPIC, you can provide
your APPLID in the ctg.ini file or specify an APPLIDQUALIFIER and the APPLID.

To provide your APPLID and APPLIDQUALIFIER in the ctg.ini file, specify:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

If you use an APPLID of MYAPPL and an APPLIDQUALIFIER of MYQUAL, the
CICS system log shows the following messages when an IPCONN is installed:
DFHIS3000 IY2GTGA2 IPCONN APPL with applid MYQUAL.MYAPPL
autoinstalled successfully using autoinstall user program DFHISCIP
and template SECTEMPL after a connection request was received on
tcpipservice SRV50889 from host 1.23.456.789

DFHIS2001 IY2GTGA2 Client session from applid MYAPPL accepted for IPCONN
APPL.

By default, the user replaceable module DFHISCIP uses the last four characters of
the incoming CICS TG APPLID as the name of the IPCONN. In this example, the
last four characters of MYAPPL are APPL because padded spaces are ignored.

To view the installed IPCONN (APPL) and the template (SECTEMPL), issue the
CEMT INQ IPCONN command:

Chapter 6. Scenarios 131

CEMT INQ IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(APPL) App(MYAPPL) Net(MYQUAL) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

Note that the IPCONN template must be INS REL for it to be used by an incoming
request. The autoinstalled IPCONN, for example, APPL, is INS ACQ.

Configuring a secure predefined IPIC connection (SC02)
A predefined IPCONN provides a more secure environment and can prevent
unwanted IPCONN autoinstall requests from succeeding. To configure a secure
predefined IPCONN for your IPIC connection between CICS TG and CICS TS,
follow the step-by-step instructions in this scenario.

This scenario uses CICS TG connecting to CICS TS V3.2 over IPIC in remote mode.
It uses the default name ctg.ini for the configuration file.

Table 19. Values used in this scenario

Component Parameter Where set Example value
Matching
values

CICS TG APPLID �1� PRODUCT
section of
ctg.ini

MYAPPL This value
must be
the same
as �6�

CICS TG APPLIDQUALIFIER
�2�

PRODUCT
section of
ctg.ini

MYQUAL This value
must be
the same
as �7�

CICS TG Server name IPICSERVER
section of
ctg.ini

CICSA

CICS TG Hostname IPICSERVER
section of
ctg.ini

cicssrv2.company.com

CICS TG Port �3� IPICSERVER
section of
ctg.ini

50889 This value
must be
the same
as �5�

CICS TS TCPIPService �4� TCPIPService
definition

Srv50889 This value
must be
the same
as �8�

CICS TS Portnumber �5� TCPIPService
definition

50889 This value
must be
the same
as �3�

CICS TS APPLID �6� IPCONN
definition

MYAPPL This value
must be
the same
as�1�

132 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 19. Values used in this scenario (continued)

Component Parameter Where set Example value
Matching
values

CICS TS Network ID �7� IPCONN
definition

MYQUAL This value
must be
the same
as �2�

CICS TS TCPIPService �8� IPCONN
definition

Srv50889 This value
must be
the same
as �4�

RACF User ID for link
security

IPCONN
definition in
CICS TS

LINKUSER

RACF User ID for user
security

Client
application

USERID

RACF Password for user
security

Client
application

PASSWORD

Prerequisites
You must satisfy these system requirements.

Here are the system requirements for CICS TS for z/OS:
v The server must be CICS V3.2 or later because IPIC is not available in earlier

releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCP system initialization parameter to YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS TG for z/OS and the

CICS server exist on different LPARs.
v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS TG:
v CICS TG must be installed.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires the following:
v The sample CICS TG server program EC01 must be compiled, defined, and

installed on CICS.
v The CICS TG supplied Java sample EciB2 available on the client machine.

Testing your TCP/IP network

At the transport layer, issue ping requests between the operating system that is
hosting your CICS TG and the LPAR where your CICS server resides. The ping
request response, as shown in the example, confirms that the TCP/IP

Chapter 6. Scenarios 133

communications are working. The ping request also works if you are using
multiple IP stacks on the same LPAR.
ping cicssrv2.company.com

Pinging cicssrv2.company.com [1.23.456.789] with 32 bytes of data:

Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61

Ping statistics for 1.23.456.789:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Configuring the IPIC server on CICS TG
You must edit the ctg.ini file to identify your CICS TG to CICS and to define a
server definition for the Gateway daemon to communicate with CICS over IPIC in
remote mode.
1. To identify your CICS TG to CICS when connecting over IPIC, you must define

your APPLID and APPLIDQUALIFIER, in uppercase, in the PRODUCT section
of the ctg.ini file.
For example:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

2. To define an IPICSERVER definition for your CICS server:
a. Set HOSTNAME to the TCP/IP host name or TCP/IP address on which

CICS is listening.
b. Set PORT to the port number that your CICS server uses to listen for

incoming IPIC requests.

For example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

3. Save your updated ctg.ini file.
4. Start CICS TG to apply the new definitions.

Configuring the TCPIPService on CICS TS
The TCPIPService is a resource that defines the attributes of the IPIC connection,
including the listening port.
1. Use CEDA to define a TCPIPService; for example, SRV50889. These values are

important:
v The URM is set to NO to prevent the default IPCONN autoinstall program

from running.
v The port number is set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

134 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

All other values can be left to default. The security section of the TCPIPService
is not applicable for the IPIC protocol; security is applied in the IPCONN
definition.
CEDA DEFine TCpipservice(SRV50889)

TCpipservice : SRV50889
GROup : HOLLIPIC
DEscription ==>
Urm ==> NO
POrtnumber ==> 50889 1-65535
STatus ==> Open Open | Closed
PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

2. Install the CEDA definition.
3. Check that the TCPIPService is active. On CICS TS, issue the command:

CEMT INQ TCPIPSERVICE

Check the following values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is Ipic.
v The URM shows NO to state that IPCONN autoinstall is not permitted on

this TCPIPSERVICE.
For example:
CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00000) Bac(00128) Max(000000) Urm(NO)

Configuring the IPCONN on CICS TS
You must define the IPCONN for the incoming IPIC connection. This example
implements both link security and user security.
1. Use CEDA to define an IPCONN. These values are important:

APplid
Set this value to match the APPLID specified in the ctg.ini file.

Networkid
Set this value to match the APPLIDQUALIFIER specified in the ctg.ini
file.

TCPIPService
Set this value to match the name of the TCPIPService defined earlier.

Receivecount
Set this value to specify the number of parallel IPCONN sessions.

SENdcount
Set this value to zero because IPIC connections are always inbound to
CICS TS from CICS TG.

Inservice
Set this value to Yes.

Chapter 6. Scenarios 135

Linkauth
Set this value to Secuser.

SECurityname
Set this value to an authorized RACF user ID. The user ID must be in a
RACF group that is authorized to establish IPIC connections.

Userauth
Set this value to Verify.

Leave all the other values to default.
This panel is an example of an IPCONN definition defined using the CEDA
transaction:
CEDA View Ipconn(IPC50889)

Ipconn : IPC50889
Group : HOLLIPIC
Description :
IPIC CONNECTION IDENTIFIERS
APplid : MYAPPL
Networkid : MYQUAL
Host :
(Lower Case) :
Port : No No | 1-65535
Tcpipservice : SRV50889
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
Inservice : Yes Yes | No
SECURITY
SSl : No No | Yes
CErtificate : (Mixed Case)
CIphers :
Linkauth : Secuser Secuser | Certuser
SECurityname : LINKUSER
Userauth : Verify Local | Identify | Verify | Defaultuser
RECOVERY
Xlnaction : Keep Keep | Force

2. Install the IPCONN definition and check that the output from the CEMT INQ
IPCONN(IPC50889) command identifies it as INService RELeased.
CEMT I IPCONN

STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(IPC50889) App(MYAPPL) Net(MYQUAL) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

Testing your scenario
To test that your scenario is configured correctly, use the CICS TG Java sample
EciB2 to call CICS server program EC01.
1. To test your scenario using a valid user ID and password, issue the following

command from a command prompt on the machine on which the CICS TG is
running. In this example command, the Gateway daemon TCP handler is
listening on the default port.
java com.ibm.ctg.samples.eci.EciB2

jgate=localhost server=CICSA prog0=EC01 commarealength=18
userid=USERID password=PASSWORD ebcdic

The ebcdic option is not required if you have set up a definition for EC01 in
the DFHCNV data conversion macro on CICS.
The output from the command is as follows:

136 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006

Client security : null
Server security : null
CICS Server : CICSA
UserId : USERID
Password : PASSWORD
Data Conversion : ASCII

Commarea : null
Commarea length : 18

Number of programs given : 1
[0] : EC01

Connect to Gateway
Successfully created JavaGateway

CICS servers defined:
System : CICSA

Call Programs
About to call : EC01

Commarea :
Extend_Mode : 0
Luw_Token : 0
Commarea : 24/06/09 11:17:19

Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

In the CICS job log you will see this message:
DFHIS2001 ... Client session from applid MYAPPL accepted for
IPCONN IPC50889.

Issuing CEMT INQ TCPIPSERVICE shows that the connection count has
increased to 1.
CEMT INQ TCPIPSERVICE

STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00001) Bac(00128) Max(000000) Urm(NO)

The IPCONN connection remains established until the connection is explicitly
released, either by CICS TS or CICS TG.

2. If you test your scenario using an incorrect user ID and password combination,
you receive an ECI_ERR_SECURITY_ERROR RC=27 message. In the CICS job log, the
following message is displayed:
DFHIS1027 ... Security violation has been detected using
IPCONN IPC50889 and transaction id CPMI by userid CICSUSER

3. If your APPLID and APPLIDQUALIFIER specified in the ctg.ini file do not
match the APPLID and NETWORKID defined on the IPCONN, your IPCONN
connection will not be established; CICS TS will then attempt to autoinstall
your IPCONN connection. However, because autoinstall is not enabled (the
TCPIPService has URM specified as NO) the autoinstall is rejected and your
ECI request causes a program abend with an ECI_ERR_NO_CICS(-3) message. In
the CICS job log, you see this message:
DFHIS3001 ... IPCONN autoinstall rejected after a connection
was received on TCPIPSERVICE SRV50889 from host 1.23.456.789
because the TCPIPSERVICE has URM(NO)

Chapter 6. Scenarios 137

Optional: specifying CICSAPPLID and CICSAPPLIDQUALIFIER
in the IPICSERVER definition

To ensure that your CICS TG connects to the expected CICS server, you can specify
CICSAPPLID and CICSAPPLIDQUALIFIER in the IPICSERVER definition in the
ctg.ini file.
1. Add your CICSAPPLID and CICSAPPLIDQUALIFIER definitions in the

IPICSERVER section.
For example:
SECTION IPICSERVER = A1-IPIC

SRVIDLETIMEOUT=0
HOSTNAME=cicssrv2.company.com
PORT=50889
CONNECTTIMEOUT=60
TCPKEEPALIVE=Y
SENDSESSIONS=100
CICSAPPLID=IY2GTGA2
CICSAPPLIDQUALIFIER=GBIBMIYA

ENDSECTION

2. Save your updated ctg.ini file.
3. Start CICS TG to apply the new definitions.

If the CICSAPPLID and CICSAPPLIDQUALIFIER in your ctg.ini file do not match
the APPLID and network ID of your CICS server as defined in the CICS System
Initialization Table (SIT), your ECI request causes a program abend with an
ECI_ERR_NO_CICS(-3) message. In the CICS job log, you see this message:
DFHIS1013 ... Invalid applid GBIBMIYA.IY2GTGXX received in capability exchange
request on TCPIPSERVICE SRV50889.

Configuring SSL between a Java client and CICS TG (SC06)
This scenario shows how to configure SSL on the connection between a Java client
running in Windows and CICS Transaction Gateway for Multiplatforms. The
connection between CICS Transaction Gateway and CICS Transaction Server for
z/OS is over TCP/IP.

In this scenario you configure SSL security on the Gateway daemon, configure SSL
server authentication and (optionally) SSL client authentication, enable SSL, and
send an ECI request to the CICS server to check that the SSL connection works.

In this scenario server authentication occurs on CICS Transaction Gateway, and
optional client authentication occurs on the Java client.

The following figure shows the topology used in this scenario.

Follow the step-by-step instructions in this scenario using the following values:

138 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Component Parameter Where set Example value

CICS TG protocol@ssl.handler SECTION GATEWAY in
ctg.ini

com.ibm.ctg.server.SslHandler

CICS TG clientauth SECTION GATEWAY in
ctg.ini

on

CICS TG keyring SECTION GATEWAY in
ctg.ini

MyServer.jks

CICS TG keyringpw SECTION GATEWAY in
ctg.ini

MyPassword

CICS TG port SECTION GATEWAY in
ctg.ini

8573

CICS TG SERVER SECTION SERVER in ctg.ini CICSA

CICS TG PROTOCOL SECTION SERVER in ctg.ini TCPIP

CICS TG NETNAME SECTION SERVER in ctg.ini cicssrv1.company.com

CICS TG PORT SECTION SERVER in ctg.ini 7760

The following sample configuration file for this scenario is available for you to
download:
v ctg.ini

Prerequisites for the SSL scenario
Before you can complete this scenario, you must ensure that the system
requirements for CICS Transaction Server and CICS Transaction Gateway are
satisfied.

CICS Transaction Server on z/OS:
v A working connection from CICS Transaction Gateway to CICS is required. This

can be an IPIC, SNA, or TCP/IP connection. This scenario uses a TCP/IP
connection to CICS. For more information see “Configuring TCP/IP” on page
55.

v TCP/IP services must be active in the CICS server.
– To activate these services, set the TCP system initialization parameter to YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The CICS server must have access to a TCP/IP stack running on the same LPAR.

CICS Transaction Gateway:
v CICS Transaction Gateway must be correctly installed.

To test the scenario works successfully you can either use the supplied samples, or
your own applications. If you choose to use the supplied samples, this scenario
requires:
v The sample CICS TG server program EC01 to be compiled, defined, and

installed on CICS.
v The CICS Transaction Gateway supplied Java sample EciB1 be available on the

Java client machine.

Chapter 6. Scenarios 139

Configuring SSL server authentication
To complete this task you use iKeyman to create a server keyring and a server
certificate. You then use iKeyman to export the certificate, create a client keyring,
and import the server certificate into the keyring.

iKeyman is installed in: <install_path>/jvm160/bin

For information about the benefits of using SSL see “Why use SSL?” on page 161.

UNIX and Linux commands are case-sensitive; on these platforms when starting
the iKeyman tool, issue the command like this: ikeyman.

Create a server keyring

The keyring contains your server certificate and its associated private key. SSL uses
the certificate to identify the server to connecting clients.This keyring must be used
exclusively on the server and must be kept secure.
1. Start iKeyman.
2. On the iKeyman main menu, click Key database file > New.
3. On the Key database type menu, select JKS.
4. In the File name field, type a name for your keyring, for example MyServer.jks.
5. In the Location field, type the path where you want to store the server keyring.
6. Click OK.
7. Type the password for accessing the keyring file. This scenario uses the

password MyPassword.
8. Click OK.

Create a server certificate

Now you are ready to create the self-signed server certificate and store it with its
private key in the server keyring:
1. On the iKeyman main menu, click Create > New Self-Signed Certificate.
2. In the New self-signed certificate window, complete the following steps:

a. In the Key label field type exampleservercert.
b. On the Version menu, select X509 V3.
c. On the Key size menu, select 1024.

The common name defaults to the name of your machine, and the validity
period defaults to 365 days.

3. Click OK.
iKeyman now generates a public/private key pair, and an entry for the
exampleservercert certificate you have just created appears in the Personal
Certificates window.

4. Select the exampleservercert certificate and click View/Edit.
The Key information window for the certificate opens. The information in the
Issued to (certificate requester) and Issued by (signer) text boxes is identical.
To establish an SSL connection with a server that presents this certificate, the
client must trust the signer. To do this the client key repository must contain
the signer certificate of the server that presents the exampleservercert certificate.

140 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

Export the server signer certificate
1. Select the exampleservercert certificate and click Extract Certificate.
2. On the Data type menu, select Base64-encoded ASCII.
3. In the Certificate file name field, type the name of the text file that contains

your server certificate data exampleservercert.arm.
4. In the Location field, type the type the path where you want to store the

certificate file.
5. Click OK.

The exported certificate is a signer certificate generated from the personal
certificate in the keyring, it does not contain the private key. Import the certificate
into the keyring of any client that needs to communicate with this SSL server. The
certificate allows the client to verify the identity of the server.

Create a client keyring

A client keyring must contain, as a minimum, the signer certificate of the SSL
server keyring. This keyring is used by the client application, to verify the identity
of the server. If client authentication is required it must also contain a client
personal certificate, used to prove its own identity. For more information see
Configuring SSL client authentication.

To create a client keyring:
1. Start iKeyman.
2. On the iKeyman main menu click Key Database File > New.
3. On the Key Database Type menu, select JKS.
4. In the File name field, type the client keyring file name, for example

MyClient.jks.
5. In the Location field, type the path where you want to store the client keyring.
6. Click OK.
7. Type a password for accessing the keyring. This scenario uses the password

MyPassword.
8. Click OK.

Import the server signer certificate
1. In the Signer certificates list, select the certificate name exampleservercert.arm.
2. Click Add.
3. In the Certificate file name field type a unique, recognizable name, for example,

my self-signed server authority.
4. Click OK.

The new signer certificate is added to the Signer Certificates list and can be
used by the client application to verify the identity of the server.

You have now configured SSL server authentication.

Configuring SSL client authentication (optional)
To complete this task you use iKeyman to create a client certificate and export the
client certificate. You then use iKeyman to import the certificate and a public (CA)
certificate into the server keyring.

iKeyman is installed in <install_path>/jvm160/bin

Chapter 6. Scenarios 141

|

SSL client authentication is an option that provides extra security by determining
which client applications are allowed to connect to the Gateway daemon. This
builds on the security provided by SSL server authentication.

If the SSL handler used by the CICS Transaction Gateway is configured to support
server but not client authentication, you do not need to create a client certificate as
described here because the client keyring requires just the signer certificate of the
server, which you have already imported.

Create a client certificate

For client authentication to occur, the client keyring must contain a self-signed
certificate that is used for identifying the connecting client to the server.
1. Start iKeyman.
2. On the certificates menu, click Personal Certificates.
3. Click Create > New Self-Signed Certificate.
4. In the Create New Self-Signed Certificate window, complete the following

steps:
a. In the Key label field, type exampleclientcert.
b. On the Version menu, select X509 V3.
c. On the Key size menu, select 1024.

The Common name defaults to the name of the machine you are using, and
the Validity period defaults to 365 days.

5. Click OK.
iKeyman now generates a public/private key pair, and an entry for the
exampleclientcert certificate you have just created appears in the Personal
Certificates window.

Export the client signer certificate
1. In the certificate list, select exampleclientcert and click Extract Certificate.
2. On the Data type menu, select Base64-encoded ASCII.
3. In the Certificate file name field, type the name of the text file containing the

client certificate exampleclientcert.arm.
4. Click OK.

The exported certificate is a signer certificate generated from the personal
certificate in the keyring, it does not contain the private key. Import it into the
keyring of all servers that need to communicate with the SSL client. This certificate
allows the server to verify the identity of the client.

Import the client signer certificate
1. On the iKeyman main menu click Key Database File > Open.
2. Select MyServer.jks.
3. In the Signer Certificates view, select Add.
4. Locate the stored Server Base64-encoded ASCII certificate file

exampleclientcert.arm.
5. Click OK.
6. Give this signer certificate the unique label My Self-Signed Client

Certificate.
7. Select OK.

142 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The new signer certificate is added to the list in the Signer Certificates view, and
can now be used by the server to verify the identity of the client application.

Configuring the Gateway daemon for SSL
To complete this task you edit the CICS Transaction Gateway configuration file
(ctg.ini) to define the SSL protocol handler and its parameters.

The Gateway daemon requires details of the server keyring MyServer.jks. This
keyring contains the server certificate exampleservercert that the Gateway daemon
SSL handler uses as a personal certificate to identify itself to the client.

If client authentication is enabled, the server keyring requires the client certificate
as a signer certificate. In this scenario, the client certificate is exampleclientcert
and in the server keyring, My Self-Signed Client Certificate. The Gateway
daemon SSL handler uses this signer certificate to verify the identity of the client
when it attempts to connect using its personal certificate.
1. Edit the ctg.ini configuration file to add the following SSL protocol handler

definition:
protocol@ssl.handler=com.ibm.ctg.server.SslHandler

2. Complete the following tasks:
a. Set clientauth to on. Do this if you followed the steps on Configuring SSL

client authentication.
This parameter determines whether or not client authentication occurs.
Valid values are on (client authentication occurs) and off (client
authentication does not occur). The default is off.

b. Set keyring to MyServer.jks.
This is the name of the keyring to be used by this SSL protocol handler. The
keyring must be accessible by the user ID under which the Gateway
daemon is running. The value must be either the full path name, or the
relative path name of the keyring file. Relative path names are resolved
relative to <install_path>/bin. Use either a forward slash (/) character or
double backslash (\\) characters as a separator in the path name on all
operating systems.

c. Set keyringpw toMyPassword.
This is the password that you used for the server key ring..

d. Set port to 8573.
This parameter identifies the TCP/IP port on which the protocol handler
listens for incoming client requests.

When you have completed these steps the SSL protocol handler definition
should look like this:
protocol@ssl.parameters=clientauth=on;keyring=MyServer.jks;
keyringpw=MyPassword;port=8573

3. Save the changes.

You have now configured the Gateway daemon for SSL.

Verifying that SSL is enabled on the connection
To complete this task you start CICS Transaction Gateway and check the messages
that confirm SSL is enabled.

Start CICS Transaction Gateway from the command line:
ctgadmin -a start

Chapter 6. Scenarios 143

If the SSL protocol handler starts successfully CICS Transaction Gateway generates
two messages:
v The first message lists the SSL ciphers that have been enabled, for example:

CTG8401I The following ciphers are enabled:
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_AES_128_CBC_SHA
SSL_DHE_RSA_WITH_AES_128_CBC_SHA
SSL_DHE_DSS_WITH_AES_128_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_RC4_128_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_FIPS_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v The second message confirms that the SSL protocol handler started successfully
and identifies the port being used, for example:
CTG6524I Successfully started handler for the ssl: protocol on port 8573

If the SSL protocol handler fails to start, CICS Transaction Gateway generates a
message explaining the reason, for example:
CTG6525E Unable to start handler for the ssl: protocol, port: 8573,
because: invalid port number

If a Java exception has occurred, rectify the problem, restart CICS Transaction
Gateway and check that the protocol handler has started.

You have now verified that SSL is enabled on the connection.

Testing the SSL scenario
To complete this task you set the Java CLASSPATH environment variable, then
issue a Java command that invokes the EciB1 sample application to send an ECI
request to CICS.

Set the Java CLASSPATH variable

The Java CLASSPATH environment variable identifies the location of the
ctgclient.jar and ctgsamples.jar files.
1. Open a command prompt window and change to the directory where the Java

keystore file is located.
2. Set the Java CLASSPATH environment variable with the export CLASSPATH

command, for example:
export CLASSPATH=<install_path>/classes/ctgclient.jar:
<install_path>/classes/ctgsamples.jar:$CLASSPATH

Send an ECI request to CICS

To send an ECI request to CICS you issue a Java command that calls the EciB1
sample application, specifying the ssl:// protocol. When you do this the Java client
and the Gateway daemon attempt an SSL handshake. If server authentication is

144 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

successful, and if client authentication (if configured) is successful, the Gateway
daemon lists the available CICS servers. You then select the CICS server. The CICS
application EC01 then confirms the request by returning the current date and time.

The source for the sample EciB1 is located in the samples folder:
/opt/ibm/samples/java/com/ibm/ctg/samples/eci

1. Start CICS Transaction Gateway from a command line prompt:
ctgadmin -a start

2. Enter the Java command that calls the EciB1 sample application using the
following format:
java com.ibm.ctg.samples.eci.EciB1 ssl://Gateway_URL
Gateway_port_number jks_filename jks_password

For example:
java com.ibm.ctg.samples.eci.EciB1 ssl://cicssrv1.company.com 8573 MyClient.jks
MyPassword

CICS Transaction Gateway returns details of the available CICS servers, for
example:
CICS Servers Defined:

1. CICSA -CICS V4.1 Server

Choose Server to connect to, or q to quit:

3. Enter the number of the CICS server where you want to send the ECI request.

The specified CICS server returns the current date and time, for example:
Program EC01 returned with data:-

Hex: 32382f30312f31302031353a33323a34360
ASCII text: 28/01/10 15:32:46

You have now completed the scenario.

Configuring SSL between CICS TG and CICS (SC07)
This scenario shows you how to configure SSL security on an IPIC connection
between CICS Transaction Gateway running in local mode on WebSphere
Application Server V6.1 and CICS Transaction Server V4.1.

The following figure shows the topology used in this scenario:

Chapter 6. Scenarios 145

Follow the step-by-step instructions in this scenario using these values:

Component Parameter Where set Example value

CICS server user ID CTGUSER

CICS server CA certificate name RACDCERT command CTG CA CERT

CICS server personal certificate
name

RACDCERT command CTG PERSONAL CERT

CICS server keyring name RACDCERT command CICSSERVERKEYRING

CICS server personal certificate file
name

RACDCERT command CTGUSER.PERSONAL.CERT

CICS server TCPIPService TCPIPService definition SSL51190

CICS server port TCPIPService definition 51190

Java client personal certificate file
name

ikeyman personalcert.arm

Java client keyring file name ikeyman ctgclientkeyring.jks

Java client keyring password ikeyman MyPassword

Java client CTG_APPLID WebSphere Application Server SSLAH

Prerequisites for the SSL scenario
Before you can complete this scenario, you must ensure that the system
requirements for CICS Transaction Server, CICS Transaction Gateway, and
WebSphere Application Server are satisfied.

CICS Transaction Server:
v The CICS server version must be CICS Transaction Server V3.2 or later because

IPIC is not available in earlier releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCP system initialization parameter to YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The SEC system initialization parameter must be set to YES to enable security.

CICS Transaction Gateway:
v CICS Transaction Gateway must be correctly installed.

146 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

WebSphere Application Server:
v WebSphere Application Server must be installed on the same machine as CICS

Transaction Gateway.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples you must
complete the following tasks:
v Install the sample CICS COBOL programs EC01, EC03 on the CICS server.

For information about the samples see CICS server applications.

Configuring SSL server authentication on the CICS server
To complete this task you use RACF commands to create a CA certificate, a signed
personal certificate, and a keyring on the CICS server.

You perform this task by issuing ISPF RACDCERT (RACF digital certificate)
commands. You use RACDCERT commands to create and maintain digital
certificates, and create the keyrings that are the repositories for digital certificates.
1. Create a CA certificate that is self-signed on the server (in RACF):

RACDCERT CERTAUTH GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG CA CERT’) C(’GB’)) KEYUSAGE(CERTSIGN) WITHLABEL(’CTG CA CERT’)

2. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

3. Check that the CA certificate has been created by verifying that it exists in the
output from listing the DIGTCERT class:
a. From the ISPF main menu, enter R to display the RACF dialog.
b. Press Enter.
c. From the RACF - SERVICES OPTION MENU panel, enter 2 to display the

RACF - GENERAL RESOURCE PROFILES panel. Press Enter.
d. From the RACF - GENERAL RESOURCE PROFILE SERVICES panel, enter

8 to display the profile contents. Press Enter.
e. From the RACF - GENERAL RESOURCE SERVICES - DISPLAY panel,

type the class name DIGTCERT into the CLASS field, leaving the Profile
field blank. Press Enter.

f. From the next RACF - GENERAL RESOURCE SERVICES - DISPLAY panel,
complete the following steps:
1) Ensure that the CLASS field contains the class name DIGTCERT.
2) Leave the PROFILE field blank.
3) In the DISCRETE field, enter Yes, to select the profile type.
4) In the ACCESS LIST field, enter Yes to select the access list option.
5) Press Enter.

RACF now displays a list of the selected classes; check that the list contains
the DIGTCERT class that you have just created.

4. List the certificate:
RACDCERT CERTAUTH LIST(LABEL(’CTG CA CERT’))

5. Create a personal certificate on the server and sign it with your CA certificate:
RACDCERT ID(CTGUSER) GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG PERSONAL CERT’) C(’GB’)) WITHLABEL(’CTG PERSONAL CERT’)
SIGNWITH(CERTAUTH LABEL(’CTG CA CERT’))

CTGUSER must be a valid RACF user ID.

Chapter 6. Scenarios 147

6. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

7. Create a keyring where certificates are stored:
RACDCERT ADDRING(CTGSERVERKEYRING) ID(CTGUSER)

8. Add the CA certificate and personal certificate to the keyring:
a. Add the CA certificate to the keyring:

RACDCERT ID(CTGUSER) CONNECT(CERTAUTH LABEL(’CTG CA CERT’)
RING(CTGSERVERKEYRING) USAGE(CERTAUTH))

b. Add the personal certificate to the keyring:
RACDCERT ID(CTGUSER) CONNECT(LABEL(’CTG PERSONAL CERT’)
RING(CTGSERVERKEYRING)
DEFAULT USAGE(PERSONAL))

9. List the keyring to confirm that it contains the certificates:
RACDCERT LISTRING(CTGSERVERKEYRING) ID(CTGUSER)

Here is an example of the output generated by this command:
Ring:

>CTGSERVERKEYRING<
Certificate Label Name Cert Owner USAGE DEFAULT
---------------------------------- ----------- ----- -------
CTG CA CERT CERTAUTH CERTAUTH NO
CTG PERSONAL CERT ID(CTGUSER) PERSONAL YES

10. Export the personal certificate to a file on the server:
RACDCERT ID(CTGUSER) EXPORT(LABEL(’CTG PERSONAL CERT’))
DSN(’CTGUSER.PERSONAL.CERT’) FORMAT(CERTB64)

FORMAT(CERTB64) specifies that the certificate is stored in ASCII format.
11. Use ISPF 3.4 to view the certificate.

You have now configured SSL server authentication on the CICS server.

Configuring SSL server authentication on the client
To complete this task you use FTP to transfer the signed personal certificate from
the CICS server to the client machine, then iKeyman to create a Java keystore (jks)
file where the certificate is stored.

iKeyman is installed in: <install_path>/jvm160/bin
1. Transfer the personal certificate to your Client machine using an FTP client.

Alternatively you can issue FTP commands on the command line.
In “Configuring SSL server authentication on the CICS server” on page 147,
you specified FORMAT(CERTB64) to ensure that the certificate was stored in
ASCII. You must therefore specify ASCII when you transfer the certificate using
FTP. The following example shows the FTP commands required to transfer the
certificate, and the associated system responses:
C:\ftp server

Connected to server.company.com
User (server.company.com:(none)): name
331 Send password please. Password: xxx name is logged on.
Working directory is "/u/directory".
ftp> asc
Representation type is Ascii NonPrint
ftp> quote site recfm=vb
SITE command was accepted

148 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

ftp> get ’CTGUSER.PERSONAL.CERT’
Port request OK. 125 Sending data set CTGUSER.PERSONAL.CERT
Transfer completed successfully.
ftp> quit

You have to specify the site recfm=vb FTP command because the server
certificate is stored in a variable blocked data set.

2. Rename CTGUSER.PERSONAL.CERT to personalcert.arm.
3. Start ikeyman on your Client machine.
4. Create a new Java keystore file:

a. From the iKeyman main menu, select Key Database File > New.
b. From the New dialog, click the Key database type list then select the file

type JKS.
c. In the File name field enter the name of the Java keystore file that you want

to create. In this scenario the file name is ctgclientkeyring.jks.
d. Click OK. Because you are creating a new Java keystore file, the Password

prompt dialog now prompts you to provide a password. Enter a password
into the Password and Confirm password fields. In this scenario the
password is MyPassword.

e. Click OK.
5. Import the personal certificate personalcert.arm from the data set into the Java

keystore file:
a. Click the arrow and select Signer certificates from the list.
b. Click Add and specify the file name and location of the file that you

transferred to the client (in this scenario personalcert.arm).
c. Click OK.
d. In the Enter a label dialog, enter a label for the certificate. The label

identifies the certificate but is not used during security processing. This
scenario uses the label cics tg racf server certificate.

e. Click OK. The server personal certificate is imported from the data set that
you transferred to the client, into the Java keystore file.

You have now configured SSL server authentication on the client.

Configuring SSL client authentication
To complete this task you use iKeyman to create and export the client certificate,
FTP to transfer the certificate file to the server, and a RACDCERT (RACF digital
certificate) command to import the certificate into the RACF keyring.

iKeyman is installed in: <install_path>/jvm160/bin

SSL client authentication provides extra security between the client and the CICS
server. SSL client authentication builds on the security provided by SSL server
authentication. SSL client authentication requires that the client keyring contains a
self-signed certificate that is used to identify the connecting client.
1. Create a client certificate:

a. Start iKeyman and open the key database file (ctgclientkeyring.jks) that you
created when completing the previous task “Configuring SSL server
authentication on the client” on page 148.

b. From the menu, select Personal Certificates.
c. Click New Self-Signed.
d. Complete the following mandatory fields:

Chapter 6. Scenarios 149

|

Key label
Enter exampleclientcert.

Version
Select X509 V3.

Key size
Select 1024.

Common name
Specify the default value. This is the name of the machine you are
using.

Validity period
Specify the default value 365 days.

e. Click OK.
The iKeyman tool now generates a public/private key pair.
The self-signed client certificate appears in the Personal Certificates window.
The certificate has the name that you entered in the Key label field, in this
example exampleclientcert.

2. Export the client signer certificate:
a. With exampleclientcert highlighted, select Extract Certificate.
b. On the Data type menu, select Base64-encoded ASCII.
c. Enter the name and location of the text file containing your Client

Certificate data. This scenario uses exampleclientcert.arm.
d. Click OK.
The exported certificate is a signer certificate generated from the personal
certificate in the keyring, it does not contain the private key. Import the keyring
into the keyring of all servers that need to communicate with the SSL client.
The server uses the certificate to verify the identity of the client.

3. Import the client signer certificate into your RACF keyring:
a. Transfer the file to the server into an MVS™ sequential data set using FTP,

for example:
ftp winmvs2g
Connected to server.company.com
User (server.company.com:(none)): name
331 Send password please. Password: xxx name is logged on.
Working directory is "/u/directory".
ftp> asc
Representation type is Ascii NonPrint
ftp> quote site recfm=vb
SITE command was accepted
ftp> put exampleclientcert.arm ’CTGUSER.CLIENT.CERT.ARM’
Port request OK. 125 Sending data set ’CTGUSER.CLIENT.CERT.ARM’
Transfer completed successfully.
ftp> quit

b. Add the client certificate to CLASS(DIGTCERT) using the ISPF RACF
command:
RACDCERT ID(CTGUSER) ADD(’CTGUSER.CLIENT.CERT.ARM’)
WITHLABEL(’CLIENT.CERT’) TRUST

The command returns a message confirming that the certificate has been
added with TRUST status and that the class needs to be refreshed:
Certificate Authority not defined to RACF. Certificate added with
TRUST status

c. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

150 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

d. Connect the client certificate to your RACF keyring using the ISPF RACF
command:
RACDCERT ID(CTGUSER) CONNECT(LABEL(’CLIENT.CERT’)
RING(CTGSERVERKEYRING) USAGE(CERTAUTH))

The new signer certificate is added to the list in the Signer Certificates view,
and can be used by the server to verify the identity of the client application.

You have now configured SSL client authentication.

Configuring the IPIC connection on CICS
To complete this task you use an editor to add a parameter to the startup JCL, you
then edit the IPCONN autoinstall user program DFHISCIP, you then use a CEDA
command to configure the TCPIPService definition and the IPCONN template
definition.
1. Define the system initialization parameter for the key ring by adding the

following system initialization parameter to the startup JCL:
KEYRING=CTGSERVERKEYRING

2. Configure an IPCONN autoinstall user program DFHISCIP:
a. Modify the sample IPCONN autoinstall program to enable the autoinstall of

multiple secure IPCONNs.
CICS provides the IPCONN autoinstall sample program DFHISxIP in
Assembler, C, COBOL, and PL/I , where x is the program language (A, D,
C or P). The sample program does not use a template by default, so if you
want autoinstall requests to use a template you must update the program.
In this example, the COBOL user program DFHISCIP is updated.

b. Add the following lines to DFHISCIP to ensure that, when a request arrives
from a Java Client with an APPLID beginning with SSL, the correct
IPCONN template is used to install an IPCONN with the required SSL
settings. If the APPLID starts SSLxxxxx use the SSLIDP template.
IF ISAIC-APPLID(1:3) = ’SSL’

MOVE ’SSLIDP ’ TO ISAIC-TEMPLATE
MOVE ISAIC-APPLID TO ISAIC-IPCONN
PERFORM X000-FINIS.

c. Compile and link-edit your program into a data set that can be picked up
by your CICS server.

3. Configure a TCP/IP service:
a. Create the following TCPIPService definition:

CEDA View TCpipservice(SSL51190)
TCpipservice : SSL51190
GROup : SSLGROUP
DEScription : IPIC LISTENER
Urm : DFHISCIP
POrtnumber : 51190 1-65535
STatus : Open Open | Closed
PROtocol : IPic IIop | Http | Eci | User | IPic
TRansaction : CISS
Backlog : 00001 0-32767
TSqprefix :
Host : ANY
(Mixed Case) :
Ipaddress : ANY
SOcketclose : No No | 0-240000 (HHMMSS)
Maxdatalen : 3-524288
SECURITY
SSl : Clientauth Yes | No | Clientauth
CErtificate :

Chapter 6. Scenarios 151

(Mixed Case)
PRIvacy : Supported |Notsupported | Required | Supported
CIphers : 050435363738392F303132330A1613100D0915120F0C03060201
AUthenticate : | No | Basic | Certificate | AUTORegister

| AUTOMatic | ASserted
Realm :
(Mixed Case)
ATtachsec : Local | Verify

b. Ensure that the SSl parameter is set to Clientauth so that client
authentication is performed on the connection.

4. Configure an IPCONN template:
a. Create the following IPCONN definition:

CEDA View Ipconn(SSLIDP)
Ipconn : SSLIDP
Group : SSLGROUP
DEScription :
IPIC CONNECTION IDENTIFIERS
APplid : SSLIDP
Networkid :
Host :
(Mixed Case) :
Port : No No | 1-65535
Tcpipservice : SSL51190
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
INservice : Yes Yes | No
SECURITY
SSl : Yes No | Yes
CErtificate : CTG PERSONAL CERT (Mixed Case)
CIphers : 050435363738392F303132330A1613100D0915120F0C03060201
Linkauth : Certuser Secuser | Certuser
SECurityname :
Userauth : Identify Local | Identify | Verify | Defaultuser
IDprop : Notallowed Notallowed | Optional | Required
RECOVERY
Xlnaction : Keep Keep | Force

b. Use CEDA to install the TCPIPService and the IPConn definitions.

You have now configured the IPIC connection on CICS.

Verifying the connection
To complete this task you issue a Java command then follow a series of on screen
prompts.

The Java sample program EciB3 enables you to verify that the SSL connection
between CICS Transaction Gateway and CICS has been correctly configured. You
can optionally complete this task before completing the next task “Configuring
WebSphere Application Server” on page 153.

To verify the connection:
1. Enter the following command to run the sample program EciB3. Qualify the

location of the SSL key ring, for example ctgclientkeyring.jks, if required:
java -DCTG_APPLID=SSLAH com.ibm.ctg.samples.eci.EciB3 local:
2006 ctgclientkeyring.jks MyPassword

152 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The following information is displayed on the screen:
CICS Transaction Gateway Basic ECI Sample 3

Usage: java com.ibm.ctg.samples.eci.EciB3 [Gateway URL]
[Gateway Port Number]
[SSL Keyring
SSL Password]

To enable client tracing, run the sample with the following Java option:
-Dgateway.T.trace=on

The address of the Gateway daemon has been set to local: port 2006

IPIC servers are not listed when running in local mode.
Enter URL of a CICS server, or Q to quit:

2. At the prompt, type the following URL: ssl://lpar:51190. Where lpar is the
z/OS LPAR where CICS is running.

3. At the prompt, type a text string to send to the CICS program, for example my
test data.

4. Type your CICS user ID: CTGUSER
5. Type your CICS password.

The sample program returns verification information, for example:
Program EC03 returned 5 containers in channel "SAMPLECHANNEL":

[CHAR] CICSDATETIME = 19/05/2010 16:29:31
[BIT] INPUTDATALENGTH = 0000000c
[CHAR] OUTPUTMESSAGE = Input data was: my test data
[CHAR] INPUTDATACCSID = 5348
[CHAR] INPUTDATA = my test data

If the sample program returns CICS server not found, this indicates that the SSL
connection has not been established. Check the CICS Transaction Server system log
for more information, and ensure that the JKS keyring file name and password are
correct (the CICS password you entered is not checked because the IPIC connection
is configured with Userauth=Identify).

You have now verified the connection.

Configuring WebSphere Application Server
To complete this task you use the WebSphere Application Server Integrated
Solutions Console to install the ECI resource adapter, create a connection factory,
specify the connection factory properties, and deploy the ECIIVT installation
verification test .ear file.
1. Install the CICS Transaction Gateway ECI resource adapter archive (RAR):

a. In the WebSphere Administrative Console, click Resources > Resource
Adapters, click Install RAR .

b. From the Install RAR File window, enter the name ECIResourceAdapter for
the RAR. Leave the class path as it is currently set, and leave the native
library path blank.

c. Click Next and leave the default settings.
d. Click OK.

2. Create and configure a J2C connection factory:
a. In the WebSphere Administrative Console, click Resources > Resource

Adapters. Click on the ECIResourceAdapter.
b. Click New.

Chapter 6. Scenarios 153

c. Specify a name for the new J2C connection factory, for example CF-20 and
specify the JNDI lookup name eis/CF-20. Leave everything else with the
default settings.

d. Click OK.
e. Click the new J2C connection factory CF-20.
f. Click Additional Properties >Custom Properties.
g. In the Value column of the Custom properties table, enter the values shown

in the following screen:

You do not have to supply a CICS password in the password field because
the IPIC connection is qualified with AttachSec=Identify.

h. Save your configuration.
3. Deploy the ECIIVT ECI resource adapter installation verification test program:

a. Install the application ECIIVT.ear with a target resource JNDI name of
ECIIVTBean1. The ECIIVT.ear is located within the <install_path>/
deployable directory.

b. Map the resource to your connection factory ECIIVTBean1:

154 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

c. Save your configuration.
d. Restart WebSphere Application Server if necessary (this depends on the

version of WebSphere Application Server you are using).

You have now configured WebSphere Application Server.

Testing the SSL scenario
To complete this task you use a browser to go to the ECIIVT web page where you
start the ECI resource adapter installation verification test.
1. Open a web browser and enter the following URL:

http://localhost:9080/ECIIVTWeb/index.jsp

2. Click Run IVT.
The J2EE Connector Architecture IVT Successful web page is displayed:

Chapter 6. Scenarios 155

If errors have occurred, run a stack trace by clicking Stack trace on the IVT
web page. You can also activate CICS Transaction Gateway trace in WebSphere
Application Server:
a. From the WebSphere Administrative Console click Servers > Application

servers.
b. Click server1.
c. Click Java and Process Management > Process Definition > Java Virtual

Machine.
d. In the Generic JVM arguments pane add the following entry:

-Dgateway.T=on

e. Restart WebSphere Application Server if necessary.
f. Look for the CICS Transaction Gateway trace in the systemerr.log file.

You have now completed the scenario.

156 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 7. Security

Security mechanisms include link, bind and user security on connections, SSL
client authentication, SSL server authentication, and identity propagation.

Security considerations
Authentication and authorization are performed in different locations in a CICS
Transaction Gateway topology. A number of security options are available.

Authentication verifies that the user is who they say they are. Depending on
topology, authentication can be based on the user ID passed with the ECI request,
an SSL client certificate, or a distributed identity (identity propagation).

Authorization verifies that a user is allowed to access a particular resource for a
given intent. For example to execute a method in a bean or to update a CICS
resource.

Security in a local mode topology

The following figure shows the locations in a local mode topology where the system
performs authentication and authorization. In this topology, WebSphere
Application Server and CICS Transaction Gateway are both running on Windows.
The EJB application in WebSphere uses the ECI resource adapter and the Client
daemon to access the CICS COMMAREA application.

© Copyright IBM Corp. 1998, 2011 157

The following authorization options are available in this topology:
v Component-managed sign-on. With this option, security credentials are

propagated to CICS by the application.
v Container-managed sign-on. With this option, security credentials are

propagated to CICS by a Web or EJB container.
v Link user ID authorization checking (not available on TCP/IP connections to

CICS). This provides an additional check on whether the link user ID is
authorized to access the CICS resource.

The following data integrity and confidentiality option is available in this topology:
v HTTPS on the link between the Web server and WebSphere Application Server.

The level of data encryption, server authentication and client authentication can
be specified.

CICS connection security
Different security options are available on the connection when CICS Transaction
Gateway is used for connecting client applications to CICS; the available options
are platform and protocol dependent.

Figure 14. Security in a local mode topology

158 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

IPIC connection security

IPIC connections enforce link security to restrict the resources that can be accessed
over a connection to a CICS server, bind security to prevent an unauthorized client
system from connecting to CICS, and user security to restrict the CICS resources
that can be accessed by a user. If the CICS server supports password phrases, a
password phrase can be used for user security.

IPIC connections do not validate security credentials before sending them to CICS.

Link security

There are two ways that you can specify the link user for IPIC connections. You
can use the SECURITYNAME attribute, or an SSL certificate. You can use an SSL
certificate if you have a client authenticated SSL (when both the client and server
have certificates). The client's certificate is mapped by RACF to a specific user ID,
which is defined as the link user. This means that you can specify different link
users, depending on which certificate you are using.

To specify a link user, set LINKAUTH in the IPCONN definition in CICS to one of
the following settings:
1. SECUSER to use the user ID that is specified in the SECURITYNAME attribute

to establish link security.
2. CERTUSER to use an SSL client certificate mapped to a user ID to establish link

security.
The IPCONN resource must refer to a TCPIPSERVICE definition that is
configured for SSL and client authentication. The certificate must be mapped in
RACF to your chosen user ID. For more information on certificate mapping, see
the CICS Transaction Server Information Center.

Bind security

When CICS uses IPIC to communicate with a client, it uses an IPCONN resource
and a TCPIPSERVICE resource. The IPCONN is used to send information to the
client system's TCPIPSERVICE, which acts as a receiver. For IPIC, bind security is
supported by the exchange of Secure Sockets Layer (SSL) client certificates. This
allows CICS and the client system to connect successfully, and prevents an
unauthorized client system from connecting.

User security

IPIC connections enforce user security to restrict the CICS resources that can be
accessed by a user. The level of user security checking is specified by setting the
USERAUTH attribute in the IPCONN definition in CICS. The USERAUTH setting
in the IPCONN definition is comparable to the ATTACHSEC setting on other
connection definitions.
v If USERAUTH=IDENTIFY is specified, a user ID that is already verified must be

supplied. If the CICS TG and CICS server are not in the same sysplex, an SSL
connection is required.

v If USERAUTH=VERIFY is specified, a user ID and password or password
phrase must be supplied. If password phrases are used the CICS server must
support password phrases.

Chapter 7. Security 159

|
|
|
|
|

|

|
|
|

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

If you are using the ECI base classes, set the user ID and password or password
phrase (if required) on the ECIRequest.

To set custom properties for the ECI resource adapter set the following properties:
1. Set the flowed user name in the UserName property.
2. Set the password or password phrase (if required) in the Password property.

To override ECIConnectionSpec settings:
1. Create an ECIConnectionSpec object with the required user name and

password.
2. Use this object for requests on the selected connection and in the

getConnection() method of your ECI ConnectionFactory.

Identity propagation can be used as an alternative to specifying a user ID, for more
information, see “Identity propagation” on page 169.

SNA connection security
SNA connections enforce link security to restrict the resources that can be accessed
over a connection to a CICS server, bind security to prevent an unauthorized client
system from connecting to CICS, and user security to restrict the CICS resources
that can be accessed by a user.

Link security

Link security further restricts the resources a user can access, depending on the
remote system from which they are accessed. The practical effect of link security is
to prevent a remote user from attaching a transaction or accessing a resource for
which the link userid has no authority. When link security is in use, each client is
given an authority defined by a link userid. For LU6.2, all sessions in a connection
can have the same link user ID, or different groups of sessions within the
connection can have different link user IDs. It is also possible to specify that some
groups of sessions should use link security, and that others should not.

Bind security

A security check can be applied when a request is received from, or sent to, a
remote client application (when the session is bound). This is called bind-time
security (or, in SNA terms, session security), and is part of the CICS
implementation of the LU6.2 architecture. Its purpose is to prevent an
unauthorized system from binding a session to one of your CICS systems.
Bind-time security is optional in the LU6.2 architecture; you should not specify
bind-time security if the remote system does not support it. SNA defines how
session security is to be applied, and CICS conforms to this architecture. When
connecting to a client running on another system, ensure the other system is also
compatible with this architecture.

User security

In addition to the security profile set up for the link, additional restrictions can be
applied to a remote client's access to the transactions, commands, and resources in
CICS. For ISC over SNA and MRO links, specify the ATTACHSEC parameter on
the CONNECTION definition. User security, like link security, distinguishes
between transaction, resource, command, and surrogate security. User security can
never increase a user's authority above that of the link.

160 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

|

TCP/IP connection security
TCP/IP connections enforce link security to restrict the resources that can be
accessed over a connection to a CICS server, bind security to prevent an
unauthorized client system from connecting to CICS, and user security to restrict
the CICS resources that can be accessed by a user.

Link security

Two security protocols can be used to provide secure communication over the
Internet. The first is the Secure Sockets Layer (SSL) 3.0 protocol. The second is the
Transport Layer Security (TLS) 1.0 protocol, which is the latest industry standard
SSL protocol and is based on SSL 3.0. The TLS 1.0 specification is documented in
RFC2246. Any connections that require encryption automatically use the TLS
protocol, unless the client specifically requires SSL 3.0.

Bind security

The TCPIPSERVICE resource definition specifies the security measures that are
applied for each connection to CICS over TCP/IP. You can choose whether or not
to use SSL, and, if you do use SSL, you choose the exact security measures that are
applied; for example, the authentication method, the sending of certificates by
client and server, and the encryption of messages.

User security

For ECI requests sent to CICS, you can use basic authentication to identify the
user. To do this you specify ATTACHSEC(VERIFY) in the TCPIPSERVICE
definition for the ECI client. Specify ATTACHSEC(LOCAL) if you do not want to
identify the user.

Gateway connection security and SSL
CICS Transaction Gateway can communicate securely with CICS over a network
connection using SSL (Secure Sockets Layer).

Why use SSL?
The Secure Sockets Layer (SSL) transport protocol provides authenticated, reliable,
private data communications over a network connection.

Authentication

To make an environment secure, communication must be with “trusted” sites
whose identities are known. SSL uses digital certificates for authentication — these
are digitally signed documents which bind a public key to the identity of the
private key owner.

Authentication happens at connection time, and is independent of the application
or the application protocol. Authentication involves verifying that sites with which
communications are established are who they claim to be. SSL authentication is
performed by an exchange of certificates (blocks of data in a format described in
the X.509 standard). X.509 certificates are issued and digitally signed by an external
authority known as a certificate authority (CA).

Chapter 7. Security 161

http://www.rfc-editor.org/rfcsearch.html

Authorization

Checks are made to ensure that the authenticated users are permitted to access the
system resources needed by the tasks they are performing. These resources can
include computer systems, application functions, transactions, programs, databases,
files, and other CICS resources.

Data integrity

Information cannot be modified during transmission.

Confidentiality

Information remains private as it passes over the connection. The information
exchanged between the sender and receiver is encrypted. Only the client and the
server can interpret the information.

Accountability (non-repudiation)

The sender and the receiver both agree that the information exchange took place.
Accountability settles any disputes about whether or not the information was sent
and received. Digital signatures ensure accountability by enabling the identification
of who is responsible if something goes wrong.

What is SSL?
SSL is a security protocol that provides communications privacy. SSL enables client
and server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery. SSL applies only to internet
protocols, and is not applicable to SNA.

How an SSL connection is established
An SSL connection is established though a handshake (a series of communications
exchanges) between the client and the server.

SSL handshake

The following diagram shows what happens during an SSL handshake:

162 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

1. The client sends a request to the server for a secure session. The server
responds by sending its X.509 digital certificate to the client.

2. The client receives the server's X.509 digital certificate.
3. The client authenticates the server, using a list of known certificate authorities.
4. The client generates a random symmetric key and encrypts it using server's

public key.
5. The client and server now both know the symmetric key and can use the SSL

encryption process to encrypt and decrypt the information contained in the
client request and the server response.

CICS Transaction Gateway supports the JSSE implementation of SSL. JSSE as
supplied with the Java SDK is the only supported option. For more information,
see Chapter 7, “Security,” on page 157.

Authentication

During server authentication, a connection is only established if the client trusts
the server based on the information presented by the server to the client in its
certificate.

During client authentication (if activated) the client sends its certificate information
to the server. A connection is then only established if the client trusts the server
and the server trusts the client, based on the information exchanged in both
certificates.

Transport Layer Security (TLS):

Network connections between a JEE client and CICS can be secured by the Secure
Sockets Layer (SSL) protocol, or the Transport Layer Security (TLS) protocol.

Figure 15. SSL handshake

Chapter 7. Security 163

TLS is an industry-standard SSL protocol. The TLS specification is documented in
RFC2246; for more information, see . http://www.rfc-editor.org/rfcsearch.html

All references to SSL in this information center also apply to TLS. Connections that
require encryption automatically use the TLS protocol, unless the client specifically
requests SSL. For more information on configuring CICS Transaction Gateway to
use network security, see “Configuring SSL” on page 89.

No special configuration or upgrade tasks are required for using TLS, when
compared with SSL.

Encryption:

Cryptography is the scientific discipline for the study and development of ciphers,
in particular, encryption and decryption algorithms. These cryptographic
procedures are the essential components that enable secure communication to take
place across networks that are not secure. SSL encryption uses both symmetric and
asymmetric keys.

Symmetric (secret) key

Secret key cryptography means that the sender and receiver share the same
(symmetric) key, which is used to encrypt and decrypt the data.

The secret key encryption and decryption process is often used to provide privacy
for high-volume data transmissions.

Asymmetric (public/private) key

Public/private key cryptography uses an asymmetric algorithm. The private key is
known only by its owner and is never disclosed. The corresponding public key can
be known by anyone. The public key is derived from the private key, but it cannot
be used to deduce the private key. Either key of the pair can be used to encrypt a
message, but decryption is only possible with the other key.

Digital signatures, certificates and key rings:

SSL uses digital signatures and digital certificates for establishing a trusted
relationship between a sender and a receiver of information sent over a network
connection.

Digital signature

A digital signature is a unique, mathematically computed, signature that
demonstrates the authenticity of a transmission.

Digital certificate

A digital certificate allows unique identification. It is essentially an electronic ID
card, issued by a trusted third party known as a certificate authority. Digital
certificates form part of the ISO authentication framework, also known as the X.509
protocol. This framework provides for authentication across networks. A digital
certificate serves two purposes: it establishes the owner's identity and it makes the
owner's public key available.

A digital certificate contains the following information:

164 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v public key of the person being certified
v name and address of the person being certified, also known as the Distinguished

Name (DN)
v digital signature of the certificate authority
v issue date
v expiry date

If you send your digital certificate, containing your public key, to someone else,
your private key prevents that person from misusing your digital certificate and
posing as you.

A digital certificate alone is not proof of an identity; it allows verification of the
owner's identity, by providing the public key needed to check the owner's digital
signature. Therefore, the digital certificate owner must protect the private key that
belongs with the public key in the digital certificate. If the private key is stolen,
anyone could pose as the legitimate owner of the digital certificate.

Certificate authority (CA)

A digital certificate is issued by a CA and has an expiry date. When requesting a
digital certificate, you supply your distinguished name. The digitally signed
certificate includes your distinguished name and the distinguished name of the
CA. This allows verification of the CA.

To communicate securely, the receiver must trust the CA that issued the certificate
that the sender is using. Therefore, when a sender signs a message, the receiver
must have the corresponding CA's signer certificate and public key designated as a
trusted root key. Your Web browser has a default list of signer certificates for
trusted CAs. If you want to trust certificates from another CA, you must receive a
certificate from that CA and designate it as a trusted root key.

Key ring

A key ring is a file that contains the digital certificates, public keys, private keys,
and trusted root keys used by a network communications security protocol such as
SSL. Each certificate consists of a public key and a private key. A root certificate
contains a trusted root key.

SSL requires access to key rings for the establishment of secure connections. The
key rings used by the Java Secure Socket Extension (JSSE) implementation of SSL
are known as KeyStores.

For information on how to create key rings, see “Configuring SSL” on page 89.

Cipher suites:

A cipher suite is a set of ciphers (encryption algorithms) used for encrypting
sensitive information. SSL uses cipher suites to ensure security and integrity of
information transmitted over a network connection. Different cipher suites provide
different levels of encryption.

To allow users to select the level of security that suits their needs, and to enable
communication with others who might have different needs, SSL defines cipher
suites, or sets of ciphers. When an SSL connection is established, the client and
server exchange information about which cipher suites they have in common. They

Chapter 7. Security 165

then communicate using the common cipher suite that offers the highest level of
security. If they do not have a cipher suite in common, secure communication is
not possible.

There are many different algorithms that can be used for encrypting data, and for
computing the message authentication code. Some provide the highest levels of
security, but require a large amount of computation for encryption and decryption;
others are less secure, but provide rapid encryption and decryption. The length of
the key used for encryption affects the level of security; the longer the key, the
more secure the data.

The individual ciphers that can be used by CICS are dependent on the CICS
Transaction Server ENCRYPTION parameter. This is a system initialization
parameter which can be set for weak, medium or strong encryption.

Client security overview
CICS servers might require the Client daemon to supply a user ID and password
before they permit a client connection, terminals to be installed, or transactions to
be run.

This depends on the server and protocol security settings. The user ID and
password are sent to the server of the transaction attach request for each
conversation. A user ID and password are also required when a sign-on transaction
is invoked on a sign-on capable terminal. In this instance, the user ID and
password are flowed to the server as part of the 3270 data stream.

User IDs and passwords must not contain DBCS characters.

If no user ID is passed by a CICS Transaction Gateway user application, and no
default is set by the CICS Transaction Gateway, the transaction is run using the
mainframe CICS server's default user ID and password if the Usedfltuser
parameter on the CICS server connection definition is set to Yes. If this parameter
is set to No, security is enforced by the host CICS server and a user ID and
password will need to be supplied. In each case, transactions execute in the server
with the authorities assigned to the user ID authenticated.

Because the Client daemon has no security manager, it does not support user ID
authentication. Configure your CICS server client connections so that incoming
attach requests must specify a user ID and password. For mainframe servers,
specify AttachSec = Verify in the CICS connection definition. AttachSec =
Identify, which indicates that a user ID, but not password, is required, is not
supported for client connections.

Default connection settings
The Client daemon maintains a default user ID and password for each server
connection, which can be set by any of the following methods.
v CICSCLI security commands:

cicscli -c=servername -u=userid -p=password

The servername parameter can also be specified with the -s option.
v From C use the ESI function CICS_SetDefaultSecurity. This call is not available

from the Java APIs.

166 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v From C++, use the makeSecurityDefault method of the CclConn or
CclTerminal class.

These default values are used when required on all subsequent transaction requests
for that server, provided that no values have been passed on the ECI request itself,
or have been set for the specific EPI terminal against which the transaction will
run.

Note: If the Client daemon is running in an environment where it survives user
logoff, the default user ID and password values entered by the current user are
retained even when that user logs off, and are subsequently reused as required.

EPI terminal security
The Client daemon also maintains a user ID and password for each installed
terminal. These values override any default values set for the server connection.

Terminal security is usually required only if using sign-on incapable terminals.

Changing the user ID and password
You can change the user ID and password at any time by following these steps.
v C programs:

Set UserId and Password in the CICS_EpiAttributes_t structure on a
CICS_EpiAddExTerminal call. Or, use the EPI function CICS_EpiSetSecurity.
This call would typically be used to change the terminal security settings if, for
example, the user's password had expired.

v C++ programs:
Set the userid and password parameters when constructing a CclTerminal class
object. Or, use the alterSecurity method of the CclTerminal class.

v Java Client applications:
– EPI Request Classes

Set the userid and password parameters when constructing an EPIRequest
object via the addTerminal or addTerminalAsync method. Or, use the
alterSecurity method of the EPIRequest class.

– EPI Support Classes
Create a Terminal object using the default Constructor, then use setUserid
and setPassword to set security, or create a Terminal object using the
extended Constructor.

Password expiry management
For CICS clients, the management of expired passwords can be handled by the ESI
functions CICS_ChangePassword and CICS_VerifyPassword.

The ESI functions can be used only with CICS servers that support password
expiry management (PEM). See “Supported software” on page 9 for information on
supported servers. Refer to the documentation for your CICS server for
information on PEM support.

To use PEM, the Client daemon must be connected to the CICS server over SNA.
An External Security Manager such as Resource Access Control Facility (RACF),
must also be available to the CICS server. ESI calls can be included within your
ECI or EPI application. Only CICS servers returned by the CICS_EciListSystems
and CICS_EpiListSystems functions are valid.

Chapter 7. Security 167

Sign-on capable and sign-on incapable terminals
Sign-on capable terminals allow sign-on transactions, either CICS-supplied (CESN)
or user-written, to be run, whereas sign-on incapable terminals do not allow these
transactions to be run.

If a terminal resource is installed as sign-on capable, the application or user is
responsible for starting a sign-on transaction; the user ID and password, once
entered, are embedded in the 3270 data. If the terminal resource is installed as
sign-on incapable, the user ID and password are authenticated for each
transaction started for the terminal resource.

Specifying the sign-on capability of a terminal
Terminals can be created as sign-on capable or sign-on incapable, depending both
on the API function that is used to create them and the type of CICS server on
which they are installed. The sign-on capability of a terminal can be specified by
one of the following methods.
v C programs:

Use CICS_EpiAddExTerminal and set the sign-on capability parameter in the
CICS_EpiAttributes_t structure.

v C++ programs:
Set the sign-on capability parameter when constructing a CclTerminal class
object.

v Java Client applications:
– EPI Request Classes

Set the sign-on capability parameter when constructing an EPIRequest object
via the addTerminal or addTerminalAsync method.

– EPI Support Classes
Create a Terminal object using the default Constructor, then use
setSignonCapability, or create a Terminal object using the extended
Constructor. If a terminal is in disconnected state (that is, has been
disconnected, or never connected) calling setSignonCapability allows you to
change the sign-on capability for the terminal and changes the terminal type
to extended. When you connect, you connect an extended terminal with that
sign-on capability. Setting the sign-on capability while a terminal is connected
does not alter the connected setting; the setting is stored.

The sign-on capability of the installed terminal is returned in the terminal
attributes. This will be set to SIGNON_UNKNOWN if the server does not return a
sign-on capability parameter in the CTIN response.

CICS Transaction Server for z/OS:

CICS Transaction Server for z/OS supports both sign-on capable and incapable
terminals, provided that they are at the prerequisite maintenance level. A terminal
installation request that does not specify any sign-on capability, for example from
CICS_EpiAddTerminal, results in a sign-on incapable terminal being installed.

For sign-on capable terminals:

v Use the CICS_EpiAddExTerminal call specifying a SignonCapability of
CICS_EPI_SIGNON_CAPABLE.

v You do not need to set the userid and password fields on the
CICS_EpiAddExTerminal call or use CICS_EpiSetSecurity, provided that you
specify UseDfltUser = Yes in the CICS connection definition on the server.

168 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v A user ID and password entered through a sign-on transaction are flowed to the
server as part of the 3270 data stream and they are in a client trace.
Specify UseDfltUser = Yes in the CICS CONNECTION definition, or ensure that
the system administrator sets a default connection user ID and password for the
client. Otherwise, the add terminal request might fail with an
EPI_ERR_SECURITY return code. The default user ID must have sufficient
privileges to allow the CTIN transaction to run.

v Before the user has signed on, transactions run under the default user ID for the
CICS server. After sign-on, transactions run under the signed-on user ID.

For sign-on incapable terminals without terminal security:

v Use the CICS_EpiAddTerminal call.
v A connection user ID and password are required regardless of the setting of the

UseDfltUser in the CICS connection definition on the server.
v Transactions run under the user ID specified in the corresponding function

management header (FMH) attach request.

For sign-on incapable terminals with terminal security:

v Use the EpiAddExTerminal call specifying a SignonCapability of
CICS_EPI_SIGNON_INCAPABLE.

v Set the userid and password fields on the CICS_EpiAddExTerminal call.
v Specify UseDfltUser = No in the CICS connection definition on the server to

enforce security.
v Use CICS_EpiSetSecurity in conjunction with CICS_VerifyPassword and

CICS_ChangePassword to change the security settings for an existing terminal.
v The user ID and password are flowed to the server in the FMH of the attach

request and are not in a client trace.
v Transactions run under the user ID specified in the corresponding FMH attach

request.

To use one of the APIs that does not support the extended EPI functionality, use
CRTE through a middle tier system to get sign-on capable terminal-like
functionality.

CICS Transaction Server for iSeries:

CICS Transaction Server for iSeries does not support the sign-on capability
parameter in a CTIN request. A terminal installation request always results in a
sign-on incapable terminal being installed.

TXSeries servers:

TXSeries servers support only sign-on capable terminals. A terminal installation
request always results in a sign-on capable terminal being installed.

Identity propagation
CICS Transaction Gateway can pass user security identity information (a
distributed identity) from a JEE client in WebSphere Application Server across the
network to CICS Transaction Server for z/OS. The security identity of the user is
preserved for use during CICS authorization and for subsequent accountability and
trace purposes.

Chapter 7. Security 169

Identity propagation provides a way of authorizing requests by associating security
information in WebSphere Application Server with security information in CICS
Transaction Server for z/OS.

CICS Transaction Gateway supports identity propagation for JEE client requests
from WebSphere Application Server to CICS Transaction Server for z/OS. Identity
propagation is supported when using a CICS Transaction Gateway ECI resource
adapter and an IPIC connection to CICS.

Distributed identities can be tracked using the request monitoring exits, see
“Request monitoring exits” on page 257 for more information.

Benefits of using identity propagation
Identity propagation provides end-to-end security and consistent accountability,
when applications in WebSphere Application Server are connected to CICS.

Identity propagation provides the following benefits:
v An end-to-end solution for security when connecting WebSphere Application

Server to CICS Transaction Server for z/OS.
v A unified mechanism for authentication using security information stored in

different formats on different user registries such as IBM Tivoli Directory Server
or WebSphere Portal. For more information, see the documentation for
WebSphere Application Server.

v “Single sign-on” authentication of users in WebSphere Application Server before
they are authorized in CICS Transaction Server for z/OS.

v Consistent accountability.

Configurations that support identity propagation
A range of products and network topologies support identity propagation.

Products that support identity propagation

The following IBM products support identity propagation:
v All versions of WebSphere Application Server supported by CICS Transaction

Gateway. For more information, see “Supported JEE application servers” on
page 13.

v Any user registry supported by WebSphere Application Server. For more
information, see the documentation for WebSphere Application Server.

v CICS Transaction Server for z/OS Version 4.1 (with APAR PK83741 and APAR
PK95579), or later. For more information, see the CICS Transaction Server for
z/OS information center.

v IBM z/OS Version 1.11 or later.
v IBM RACF Security Server for z/OS Version 5 or later. For more information, see

Introduction to CICS Security with RACF in the CICS Transaction Server for z/OS
information center.

Network topology for using identity propagation

Identity propagation is supported only in local mode and only on IPIC connections
to CICS configured with SSL.

For more information about the topologies supported by CICS Transaction
Gateway, see “Deployment topologies” on page 4.

170 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

The following example shows identity propagation in a topology with CICS
Transaction Gateway in local mode:

The user security information consists of a distinguished name and a realm name.
The distinguished name uniquely identifies an entry within a user registry. The
realm name represents a named collection of users and groups that can be used in
a specific security context.

When the user has been authenticated in WebSphere Application Server, the
security information is passed unchanged as a distributed identity to CICS. The
distributed identity is mapped to a RACF user ID, which is used for authorization
by CICS.

Precedence of distributed identities over asserted user IDs
A distributed identity takes precedence over user IDs that have been asserted
directly using other mechanisms.

The identity used by CICS Transaction Server depends on whether a distributed
identity has been specified and whether a valid mapping exists:

Distributed identity
supplied and valid RACF
mapping exists

Distributed identity
supplied but valid RACF
mapping does not exist

Distributed identity not
supplied

The distributed identity is
used and any specified user
ID is ignored.

If a user ID is specified and
is valid, that user ID is used.

If a user ID is specified and
is valid, that user ID is used.

If a user is not authenticated by the WebSphere Application Server user registry, a
distributed identity is not used even if the CICS Transaction Gateway identity
propagation login module is enabled. In this situation, if a user ID has been
specified in the connection factory or application, that user ID is used.

Figure 16. Example of identity propagation in a local mode topology

Chapter 7. Security 171

172 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 8. Performance

The performance of individual components, including CICS Transaction Gateway,
can affect overall system performance.
Related reference:
“List of statistics” on page 269
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 265
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Performance indicators and factors
The performance of CICS Transaction Gateway can be measured to understand the
factors that affect performance, and to use the information provided to optimize
that performance.

Performance indicators

Performance indicators include the following information:
v Processor loading
v Data transfer rates
v Response times, these are useful performance indicators because they provide an

understanding of which system components most affect performance.

This information helps you understand the factors that affect CICS Transaction
Gateway performance and achieve the best performance from your system.

Factors that can affect performance

System components that can affect performance include:
v Web browsers
v Routers and firewalls
v Application servers (Web or JEE)
v CICS Transaction Gateway
v CICS servers

The performance of CICS Transaction Gateway also depends on whether:
v Java objects such as connections are reused
v CICS Transaction Gateway is running in local or remote mode
v Requests are synchronous or asynchronous, and whether requests are part of

two-phase commit transactions
v Tracing is enabled

Factors that can improve performance

Factors that can help improve performance include:

© Copyright IBM Corp. 1998, 2011 173

v The multithreaded model and thread pooling to ensure the efficient reuse of
connections

v Performance tuning and the use of default values to give a good balance
between resource use and the ability to handle increased workload (scalability)

v Data compression can reduce the amount of data flowed over network
connections. For more information see . the client and server compression
sample information in the Programming Guide.

Monitoring performance

Ways of monitoring performance include:
v Performance monitoring tools such as RMF (Resource Management Facility),

request monitoring exits, and IBM Tivoli OMEGAMON XE for CICS (on z/OS)
v Statistics for monitoring and managing system resources. For more information

see “Statistics and monitoring” on page 7.

Data compression
Data compression involves encoding data so that it contains fewer bits than its
non-encoded equivalent.

Data is encoded using a specific encoding algorithm. If data is sent over a network
connection the sender and receiver must both understand the encoding algorithm.

Request flows
The following figures illustrate the flows that occur between the Client application
and the CICS Transaction Gateway in remote and local modes. If the Client
application is running under WebSphere Application Server, connection pooling
can be used in remote mode to reduce the overheads associated with establishing
connections.

174 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Figure 17. Request flows in remote mode

Chapter 8. Performance 175

Threading model
A multithreaded model provides threads that are used for handling network
connections. Threads are also assigned to the requests made by remote clients and
the replies received from CICS.

The threading model uses the following objects:
v Connection manager threads. These manage the connections from a particular

remote Client. When it receives a request, it allocates a worker thread from a
pool of available worker threads to run the request.

v Worker threads. These are allocated to run requests from remote Clients. When a
worker thread has finished processing it returns to the pool of available worker
threads.

You can set both the initial and maximum sizes of the resource pools for these
objects; see “Configuring Gateway daemon settings” on page 70 for information on
setting configuration parameters. You can also specify these limits when you start
the CICS Transaction Gateway; see “Starting the Gateway daemon with override
options” on page 193.

Figure 18. Request flows in local mode

176 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The following table shows thread limits that should be considered when setting the
number of connection manager and worker threads on the various operating
systems:

Table 20. Thread limits

Operating
system

System-wide limit of
the maximum number
of threads

Process limit of the number of threads

AIX 262,143 32,768

HP-UX No limit (30,000 kernel
threads)

30,000 (refer to the max_thread_proc parameter
under Configurable Kernel Parameters in the
SAM utility)

Linux Equal to the maximum
number of processes

1024 (refer to your Linux Threads
documentation for more information)

Solaris No limit No limit

The threading model is illustrated in the following figure:

Figure 19. CICS Transaction Gateway Threading model for TCP/IP and SSL protocols using a persistent socket

Chapter 8. Performance 177

Related reference:
“List of statistics” on page 269
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 265
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Tuning your configuration parameters
You can tune the performance of your system by modifying values such as the
number of connection manager threads and worker threads. Other values can also
be modified to improve performance.

The default values that have been chosen for configuration and tuning aim to give
a compromise between:
v Limiting the system resources used by CICS Transaction Gateway after it has

started
v Giving the CICS Transaction Gateway the flexibility to handle increases in

workload

The following factors affect performance; you might need to alter the default
configuration to suit your system environment:
v Connection manager threads
v Worker threads
v Communications protocol
v Display TCP/IP host names
v Timeout values
v Connection logging settings

Connection manager threads

If the value specified for Initial number of connection manager threads is too
high, your system will waste resources managing the threads that are not needed.
See “Initial number of connection manager threads” on page 70 for more
information.

If the value for Maximum number of connection manager threads is too low to
meet all requests from applications, each new request that requires a connection
manager thread must wait for a thread to become available. If the waiting time
exceeds the value specified in the Connection timeout parameter, the CICS
Transaction Gateway refuses the connection. See “Maximum number of connection
manager threads” on page 70 for more information.

The design of your applications determines the number of connection manager
threads you need. Incoming connections to CICS Transaction Gateway could be
from a servlet, with each copy of the servlet issuing its own ECI requests, but
sharing a single connection manager thread. Alternatively, the application might
create a pool of connections, and ECI requests could be issued onto any connection
from the pool.

178 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

CICS Transaction Gateway creates a new connection manager thread, and TCP/IP
connection, each time a Java client side application creates a new JavaGateway
object. This means that system performance is better if your applications issue
many ECI requests using the same JavaGateway object, and from within the same
thread, than if they create a new JavaGateway object for each request.

Flowing multiple requests through the same JavaGateway object also reduces the
system resources required to create, and to destroy, JavaGateway objects.

Worker threads

worker threads handle outbound connections between CICS Transaction Gateway
and your CICS server. The design of your applications, and the workload that you
need to support, affects the number of worker threads you need: the longer your
CICS transactions remain in process, the more worker threads you need to
maintain a given transaction rate.

If the value specified for Initial number of worker threads is too high, CICS
Transaction Gateway uses resources to manage threads that it does not need.

If the value is too low, CICS Transaction Gateway uses resources to search for
available worker threads.

See “Initial number of worker threads” on page 71 for more information about the
Initial number of worker threads setting.

When using ECI to call the same CICS program, you can estimate the number of
worker threads you need to support a given workload by multiplying the
following values:
v The number of transactions per second passing through CICS Transaction

Gateway
v The average transaction response time through CICS Transaction Gateway in

seconds. You can use the CS_LAVRESP statistic to calculate this response time.

Communications protocol

Your choice of protocol depends on the nature of your client applications.

Display TCP/IP host names

Selecting this option might cause severe performance reduction on some systems.
See “Display TCP/IP hostnames” on page 76.

Timeout values

It is unlikely that you can improve performance by changing the default timeout
values. However, you might need to change them for particular applications. See
“Configuring Gateway daemon settings” on page 70 for more information on these
configuration parameters.

Connection logging

The Gateway configuration setting, Log Client connections and disconnections,
controls whether or not CICS Transaction Gateway writes a message each time that
a client application program connects to, or disconnects from, the Gateway

Chapter 8. Performance 179

daemon. The default is for these messages not to be written. Selecting this setting
can significantly reduce performance, especially in a system where client
application programs connect and disconnect frequently. See “Log Client
connections and disconnections” on page 76.
Related reference:
“List of statistics” on page 269
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 265
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Java considerations
Performance considerations related to Java include the size of the Java heap,
whether or not the JIT (Just In Time compiler) is enabled, and whether or not Java
gateway objects are reused.

Maximum heap size

If your system requires large numbers of connection manager threads you might
need to increase the heap size to improve performance. How you set the heap size
depends on your JVM. See the documentation for your JVM for more information.

“System environment statistics” on page 277 are available to show the following
Java statistical information:
v JVM minimum and maximum heap settings
v JVM heap size after last garbage collection (GC)
v Garbage collection statistics

Just-In-Time (JIT) compiler

Use the java -version command to find whether or not the JIT is enabled; it is
enabled by default. Immediately after a CICS Transaction Gateway has started,
performance might be relatively slow because of JIT overheads. See your JVM
documentation for information on JIT techniques.

JavaGateway objects

Performance is better if you flow multiple requests using the same JavaGateway
object than if you create a new JavaGateway object with each request. Whenever
you create and destroy a new JavaGateway object you use additional system
resources for creation and destruction of the object itself, creation and destruction
of any associated sockets, garbage collection.

Other system factors
A range of other system factors can affect performance.

Additional factors that can affect system performance include:
v Mode (local or remote)
v ECI COMMAREA size

180 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v ECI containers
v CICS server transactions
v Synchronous or asynchronous ECI calls
v Extended logical units of work
v TCP/IP failure

ECI COMMAREA size

The size of the ECI COMMAREA has a large effect on performance. If you make
the COMMAREA larger, you need more system resources to process it, and your
response times are longer.

The setCommareaOutboundLength method, which is part of the ECIRequest
object, is particularly important to performance. The amount of data that an
application sends in the COMMAREA flow to CICS might be small, and the
amount of data expected from CICS in return might be unknown. To improve
performance significantly, and reduce network loading:
v Use the setCommareaOutboundLength method to ensure that you send only

the required data in the outbound flow to CICS, and not the full
Commarea_Length.
CICS removes any null data from the COMMAREA in the return flow, and the
Client daemon automatically pads out the nulls and returns the full
COMMAREA to the application.

v Use the getInboundDataLength method to show the amount of non-null data
returned.

v You can use either the setCommareaInbound method or null stripping. Use
setCommareaInbound when the size of inbound data is known in advance.

See the information about ECI performance considerations when using
COMMAREAs in the CICS Transaction Gateway for Multiplatforms: Programming
Guide for more information.

ECI containers

The number and size of ECI containers have an effect on performance. As you
increase the number and size of your containers, you need more system resources
to process them, and your response times are longer. Load balancing can help
control the flow of your data if you use large containers with multiple
simultaneous requests across a single gateway.

CICS server transactions

The design of your CICS server transactions affects the performance of your
system. The response time through the CICS Transaction Gateway might increase if
your transactions have the following characteristics:
v Have to wait for shared resources, for example data sets or applications, to

become available
v Make remote links to other CICS systems
v Are unnecessarily complex

See the performance and tuning documentation for your CICS server system for
information on how to get the best performance.

Chapter 8. Performance 181

Synchronous or asynchronous ECI calls

CICS Transaction Gateway has to do less processing to handle a synchronous ECI
call than to handle an equivalent asynchronous call. Also, synchronous ECI calls
create fewer network flows than asynchronous calls. This means that synchronous
ECI calls give better performance than asynchronous calls.

Extended logical units of work

Take care when extending a logical unit of work across multiple program link calls
that might span a long time period (for example, user thinking time). The logical
unit of work holds various locks, and other CICS resources, on the server. This
might cause delays to other users who are waiting for the same locks and
resources.

Also, each logical unit of work occupies one CICS non-facility task for the duration
of its execution. This means that you must define enough free tasks in the CICS
server to service the maximum expected number of concurrent calls.

Performance considerations for heavy IPIC workloads
When running the Gateway daemon under load and using IPIC connected servers,
you might need to increase the size of the JVM heap for the Gateway daemon if
performance problems are encountered.

For information about how statistics might indicate that a JVM is short of heap
storage see JVM stress causing poor performance in the Gateway daemon.

While the default maximum heap size (128MB) is adequate for an SNA or TCP/IP
workload, it might be necessary to increase this to 256MB or 512MB for an IPIC
workload. Ensure that the region size is increased accordingly to match any
increases in heap size, otherwise the Gateway daemon might fail with a
java.lang.OutOfMemory error.

IPIC provides the ability to use more than 250 worker threads in a single Gateway.

Check the value of the statistic WT_CCURR (current number of worker threads) to
see if the 250 worker limit is being reached by the workload.

Performance considerations with large containers
When running with large container sizes, greater than 1 MB, it might be necessary
to increase the JVM resources for the Gateway daemon and CICS.

The -Xmx and -Xss parameters might need to be changed for the Gateway daemon.
v Increase the maximum amount of heap memory available to the Gateway

daemon using the -Xmx parameter. Failure to increase the heap could result in a
JVM exception as a result of a java.lang.OutOfMemory error. Be aware that
increasing the maximum heap size will reduce the amount of available process
memory and therefore the number of Java threads that can be created. See
“Avoiding out of memory conditions” on page 187 for more information.

v Increase the stack available to the Java threads using the -Xss parameter. The
default value of -Xss is 256 KB with Java version 6.0. The default settings can be
found in the Java Diagnostics Guide. Running with the a 256 KB setting for -Xss is

182 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

suitable for container sizes up to 50 MB. Failure to increase the Java thread stack
size might result in a JVM exception as a result of a
java.lang.StackOverflowError.

The following values might need to increase for a CICS TS server.
v MEMLIMIT - Is the limit for above-the-bar storage for the CICS server. Abend

codes AITJ and APCG are an indication that MEMLIMIT might be too small.
v EDSALIM - The EDSALIM system initialization parameter specifies the

upper-limit of the total amount of storage within which CICS can allocate the
individual extended dynamic storage areas (EDSAs) that reside above 16 MB but
below 2 GB. Abend code AIPE is an indication that the EDSALIM memory
might be too small.

For more information about abend codes and their meaning, see CICS Transaction
Servers.

Tracing and performance
Full tracing of CICS Transaction Gateway can degrade system performance and
ideally not be used in a production environment.

Tracing the Client or the Gateway daemon reduces performance significantly. Client
trace means all the components of the CICS Transaction Gateway that go to the
Client trace file. Where possible, try to measure response times, without using
tracing, through the different parts of your system, to find where delays are
happening. For example, you can measure response times at the user application,
or through the facilities provided by CICS and WebSphere Application Server.

The Client trace provides a greater level of control than is currently available for
Gateway trace. If you need to trace the Client, take the following steps to lessen
the impact on performance:
v Use memory mapped trace whenever possible; see “Memory mapped tracing”

on page 247. This should be suitable in most cases, unless it was not possible to
flush the buffers, for example.

v Start by specifying the API.2, CCL and DRV.1 components. If this does not
isolate the problem, include extra components as necessary.

IBM does not recommend the use of the full CICS Transaction Gateway trace to
monitor performance in a production environment.

Performance monitoring tools
The performance monitoring tools provide a way of measuring system
performance characteristics such as transaction throughput and processor usage.

Performance monitoring tools are available on the AIX operating system. Similar
tools are available on other UNIX and Linux operating systems.

Refer also to the performance and tuning documentation for WebSphere, SNA,
TCP/IP, CICS Transaction Server for z/OS, and TXSeries, and the documentation
supplied with your operating system.

Chapter 8. Performance 183

http://www-01.ibm.com/software/htp/cics/tserver/
http://www-01.ibm.com/software/htp/cics/tserver/

vmstat

This tool provides statistics about virtual memory, disks, traps, and processor
activity. Use this tool to determine system loading.

iostat

This tool provides processor statistics and I/O statistics for tty, disks, and CD-ROM
drives.

sar (system activity report)

This tool collects, reports, or saves system activity information.

netstat

This tool shows network status.

IBM Performance Toolbox

This provides a set of useful performance tools that are integrated into a graphical
user interface.Versions are available for the Solaris and HP-UX operating systems.

Statistics and performance assessment
Use statistics to assess system performance and to identify and resolve
performance problems.

Indicators of performance problems are poor response time, and out of memory
conditions. Statistics provide the information needed to improve system
performance.

Investigating poor response times
Different system configurations and loads can lead to poor response times. Use the
statistics provided by CICS Transaction Gateway to identify possible causes of poor
response times and improve them.

About this task

You can use the statistics that are generated by CICS Transaction Gateway to
establish the reasons why response times might be poor. It contains advice for
improving poor response times:
v “Slow transaction response times in CICS” on page 185
v “Worker thread queuing in the Gateway daemon” on page 185
v “I/O errors during connection to the Gateway daemon” on page 185
v “Constraints in the network between the remote client and the Gateway

daemon” on page 186
v “Constraints in the network between CICS Transaction Gateway and CICS” on

page 186
v “JVM stress causing poor performance in the Gateway daemon” on page 186

184 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Slow transaction response times in CICS
About this task

Slow transaction processing times in CICS cause increased response times.
v Scenario: This can occur when a CICS system becomes constrained, or when

interconnected database systems cause delays in transaction processing.
v Statistics to consider: CS_IAVRESP, CSx_IAVRESP.

If the value of CS_IAVRESP is higher than you anticipate for the transaction, a
CICS system might be constrained, or interconnected database systems might be
causing delays in transaction processing. If one CICS system in particular is
experiencing slow response times, investigate the value of CSx_IAVRESP.

v Solution: Investigate CICS response times using CICS monitoring facilities and
resolve any constraints that you find. Consider the setting of the MAXTASK and
TRANCLASS CICS parameters.

Worker thread queuing in the Gateway daemon
About this task

Transaction requests queue in the Gateway daemon due to high usage of worker
threads.
v Scenario: This can occur when the number of allocated connection managers is

greater than the number of available worker threads.
v Statistics to consider: WT_ITIMEOUTS, WT_CCURR, WT_IALLOCHI.

1. Have worker threads been queuing? You can establish whether this is the
case by considering the value in WT_ITIMEOUTS. If:
WT_ITIMEOUTS > 0

worker threads have been queuing.
2. Are all worker threads in use? If:

WT_CCURR = WT_IALLOCHI

all worker threads are in use.
v Solution: Increase the number of worker threads by amending the value of the

maxworker configuration parameter to be equal to that of the number of
connection managers. Also consider reducing the value of the workertimeout
configuration parameter if the queuing time is unacceptably high.

I/O errors during connection to the Gateway daemon
About this task

An insufficient number of configured connection managers in the Gateway daemon
causes I/O errors in a remote client.
v Scenario: This can occur when all available connection manager threads are

allocated to remote clients.
v Statistics to consider: CM_IALLOCHI, CM_SMAX.

If:
CM_IALLOCHI = CM_SMAX

all available connection manager threads are allocated to remote clients.
v Solution: Increase the maximum number of connection managers by increasing

the value of the maxconnect configuration parameter. Consider the maximum
number of worker threads that you have defined.

Chapter 8. Performance 185

Constraints in the network between the remote client and the
Gateway daemon
About this task

The transmission of large amounts of data causes increased response times due to
high network latency over the TCP/IP connection with the Gateway daemon.
v Scenario: This can occur when large payloads, such as 32 KB COMMAREAs, are

transmitted without the network payload being optimized using null truncation.
v Statistics to consider: GD_LAVRESP, GD_IAVRESP, GD_IREQDATA,

GD_IRESPDATA.
If the response time at the remote client is higher than the value reported in
GD_LAVRESP or GD_IAVRESP, there might be constraints in the network
between the remote client and the Gateway daemon.

v Solution: Select one or both of the following actions:
– Investigate and amend the network bandwidth.
– Modify your application design to optimize data flows by using

COMMAREA null truncation, or by using the
setCommareaOutboundLength() or setCommareaInboundLength() method.

– If your application is using containers, modify the design of the application to
use smaller containers.

Constraints in the network between CICS Transaction Gateway
and CICS
About this task

The transmission of large amounts of data causes increased response times due to
network latency over the connection between CICS Transaction Gateway and CICS.
v Scenario: This can occur when large payloads, such as 32 KB COMMAREAs, are

transmitted without the network payload being optimized using null truncation.
v Statistics to consider: GD_IAVRESP, CS_IAVRESP.

If:
GD_IAVRESP - CS_IAVRESP = a high value

there might be constraints in the network between CICS Transaction Gateway
and CICS.

v Solution: Select one or more of the following actions:
– Investigate and amend the network bandwidth.
– Modify your application design to optimize data flows by using

COMMAREA null truncation, or by using the
setCommareaOutboundLength() or setCommareaInboundLength() method.

– If you are using SNA over TCP/IP, consider a network solution that uses
TCP/IP only.

JVM stress causing poor performance in the Gateway daemon
About this task

In certain circumstances, the Gateway daemon can suffer poor performance if it
spends a large proportion of its time allocating storage or performing garbage
collection.
v Scenario: This can occur if the default JVM heap size (128 MB) is used in an

environment where large payloads (those greater than 16 KB) are in use and a
large number of worker threads (more than 200) are in use concurrently.

186 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v Statistics to consider: GD_IAVRESP, CS_IAVRESP, CM_IALLOCHI,
WT_IALLOCHI, SE_CHEAPGCMIN, SE_SHEAPMAX, SE_IGCTIME,
GD_IRUNTIME, SE_IGCCOUNT.
1. Is Gateway processing time high? You can establish whether this is the case

by using these statistics: GD_IAVRESP and CS_IAVRESP. If:
GD_IAVRESP-CS_IAVRESP > 100 milliseconds

Gateway processing time is high.
2. Are connection managers queuing for worker threads? You can establish

whether this is the case by using these statistics: CM_IALLOCHI and
WT_IALLOCHI. If:
(CM_IALLOCHI > WT_IALLOCHI) and WT_IALLOCHI > 0

connection managers are queuing for worker threads.
3. Is JVM garbage collection (GC) constrained? You can establish whether this is

the case by using the following statistics: SE_CHEAPGCMIN,
SE_SHEAPMAX, SE_IGCTIME, GD_IRUNTIME, SE_IGCCOUNT. If any of
these three conditions are true the JVM GC is constrained:
a. GC does not free at least 50% of the heap, that is

SE_CHEAPGCMIN/SE_SHEAPMAX > 50%
b. Time spent in GC is more than 10% of processing time, that is

SE_IGCTIME/1000/GD_IRUNTIME > 10%
c. Period between GC events is less than once per second, that is

GD_IRUNTIME/SE_IGCCOUNT < 1s

Note: SE_IGCTIME is measured in milliseconds and GD_IRUNTIME is
measured in seconds.

v Solution: Increase Gateway daemon minimum and maximum JVM heap sizes.

Avoiding out of memory conditions
Avoid out of memory conditions by using CICS Transaction Gateway statistics.

You can use the statistics that are generated by CICS Transaction Gateway to
establish whether the amount of virtual storage being used by CICS Transaction
Gateway might exceed the amount that is available to the CICS Transaction
Gateway address space.
v CM_CCURR
v CM_SMAX
v SE_SHEAPMAX
v WT_SMAX
v WT_CCURR

The amount of memory per process in which to run the Gateway daemon and
Client daemon processes is determined by the underlying operating system. Use
the tools provided by the operating system to monitor memory usage for the
Client and Gateway daemons.
v Client daemon memory usage up to 100MB is generally regarded as normal.

However memory usage greater than this should still be within the process
limits and should not represent a problem.

v Normal usage of the Gateway daemon generally involves around 100 worker
threads and 100 connection manager threads. If the total number of threads
(worker and connection manager) exceeds 200, this would be regarded as high
usage.

Chapter 8. Performance 187

Note that, although increasing the heap size of the underlying JVM of the Gateway
daemon will increase the time between garbage collection events and will
generally be beneficial for performance, any improvements will gradually diminish
beyond a certain size. Increasing the heap size to unnecessarily high values
reduces the amount of process memory available for creating connection manager
and worker threads, and increases the risk of hitting an out of memory condition
within the JVM.

A high number of total threads (more than 200), or the use of IPIC connections,
will result in higher demand for JVM heap allocation; in such circumstances, JVM
garbage collection might become constrained. Increasing the heap size to 256 MB is
adequate for most applications. See “JVM stress causing poor performance in the
Gateway daemon” on page 186 for details about JVM analysis.

188 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 9. High availability

High availability of connections to CICS servers uses dynamic server selection to
allow the client application to delegate the choice of CICS server to the Gateway
daemon, and to provide flexibility for deployment or change in environment.

Dynamic server selection (DSS) provides the CICS Transaction Gateway
administrator with a mechanism for dynamically controlling the flow of work to
CICS servers in a high availability operating environment.

A default CICS server is a simple dynamic server selection mechanism and this can
be used either on its own, or in combination with another DSS mechanism.

CICS request exit
A CICS request exit program can be called by CICS Transaction Gateway at run
time to dynamically select a CICS server.

A CICS request exit typically decides which CICS server to select from the CICS
server name, user ID, and transaction ID passed with the request.

If the CICS request exit does not specify the name of a CICS server, CICS
Transaction Gateway uses the default CICS server, if one has been defined.

If a retryable error occurs and the retry limit has not been reached, CICS
Transaction Gateway calls the CICS request exit again. If the retry count limit has
been reached, CICS Transaction Gateway returns the error that occurred on the last
retry.
Related information:
Configuring a CICS request exit
The cicsrequestexit parameter specifies a class that performs dynamic CICS
server selection for ECI requests and ESI requests.
Creating a CICS request exit
CICS request exit programming reference

© Copyright IBM Corp. 1998, 2011 189

|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|
|

|

|

190 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 10. Operating

When operating CICS Transaction Gateway, it is important to start the product,
and the services it uses, in the correct sequence. It is also important to shut down
everything in the correct sequence, so that inflight transactions can complete.

Starting CICS Transaction Gateway
You can start CICS Transaction Gateway in console mode or as a background task.

To start CICS Transaction Gateway in console mode use the ctgstart command. For
more information about ctgstart see “Starting and stopping the Gateway daemon”
on page 193.

To start CICS Transaction Gateway as a background task use the ctgd command.
For more information about ctgd see “Running the Gateway daemon as a
background process” on page 196.

The Client daemon must start before the Gateway daemon. The ctgstart and ctgd
commands both start the Client daemon, if it has not already been started, before
they start the Gateway daemon.

If a local administration port has not been explicitly configured, the Gateway
daemon listens for administration requests on the default port. For more
information see “Port for local administration” on page 74.

Stopping CICS Transaction Gateway
When you are stopping CICS Transaction Gateway, stop the Gateway daemons in
the order as follows.
1. Gateway daemon. See “Stopping the Gateway daemon” on page 195 for details.
2. Client daemon. See “Administering the Client daemon” on page 204 for details.

Shutting down the Client daemon while the Gateway daemon is still running is
not supported. If the Client daemon is shut down while the Gateway daemon is
still running, Client applications fail with ECI_ERR_SYSTEM_ERROR or
CICS_EPI_ERR_FAILED errors, and the Client daemon is not automatically
restarted. The same issue applies if the Client daemon is shut down when a long
running user application is still running. To resolve the situation, shut down and
restart CICS Transaction Gateway.

You can also shut down CICS transaction Gateway by issuing the ctgadmin -a shut
command. For more information see “Shutting down the Gateway daemon” on
page 202.

Normal shutdown

During a normal shutdown, new work is not allowed to start, and Client
applications might not connect to the Gateway daemon. A normal shutdown has
two phases:

© Copyright IBM Corp. 1998, 2011 191

1. Initiation: during this phase, the Gateway daemon waits until all work has
finished, or until all Client applications are disconnected from the Gateway
daemon.

2. Completion: during this phase, the Gateway daemon stops.

The following ECI requests are accepted during the initiation phase of a normal
shutdown:

A Client application tries to flow an ECI request (SYNC or ASYNC) which
continues a logical unit of work.
A Client application tries to flow an ECI Request (SYNC or ASYNC) which
commits or backs out a logical unit of work.
A Client application tries to get a reply or wait for a reply.

The following EPI requests are accepted during the initiation phase of a normal
shutdown:

A Client application tries to flow a reply to a conversational transaction.
A Client application tries to flow a request to disconnect or purge a terminal.
A Client application tries to flow a request to get event.

All other requests, or attempts to open a new connection are rejected, and an
IOException is thrown.

The following EPI requests allow a normal shutdown:
ECI_GET_REPLY_WAIT
ECI_GET_SPECIFIC_REPLY_WAIT
EPI_GET_EVENT (the waitState is EPI_WAIT, for example an
EPIRequest.getEvent call with the second parameter set to EPI_WAIT sets the
request object to wait for events).

Other calls that are waiting to finish prevent the Gateway daemon from quiescing.

Changing the system time
The system time can be changed while CICS Transaction Gateway is running. If
you do this, active processes respond to the changed time and not to the elapsed
time.

When setting clocks forward or back, the behavior of timeout settings will change.
When the clock is set back the elapsed time for a timeout might be increased.
When the clock is set forward a timeout might expire earlier. The maximum
elapsed time for a timeout will be the original timeout value plus the value of the
change in time. For example, if the current time is 19:00, and a timeout is set to
expire 5 minutes from now; the effect of setting the clock back by 1 hour is to
increase the value of the timeout by 1 hour. The total elapsed time for the timeout
is 1 hour and 5 minutes.

The following time outs are effected by this change:
v Client daemon connection
v Client daemon server retry interval
v ECI
v EPI install
v EPI read
v Gateway daemon close

192 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

v Gateway daemon idle
v Gateway daemon ping
v Server idle times
v Worker thread available thread
v Workload Manager server group

Operating the Gateway daemon
Operating the Gateway daemon involves starting and stopping this component,
and performing administrative tasks such as Gateway daemon trace, dump and
statistics collection.

Starting and stopping the Gateway daemon
This information describes how to start and stop the Gateway daemon.

Starting the Gateway daemon with preset options
The Gateway daemon will not start without a valid ctg.ini file.

To start the Gateway daemon with the options specified in ctg.ini, type ctgstart at
the command prompt and press Enter.

A console session starts, and messages are displayed showing the values being
used for TCP/IP.

Starting the Gateway daemon with override options
You can specify options to override parameter values specified in the configuration
file, ctg.ini, or to override default JVM settings when starting CICS Transaction
Gateway.

Specifying startup options

To specify one or more options at startup:
1. From a command line prompt, type ctgstart followed by the startup options

that you require.
2. Press Enter.

A console session starts, and the system displays a series of messages that show
the options currently being used for TCP/IP.

To list the startup options and their purposes, type ctgstart -?

List of options

These options are available on the ctgstart command (options are described in
same order as they are listed when you type ctgstart -? c):

-port=number
Specifies the TCP/IP port number on which the Gateway daemon will listen.

-sslport=number
Specifies the TCP/IP port number on which the Gateway daemon will listen
for SSL requests.

-keyring=file
Specifies the SSL key ring path and file name.

Chapter 10. Operating 193

-keyringpw=password
Specifies the SSL key ring password. An error message is generated if the
keyringpw parameter is used on its own without the corresponding keyring
parameter in the ctgstart - command line.

-adminport=number
Specifies the port used to communicate with the Gateway daemon when
controlling the Gateway daemon through the ctgadmin command.

-statsport=number
Specifies the TCP/IP port number on which the Gateway daemon will listen
for statistics API requests.

-initconnect=number
Specifies an initial number of connection manager threads. See “Tuning your
configuration parameters” on page 178 for performance information.

-maxconnect=number
Specifies a maximum number of connection manager threads. If you set this
value to -1, no limits are applied to the number of connection manager threads.
See “Tuning your configuration parameters” on page 178 for performance
information.

-initworker=number
Specifies an initial number of worker threads. See “Tuning your configuration
parameters” on page 178 for performance information.

-maxworker=number
Specifies a maximum number of worker threads. If you set this value to -1, no
limits are applied to the number of connection manager threads. See “Tuning
your configuration parameters” on page 178 for performance information.

-trace
Enables standard tracing (see “Tracing” on page 245). By default, the trace
output shows only the first 128 bytes of any data blocks (for example the
COMMAREA, or network flows). Other useful information, including the
value of the CLASSPATH variable, and the code page, is shown at the start of
the trace output.

Trace output is written to stderr, unless you use the -tfile option, or have used
the Configuration Tool to define a default trace destination. No trace is written
if the Gateway daemon does not have permission to write to the specified file.
Each time the Gateway daemon is started with trace enabled, the trace file is
overwritten with the new trace.

-quiet
Disables the reading of input from the console and disables writing to stdout.

-dnsnames
Enables the display of symbolic TCP/IP host names in messages. See “Display
TCP/IP hostnames” on page 76 for more information.

-tfile=pathname
If tracing is enabled, trace output is written to the file specified in pathname.
This option overrides the default destination for trace output (see the -trace
option).

-x Enables full debug tracing (see “Tracing” on page 245). By default, the trace
output shows the whole of any data blocks (for example the COMMAREA, or
network flows). It also displays more information about the internal Gateway
daemon processing than the standard trace. See the -trace and -tfile options for
information on the destination for trace output.

194 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Debug tracing significantly decreases performance.

-tfilesize=number
Specifies the maximum size, in kilobytes, of the trace output file.

-truncationsize=number
The value number specifies the maximum size of any data blocks that are
shown in the trace. You can use this option with either the -trace or -x options
to override the default size. Any positive integer is valid. If you specify a value
of 0, no data blocks are shown in the trace.

-dumpoffset=number
The value number specifies the offset from which displays of any data blocks
start. If the offset is greater than the total length of data to be displayed, an
offset of 0 is used.

-stack
Enables Java exception stack tracing (see “Tracing” on page 245). Java
exceptions are traced, including those expected during typical operation.
Expected exceptions include:
v An IOException resulting from a Java Client application ending or

disconnecting from a network protocol.
v An InterruptedException resulting from a CICS Transaction Gateway

protocol handler timeout such as the idle timeout, or a ping timeout.

No other trace output is created. See the -trace and -tfile options for
information on the destination for trace output.

-j Passes an argument to the JVM. For example, -j-D<name>=<value> sets a JVM
system property. See the JVM command line interpreter help for guidance in
using this option. You can pass multiple arguments to the JVM. Specify the -j
option multiple times to pass multiple arguments to the JVM.

-classpath=classpath
Specifies additional entries to append to JVM classpath that are used when
launching the JVM. For example, the location of a jar file containing request
exits.

-c Passes an argument to the Client daemon control program cicscli. For example
ctgstart -c-s -c-d -c-m=all will call cicscli -s -d -m=all. For details of
which options can be passed to the Client daemon, see “Administering the
Client daemon” on page 204 section.

-requestExits=exits
List of classes to be used for request exit monitoring.

Stopping the Gateway daemon
There are two types of shutdown: normal shutdown and immediate shutdown.

During normal shutdown, the Gateway daemon waits for work in progress to
complete. During this time, new work is not allowed to start. When work has
completed the Gateway daemon shuts down.

During immediate shutdown, outstanding work is terminated abruptly. Existing
connections are broken; requests for new connections are refused. The Gateway
daemon then shuts down.

You can perform an immediate shutdown if a normal shutdown is too slow. You
cannot request a normal shutdown after you have issued the command for an
immediate shutdown.

Chapter 10. Operating 195

To shut down the Gateway daemon:

Use the ctgadmin command. For more information see “Shutting down the
Gateway daemon” on page 202. If you did not start the Gateway daemon with the
-quiet option, you can stop it by typing the correct character and pressing the
Enter key in the console session. Valid shutdown options are:
v Normal shutdown Q or -

v Immediate shutdown I

You cannot use Ctrl+C to stop the Gateway daemon.

For problems stopping the Gateway daemon, see “Gateway daemon fails to shut
down” on page 231 for more information.

Running the Gateway daemon as a background process
You can run the Gateway daemon as a background process. To do this use the
Gateway daemon control program <install_path>/bin/ctgd.

If the Gateway daemon runs as a background process you can complete the
following tasks:
v Define the user and group that the Gateway daemon runs as.
v Configure the Gateway daemon to write information and error logs to file.
v Specify the location of the Gateway daemon configuration file (ctg.ini).
v Start the Gateway daemon with initialization parameters.
v Start and stop the Gateway daemon when the operating system starts and stops.
v Specify the TCP/IP port on which the Gateway daemon listens for local

administration requests. The default port is 2810. The ctgd script does not use
the port specified in the Gateway daemon configuration file.

The command takes start and stop parameters, and can be called during the
startup and shutdown processes of your operating system.

Configuring the ctg.ini file

When the Gateway daemon is run in the background the Gateway daemon log
destination must be set to file, for example:
log@info.dest=file
log@info.parameters=filename=/var/cicscli/cicstg.log;maxfiles=1;filesize=0;

log@error.dest=file
log@error.parameters=filename=/var/cicscli/cicstg.log;maxfiles=1;filesize=0;

Defining the ctgd.conf configuration file

Create a valid <install_path>/bin/ctgd.conf file. The recommended way is to copy
<install_path>/samples/configuration/ctgdsamp.conf and edit the copy. You
should specify the user and group that runs the Gateway daemon. The sample file
contains instructions on how to create a valid configuration file.

To change the location of ctgd.conf, export environment variable $CTGDCONF use
a command that has the following format:
export CTGDCONF=/opt/IBM/cicstg/bin/ctgd.conf

196 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Starting the Gateway daemon as a background process

Use the following command:
ctgd start

The Client daemon must start before the Gateway daemon. If the Client daemon
has not already been started, the ctgd command starts the Client daemon then
starts the Gateway daemon.

Stopping a Gateway daemon that is already running as a
background process

Use the following command:
ctgd stop

This stops the Gateway daemon immediately.

The ctgd command does not stop the Client daemon; for more information see
“cicscli command reference” on page 210.

Starting/stopping the Gateway daemon with the operating
system

Add a symbolic link to <install_path>/bin/ctgd in the appropriate directory, or
edit /etc/inittab. For more information see your operating system documentation.

Gateway daemon administration
Gateway daemon administration tasks include starting and stopping, tracing,
displaying statistics and obtaining JVM dumps.

Use the ctgadmin command to administer the Gateway daemon. See “ctgadmin
command reference” on page 203 for more information.

You can run the ctgadmin command from a script, and check the results
programmatically. See the information about return codes from the ctgadmin
command in the CICS Transaction Gateway for Multiplatforms: Programming Guide for
details of return codes used by the ctgadmin command.

Setting the Gateway trace
To set the Gateway trace issue this command at the command line.
ctgadmin -a trace [-tfile path] [-adminport <port>]

[-tfilesize number] [-tlevel number]
[[-truncationsize number][-dumpoffset number]|-fulldatadump]

If the default port 2810 is not used you must use the -adminport option. See Trace
options for an explanation of the options.

Setting the JNI trace
To set the JNI trace issue the following command at the command line.
ctgadmin -a trace [-jnifile path] [-jnilevel number] [-adminport <port>]

If the default port 2810 is not used you must use the -adminport option. For more
information see “Trace options” on page 198.

Chapter 10. Operating 197

|
|

Querying trace settings
To query trace settings issue this command at the command line.
ctgadmin -a trace [-adminport <port>]

If the default port 2810 is not used you must use the -adminport option. See Trace
options for an explanation of the options.

Trace options
These options are available for use with the ctgadmin -a trace command.

To get help on these options, issue the following command:
ctgadmin -a trace -?

Option Short form Comments

-dumpoffset -of Specifies the offset from which displays
of any data blocks start, for example 512.
If the offset is greater than the total
length of data to be displayed, an offset
of 0 is used. This option applies only to
the Gateway trace, not JNI trace.

You cannot use this together with the
fulldatadump option.

-fulldatadump -fd Sets the dumpoffset to 0 and ignores any
value specified in truncationsize. This
option applies only to the Gateway
trace, not JNI trace.

-jnifile -jf Specifies the name of the output file for
JNI tracing. You must specify a value for
this option. If you do not, an error is
displayed. JNI trace is output as plain
text, and there is no requirement to use
a particular extension for the file name.

-jnilevel -jl
0 Off. No trace information is

output.

1 On.

-tfilesize -ts Specifies the maximum size, in kilobytes,
of the Gateway trace output file, for
example 50000.

-tfile -tf Specifies the output file for Gateway
tracing, for example ./tracefile.trc. If you
do not specify a value for this option,
trace output is sent to the console.

198 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Option Short form Comments

-tlevel -tl Specifies the Gateway trace level.
Permitted values are:

0 Off. No trace information is
output.

1 Exception tracing. Only
exceptions are traced. This is
equivalent to ctgstart -stack.
See“Starting the Gateway
daemon with override options”
on page 193.

2 Trace exceptions, and entry and
exit of methods.

3 Trace exceptions, some
internals, and entry and exit of
methods (equivalent to
ctgstart -trace).

4 Full debug tracing (all trace
points), equivalent to ctgstart
-x).

-truncationsize -tr Specifies the byte at which to stop the
hex dump, for example 2000. It defines
the end point, not the number of bytes
to display. So if on a dump of size 40
you set the dumpoffset to 11, and the
truncationsize to 25, you will see 15
bytes (from 11 to 25).

You cannot use this together with the
fulldatadump option. This option applies
only to the Gateway trace, not JNI trace.

Dumping diagnostic information
Dumps contain diagnostic information that can be used when investigating system
problems. Various options are available when obtaining dumps.

Dump options are available for use with the ctgadmin -a dump command.

To get help on the available dump options, issue the following command:
ctgadmin -a dump -?

If the IBM JVM is used, a subset of the options can be used to provide JVM
dumps. The IBM JVM can produce a Java heap dump, a Java dump, or a Java
system dump. These are produced by a running JVM, and can be requested during
typical operation of the CICS Transaction Gateway. The dumps contain diagnostic
information that can be used when investigating system problems.

For further information on IBM JVM dumps, see the IBM Java Diagnostic Guide at
IBM Java Diagnostic Guide.

Chapter 10. Operating 199

http://www.ibm.com/developerworks/java/jdk/diagnosis/

Parameters

There are no short forms of the parameter names.

Parameter Comments

-all Generates all dumps. This option must be specified as the only option and
cannot be combined with other dump options.

-ctginfo Generates a dump containing information about the configuration of CICS
Transaction Gateway.

-heap (IBM JVM only) Generates a Java heap dump.

-java (IBM JVM only) Generates a Java dump.

-jvm Generates a dump containing current JVM memory usage.

-jvmstack Generates a dump containing only the Java call stack.

-system (IBM JVM only) Generates a Java system dump.

Responses

The Gateway daemon responds to a dump request with a message to the console.

IBM JVM dump responses

Messages from the JVM contain the name of the dump, and indicate whether the
dump was successful. The JVM messages are sent to the Gateway error log.

Possible responses to the dump request are as follows:
The Gateway daemon successfully processed the dump request; the dump
request completed successfully.
Null response received from the Gateway daemon during the dump request;
the Gateway daemon received the dump request, but returned an invalid or
null response.
The dump type is unsupported in the remote JVM; the remote JVM does not
support the requested dump type.
An invalid response was returned from the Gateway daemon during the dump
request; the Gateway daemon received the dump request, but the response
returned was invalid.
The Gateway daemon encountered a serious error while processing the dump
type; the Gateway daemon received the dump request, but an error was
detected.
Some dump types are unsupported in the remote JVM; the remote JVM
executing the Gateway daemon does not support some dump types.

Querying statistics
Options are available for selectively querying statistics.

To query all statistics, issue this command at the command line:
ctgadmin -a stats -gs

To get help on these options, issue the following command:
ctgadmin -a stats -?

200 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Option Short form Comments

-getstats -gs Lists all available statistics.

-getstats=query string -gs=query string Lists statistics for the IDs specified in
query string.

-resourcegroups -rg Lists available resource group IDs

-statids -si Lists available statistical IDs

-statids=resource group ID -si=resource group ID Lists available statistical IDs for the
specified resource group, or list of
resource groups.

-stattype=statistics type -st=statistics type Lists available statistical values for the
specified statistics types.

Related information:
“Displaying statistics” on page 265
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Request monitoring exit control
Options available for commands sent to all configured and active request
monitoring user exits.

To get help on the available rmexit options, issue the following command:
ctgadmin -a rmexit -?

Option Short form Comments

-command=command -cmd=command The command that will be sent to all
configured and active request
monitoring user exits. This is a string.

The eventFired() method is driven with
a RequestEvent command. The
command input data will be included as
a string in the data map with
RequestData key “CommandData”.

CICS request exit control
Options available for commands sent to the configured CICS request exit.

To get help on the available options, issue the following command:
ctgadmin -a crexit -?

Option Short form Comments

-command=command -cmd=command The command that is sent to the
configured CICS request exit. This is a
string.

The eventFired() method is driven with
a RequestEvent command. The
command input data is included as a
string in the data map with
RequestData key “CommandData”.

Chapter 10. Operating 201

|
|

|

|

||||

|||
|
|

|
|
|
|
|
|

Shutting down the Gateway daemon
The shutdown command and available options.

To shut down the Gateway daemon issue this command at the command line:
ctgadmin -a shut [-immediate] [-adminport <port>]

If the default port 2810 is not used you must use the -adminport option.

Options are available for use with the ctgadmin -a shut command.To get help on
these options, issue the following command:
ctgadmin -a shut -?

Option Short form Comments

-immediate -imm Specifies that the Gateway daemon
shuts down immediately. If you do not
specify this option, a normal shutdown
is performed.

Viewing message help
Help is available for CICS Transaction Gateway messages by using an option on
the ctgadmin command.

Usage:

To obtain help for a message, enter the ctgadmin command followed by the -msg
option, then the message number:
ctgadmin -msg nnn[I|E|W]

Where nnn is the message number, and[I|E|W] are optional identifiers that denote
the message severity (information, error, or warning).

Here are some examples:
ctgadmin -msg CTG8897I
ctgadmin -msg CCL9483I
ctgadmin -msg CCL9483
ctgadmin -msg 8897I
ctgadmin -msg 8897
ctgadmin -msg 816

To obtain help for the -msg option itself:
ctgadmin -msg -?

Sample output

Help for error and warning messages is detailed and includes the following
information:
v message number
v message text
v explanation
v system action
v user response

For example:

202 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

CTG8929W Environment variable AUTH_USERID_PASSWORD is not set;
user ID and password authentication is not enabled

Explanation: The environment variable AUTH_USERID_PASSWORD controls whether
or not user IDs and passwords supplied on CICS requests are authenticated.

System action: User ID and password authentication is not enabled.

User response: Set the environment variable AUTH_USERID_PASSWORD to
either ’YES’ or ’NO’. Set this environment variable to YES to enable user ID
and password authentication. Set it to NO to disable user ID and password
authentication.

CTG8218I The command completed successfully

Help for information messages does not have to contain the same level of detailed
and includes the following information:
v message number
v additional information

For example:
CTG6524I Successfully started handler for the ’protocol’ protocol
on port ’port’

This is an information message.

CTG8218I The command completed successfully

For more information see the messages section of the CICS Transaction Gateway
Programming Reference.

Getting help
To get general help or help on a particular action issue one of these commands at
the command line.

Issue the following command for general help:
ctgadmin -?

To get help on a particular action, issue a command like the following:
ctgadmin -a action -?

ctgadmin command reference
Options that can be used with the ctgadmin command. Options are not
case-sensitive.
ctgadmin [-adminport <number>] [-dbg [<filename>]]

-a <action> [<action specific options>]

The options are:

Option Description

-a dump “Dumping diagnostic information” on page 199

-a trace [-tfile path] [-tfilesize number]
[-tlevel number]

“Setting the Gateway trace” on page 197

-a trace [-jnifile path] [-jnilevel number] “Setting the JNI trace” on page 197

-a trace “Trace options” on page 198

-a trace -? “Querying trace settings” on page 198

Chapter 10. Operating 203

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

|
|

Option Description

-a stats “Querying statistics” on page 200

-a crexit “CICS request exit control” on page 201

-a rmexit “Request monitoring exit control” on page 201

-a shut “Shutting down the Gateway daemon” on page
202

-msg “Viewing message help” on page 202

-? “Getting help” on page 203

-adminport The port used to communicate with the IBM
CICS Transaction Gateway service (Windows)
or the Gateway daemon (UNIX). The default is
2810.

-dbg Output trace to stderr, or <filename> if
specified.

Operating the Client daemon
Operating the Client daemon requires you to complete administrative tasks such as
setting override options, trace characteristics, and security, also starting and
stopping this component.

Administering the Client daemon
Use the cicscli command and associated command options to start and stop
communication with CICS servers, to check the availability of CICS servers, and to
perform other tasks related to Client daemon administration.

The Client daemon starts automatically when you start the Gateway daemon.If you
stop the Gateway daemon, this action does not stop the Client daemon; you must
shut down the Client daemon after stopping the Gateway daemon. For more
information see “Stopping CICS Transaction Gateway” on page 191.

You cannot use the cicscli command to list or work with IPIC connections to CICS.

Follow the links to see examples of how to use the cicscli command. For
information on the cicscli command syntax see “cicscli command reference” on
page 210.

Starting the Client daemon

You can issue a command to start the Client daemon or use the Start menu.

To start the Client daemon, enter:
cicscli -s

To start the Client daemon and start communication with a CICS server, enter:
cicscli -s=servername

where servername is the name of a CICS server.

Starting server connections
You can start a connection to a CICS server when the Client daemon is already
running.

204 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

||

||

|
|
|
|

|

Enter the following command:
cicscli -s=servername

where servername is the name of a CICS server.

If you change and reinstall the CICS connection definition, you must stop and
restart the connection.

You do not have to start server connections explicitly. When a request is sent to a
server, the Client daemon automatically starts the server connection if it is not
already established.

Shutting down the Client daemon
You can shut down the Client daemon for all connected servers, after all
outstanding units of work have completed or without completing outstanding
units of work, and shut down the session with a particular server.

To shut down the Client daemon for all connected servers, after all outstanding
units of work have completed, enter:

cicscli -x

To shut down the session with a particular server after all outstanding units of
work have completed, enter:

cicscli -x=servername

where servername is the name of a CICS server. This stops only the session with the
named server; it does not shut down the Client daemon or connections to other
servers.

To shut down the Client daemon for all connected servers, without completing
outstanding units of work, enter:

cicscli -i

To shut down the session with a particular server without completing outstanding
units of work, enter:

cicscli -i=servername

where servername is the name of a CICS server. This stops only the session with the
named server; it does not shut down the Client daemon or connections to other
servers.

If the Client daemon does not shut down completely, this might be because the
Client daemon process, cclclnt, remains active. To stop this process, enter the
command
kill -2 pid

where pid is the numeric process id of cclclnt.

Do not use the kill -9 command as this stops a process without allowing its
resources to be released; those resources remain active until you restart the system.

Restarting the Client daemon normally
You can shut down the Client daemon for all connected servers, after all
outstanding units of work have completed, and then start it again.

Chapter 10. Operating 205

To shut down the Client daemon for all connected servers, after all outstanding
units of work have completed, and then start it again, enter:

cicscli -y

cicscli -y is equivalent to cicscli -x followed by cicscli -s. This does not
re-establish server connections or trace settings.

Restarting the Client daemon immediately
You can shut down the Client daemon for all connected servers, without
completing outstanding units of work, and then start it again.

To shut down the Client daemon for all connected servers, without completing
outstanding units of work, and then start it again, enter:

cicscli -j

cicscli -j is equivalent to cicscli -i followed by cicscli -s. This does not
re-establish server connections or trace settings.

Starting client tracing
You can trace the Client daemon from the startup sequence and improver
performance while tracing by using memory mapped tracing.

To start tracing the Client daemon, enter:
cicscli -d[=size]

Where size is an optional parameter which specifies the maximum size of data, in
bytes, to be traced with any individual trace message. The default is 512 bytes.

To trace the Client daemon from the startup sequence, enter the -s and -d options
together:

cicscli -d -s

The Client daemon writes trace entries to the cicscli.bin file in the /var/cicscli
subdirectory. New trace entries overwrite any existing entries in the trace file. If
required, make a backup copy of the old trace file before you start tracing.

Performance while tracing is on can be improved by using memory mapped tracing.
With memory mapped tracing, data is stored initially in memory, and flushed to
disk by the operating system's paging mechanism. For more information, see
“Memory mapped tracing” on page 247. For important security information, see
“Security considerations for trace and log files” on page 208.

To use memory mapped tracing, do the following:
1. Turn on wrapping trace by setting the Client trace file wrap size (KB) field in

the Configuration Tool to a value greater than 0; see “Client trace file wrap size
(KB)” on page 111 for details of the field setting.

2. When you turn on tracing, specify the -b option as well as the other options,
for example:
cicscli -d -b

or
cicscli -d -m=component_list -b

Use the cicsftrc utility to format the trace file; see “Formatting the binary trace file”
on page 248.

206 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Specifying the trace components
Use the cicscli command plus options to specify which client components to trace.

The format of the command is:
cicscli -m[components]

where [components] is a comma-separated list of component identifiers for the
components to be traced.

For example:
cicscli -m=TRN,API.2

where TRN, API.2 specifies that tracing is performed on the internal interprocess
transport between Client processes, and on the client API layer levels 1 and 2.

The following component identifiers are available for use with the cicscli -m
command:

Identifier Trace

ALL All components. Use this option if performance allows, and consider using
the binary formatting tool to filter information. For more information see
“Formatting the binary trace file” on page 248.

API Synonymous with API.1.

API.1 The client API layer level 1. This traces the boundary between the Client
application and the Client daemon.

API.2 The client API layer level 1 and 2. This gives level 1 plus additional
parameter tracing.

CCL The Client daemon.

CLI The cicscli command interface.

CPP The C++ class libraries.

DEF The default components, that is the API, CCL, DRV and TRN components.

DRV Synonymous with DRV.1.

DRV.1 Protocol driver tracing level 1. This traces data sent and received and
provides supplementary information about failures.

DRV.2 Protocol driver tracing level 2. This traces internal flows through the
protocol drivers and interactions with other software components.

EMU The cicsterm and cicsprnt emulators.

LMG The Workload Manager

TRN Synonymous with TRN.1.

TRN.1 Internal interprocess transport between Client processes level 1.

TRN.2 Internal interprocess transport between Client processes level 2. Use if
entries in the Client log refer to functions such as FaarqStart, FaarqStop,
FaarqGetMsg or FaarqPutMsg.

The -m option specifies the components to trace. To turn tracing on use the -d
option. Consider using wrapping trace (-b option) for improved performance:
cicscli -m=component_list -d -b

If you specify -m with no parameters, a list of the possible component identifiers is
displayed, with an 'x' for each component that it is currently enabled for tracing.

Chapter 10. Operating 207

|
|

|

|

|
|

|

|

|
|

|
|

|||

||
|
|

||

||
|

||
|

||

||

||

||

||

||
|

||
|

||

||

||

||

||
|
|
|

|
|

|

|
|

You can also specify settings for trace components using the Configuration Tool.
For more information see “Configuring trace settings” on page 109. Component
tracing specified using cicscli overrides component tracing specified using the
Configuration Tool. If component tracing is not specified either by the cicscli
command or by using the Configuration Tool, these default components are traced:
API, CCL, DRV and TRN.

Stopping client tracing
You can enter a command to stop tracing the Client daemon or, stop tracing
automatically.

To stop tracing the Client daemon, enter:
cicscli -o

Trace stops automatically if you enter the cicscli -x command.

Security considerations for trace and log files
The Client daemon restricts access to the client trace and log files. By default, these
are typical files, not links, called cicscli.bin, and cicscli.log, in the /var/cicscli
subdirectory. You can specify names for these files using the Configuration Tool.

The trace file:

Normally, the file permissions on cicscli.bin allow only the owner, and group to
write to the file, and only the owner to read it. However, a user who has write
access to the /var/cicscli subdirectory can delete cicscli.bin regardless of the file
permissions.

If however you use the -b option (see “Starting client tracing” on page 206), every
process is given read access to the trace files.

If you do not want unauthorized users to have access to the cicscli.bin file, do not
give them write access to the /var/cicscli subdirectory. For example, a command
such as:
chmod 755 /var/cicscli

allows users to see files in /var/cicscli subdirectory but not to create, delete, or
move them.

The Client daemon prevents you from starting tracing if an unauthorized user has
deleted and recreated cicscli.bin.

Security and the error and warning log file:

The file permissions on cicscli.log allow only the owner (root) and group to read
and write the file.

To improve security further:
v Set the permissions on the /var/cicscli subdirectory to restrict general access:

chmod 0711 /var/cicscli

This means users cannot even see which files are in this directory.
v Allow ECI and EPI programs, and terminals, to start the Client daemon, but

allow only the root user to perform all other client administration. To do this,

208 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|
|
|
|

restrict access to the <install_path>/cicscli binary file, and allow general read
and execute access to the /var/cicscli subdirectory.

Setting security for server connections
You can set a default user ID and password on a server connection.

You can issue the following commands when the Client daemon is running:

To set a user ID and password to use when accessing server servername, enter:
cicscli -c=servername -u=userid -p=password

To specify security parameters when you start a connection to a server, enter:
cicscli -s=servername -u=userid -p=password

-c=servername
identifies the name of the server to which security information in the form
of a user ID and password is to be associated.

-u=userid
sets the default user ID to be used when accessing the server specified by
the -c or -s option. Specifying -u or -u= (that is, no user ID is specified)
resets the associated user ID to a null value.

-p=password
sets the default password to be used when accessing the server specified
by the -c or -s option. Specifying -p or -p= (that is, no password is
specified) resets the associated password to a null value.

For ECI applications, any user ID and password specified in the ECI parameter
block override values set by the cicscli command.

Displaying the version of CICS Transaction Gateway
You can display information about the version and build level of CICS Transaction
Gateway.

To display this information enter the command:
cicscli -v

Controlling cicscli command messages
You can disable the display of all messages produced by the command.

For example, enter:
cicscli -q

A -w prompt to press the Enter key is issued before the command completes, this
enables the user to confirm that they have read the information and error messages
displayed on the screen.

Listing the connected servers
You can list all connected servers being used by the Client daemon, and their
status.

To list all connected servers enter:
cicscli -l

Chapter 10. Operating 209

The status of connected servers is updated as a result of requests being flowed and
protocol specific events. The status returned is the last known state of connected
servers, which might not be the same as the current state.

Destination for error messages
By default, the Client daemon sends error messages to the log file cicscli.log in the
/var/cicscli subdirectory.

On AIX, you can redirect these messages to another target device or file by using
the swcons command. You cannot use the -e option to send messages to the
console.

cicscli command reference
Options that can be used with the cicscli command.
v All client control commands have options that are identified by a leading dash -

character.
v On the Linux and Solaris platforms you can replace the dash - character by a

forward slash / character for all options.
v On the AIX and HP-UX platforms you can replace the dash - character by a

forward slash / character for all options except the ? option, where you must
use a dash - character.

All options of the form -x=variable can contain spaces in the variable part, if the
variable part is enclosed in double quotes. Double quotes within variables must be
entered as \" , that is with a backslash preceding the double quote.
cicscli [[-s=servername|[-x[=servername]]|[-i[=servername]]|[-j]|[-y]]
[-l]
[[-d[=nnn] [-b] [-m[=components]]]|-o]
[-c=servername [-u[=userid]] [-p[=password]]]
[-w|-q]
[-v]
[-y|-j]

Enter cicscli -? to display help for the cicscli command.

The options are:

Option Description

-b “Starting client tracing” on page 206

-c=servername “Setting security for server connections” on page 209

-d=[nnn] “Starting client tracing” on page 206

-i[=servername] “Shutting down the Client daemon” on page 205

-j Shuts down the Client daemon immediately and then restarts it.

A restart involves shutting down the Client daemon, waiting for it to
shut down, and then starting it again. cicscli -j is equivalent to cicscli -i
followed by cicscli -s. Server connections are not re-established when
the Client daemon is restarted.

-l “Listing the connected servers” on page 209

[-m
[components]]

“Specifying the trace components” on page 207

-o “Stopping client tracing” on page 208

-p=password “Setting security for server connections” on page 209

210 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|

Option Description

-q “Controlling cicscli command messages” on page 209

-s[=servername] “Starting server connections” on page 204

-u=userid “Setting security for server connections” on page 209

-v “Displaying the version of CICS Transaction Gateway” on page 209

-w “Controlling cicscli command messages” on page 209

-x[=servername] “Shutting down the Client daemon” on page 205

-y Restarts the Client daemon normally.

A restart involves shutting down the Client daemon, waiting for it to
shut down, and then starting it up again. cicscli -y is equivalent to
cicscli -x followed by cicscli -s. Server connections are not reestablished
when the Client daemon is restarted.

Using -y is the preferred way of restarting the Client daemon.

Chapter 10. Operating 211

212 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 11. 3270 terminal emulation and printing

The CICS Transaction Gateway 3270 terminal emulator enables CICS applications
to send output to an attached printer.

3270 terminal emulation

The 3270 terminal emulator included with CICS Transaction Gateway can be used
for running CICS applications without the need for a separate 3270 emulator
product. The 3270 terminal emulator enables multiple CICS 3270 emulation
sessions to run with one or more CICS servers. The screen color attributes and
keyboard settings of the client terminal emulator can be customized with mapping
files. This is useful for example if keyboard layouts are required to comply with a
company standard. CICS Client terminal definitions can be automatically installed
on the CICS server and do not have to be predefined.

3270 printer support

The 3270 printer support included with CICS Transaction Gateway enables a
printer terminal to be defined on CICS Transaction Gateway so that CICS
applications running on a server can send output to an attached printer. Output
can be sent to a printer attached to a port such as LPT1, or a command can be
issued to process the data into a format more suitable for specialized printers.
CICS 3270 printer support uses CICS 3270 terminal emulation.

cicsterm emulator
cicsterm is a CICS 3270 terminal emulator. You can have multiple terminal
emulators running simultaneously.

Using cicsterm
The cicsterm command enables you to work with terminal emulators and terminal
emulator sessions.

You use the cicsterm command to:
v Start a emulator session.
v Specify the characteristics of a terminal emulator.
v Specify the file name of a keyboard mapping file. The default cicsterm keyboard

mappings are those defined by cicskey.ini. For information about customizing
keyboard mappings see “Keyboard mapping for cicsterm” on page 106.

v Specify the file name of a color mapping file. The default the cicsterm color
mappings are those defined by cicscol.ini. For information about customizing
color mappings see “Customizing the screen colors for cicsterm” on page 108.

v Run multiple terminal emulation sessions at the same time.

You cannot connect to CICS over IPIC using the cicsterm command because the
CICS servers are not listed.

© Copyright IBM Corp. 1998, 2011 213

|

|
|

|

|

|

|
|
|

|
|
|

|

|
|

cicsterm options
A number of options and parameters are available when using the cicsterm
command to start a 3270 terminal emulator.

The options are as follows:

-a Specifies that the terminal emulator is not sign-on capable. By default,
cicsterm creates terminal emulators that are sign-on capable.

For more information on sign-on capability, see the information about
specifying terminal sign-on capability in the CICS Transaction Gateway for
Multiplatforms: Programming Guide.

-c=colorfile
Identifies the name of a color mapping file to be used with the emulator;
see “Customizing the screen colors for cicsterm” on page 108 for more
details. If you omit this parameter, the environment variable CICSCOL is
assumed to identify the color mapping file. If CICSCOL is not defined, a
file name of cicscol.ini in the <install_path>/bin subdirectory is assumed.

If the parameter is specified as -c=, that is, the color mapping file name is
omitted, the emulator runs without any color definitions.

-e Specifies that when extended attributes are included in a 3270 datastream
received by cicsterm and no color attribute is set, the color of a field is
determined by both the intensity and protection attributes. The colors used
to display the field are then determined by the normal_unprotected,
intensified_unprotected, normal_protected and intensified_protected
definitions in the color mapping file. By default, when this option is not
specified, the 3270 datastream contains extended attributes and no color
attribute is set, the color of fields is determined by the default and
default_highlight definitions in the color mapping file. See “Customizing
the screen colors for cicsterm” on page 108 for further information on color
mapping.

-f=printfile
Specifies the name of a file to which the output of print requests is
appended. If you do not specify a full path, printfile is created in the
<install_path>/bin directory. If the name of the file contains embedded
blanks, it must be surrounded by double quotes (“). Any double quotes
within the name of the file must be entered as backslash double quote (\“).

If neither the -f or -p parameters is specified, the Print command or Print
file configuration settings define the command, file, or default action to
take with print requests.

-k=keyfile
Identifies the name of a keyboard mapping file to be used with the
emulator; see “Keyboard mapping for cicsterm” on page 106 for more
details. If this parameter is omitted, the environment variable CICSKEY is
assumed to identify the key mapping file. If CICSKEY is not defined, a file
name of cicskey.ini in the <install_path>/bin subdirectory is assumed.

-m=modelname
Specifies the name of a Model terminal definition, as known at the server
to which the emulator is to connect, to be used to define the terminal
characteristics. If neither this parameter nor -n=netname is specified, any
Model terminal definition value from the configuration file is used. If no
Model terminal definition value has been specified in the configuration file,
the server's default terminal definition is assumed.

214 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

||
|
|
|
|
|
|
|
|
|
|

If the parameter is specified as -m= (that is, the modelname is omitted),
any Model terminal definition value specified in the configuration file is
ignored, and the server's default terminal definition is assumed.

This option is case-sensitive.

-n=netname
Specifies the name of a particular terminal definition at the server that this
emulator is to be installed as. The precise interpretation of netname varies
between servers.

This option is case-sensitive.

-p=printcmd
Specifies an operating system command used to process the temporary
print file generated when print requests are received by the terminal
emulator. If the command contains embedded blanks, enclose it in double
quotes (“). Any double quotes within the command must be entered as
backslash double quote (\“).

The temporary print file is post-processed by appending the file name to
the command, and running that command. Print output can then be copied
to a local printer, copied into a permanent file, processed further for
inclusion into a document, and other similar actions. If the temporary file
is to be processed by a print command, the command is responsible for
deleting the temporary file.

If neither the -f or -p parameters is specified, the Print command or Print
file configuration settings define the command, file, or default action to
take with print requests.

-q Disables the display of all messages output by the command.

-s=servername or -r=servername
Specifies the name of the server that the terminal emulator is to be
connected to. This server name must correspond to an entry in the
configuration file.

You can specify -s, or -r, but not both. If neither parameter is specified, the
first server entry in the configuration file is used.

If the parameter is specified as -s or -r (that is, no server name is
provided), and the configuration file identifies more than one potential
server to which the Client daemon can connect, the user is prompted to
select from a list of available servers. These prompts are generated even if
messages have been disabled (the -q parameter is specified).

If there is only one potential server identified in the configuration file, that
server is used and the user is not prompted.

-t=initialtransid
Identifies the initial transaction to be invoked for this terminal. If this
option is omitted, any initial transaction specified in the configuration file
is run. The string can be up to 128 characters long, specifying both a
transaction name, and parameters to be passed to the transaction. The
transaction name is the first four characters or the characters up to the first
blank in the string. The rest of the string is the parameter data.

If the parameter is specified as -t= (that is, the initialtransid is omitted),
any initial transaction specified in the configuration file is ignored.

This option is case-sensitive.

Chapter 11. 3270 terminal emulation and printing 215

Ensure that transaction that you specify here does not require terminal
input to complete.

-w Prompts the user to press the Enter key, to confirm that messages output to
the screen (both informational and error) have been read, before the
command completes.

-? Causes the parameter syntax to be listed; any other options specified are
ignored.

Stopping a terminal emulator
To stop a terminal emulator, enter the string specified by the Terminal exit
configuration setting from an empty terminal screen, and then press Enter. The
default string is EXIT

cicsterm and user exits
You can use cicsterm to drive EPI user exits.

The EPI user exits, and how cicsterm can use them, are described in the
information about EPI user exits in the CICS Transaction Gateway for Multiplatforms:
Programming Guide.

cicsterm and RETURN TRANSID IMMEDIATE
When an application running from a cicsterm session issues one of the following
commands the transaction named in the TRANSID option starts immediately
without any user input.
EXEC CICS RETURN TRANSID(name) IMMEDIATE
EXEC CICS RETURN TRANSID(name) IMMEDIATE INPUTMESSAGE(data-area)

When the INPUTMESSAGE option is specified, the contents of the data-area are
passed to the new transaction, and the screen is not updated with the data-area
contents.

Issuing these EXEC CICS commands from cicsterm does not result in the
StartTranExit or ReplyExit user exits being driven. See the information about EPI
user exits in the CICS Transaction Gateway for Multiplatforms: Programming Guide for
more information.

Using clients for X-Window System
There are some known problems with certain clients for X-Window System (such
as Exceed).

These include corruption of the text on the title bar of the window that you are
trying to display, for example, with the Configuration Tool. In some cases the title
bar might be missing. The problems are with the client used, not the CICS
Transaction Gateway.

There are two ways to solve this problem:
1. Start a window manager before launching the Configuration Tool.

The window manager HWM is shipped with Exceed.
2. Alter the Exceed configuration:

a. Launch Xconfig
b. Select screen definition

216 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

c. Set the Window Manger to native

d. Make sure Use Native WM for Embedded Clients is checked

If you use this second way you cannot run any other window manager.

Keyboard mapping in cicsterm
Keyboard mapping in cicsterm is governed by the terminal type that you are
using.

Many terminal types do not support all of the function keys that can be used in a
CICS application. If cicsterm does not recognize some of the key mappings defined
by the <install_path>/bin/cicskey.ini file, try using a different terminal type. For
example, on AIX systems use aixterm in preference to xterm.

cicsterm restrictions
There are some restrictions when you use the cicsterm command.
v 3270 field outlining is not supported.
v Window resizing is not supported. If you resize the window in which cicsterm is

running the display becomes distorted.
v CICS Transaction Server interprets cicsterm as a remote terminal. The execution

diagnostic facilities CEDF and CEDX have some restrictions on remote terminals.
For more information see your CICS Transaction Server documentation.

v The maximum supported screen size for cicsterm terminal emulators is 27 rows
by 132 columns. This is because the Client daemon uses the 12-bit addressing
ASCII-7 subset of the 3270 data stream architecture.

cicsterm command reference
The tasks and associated parameters that the cicsterm command supports.
cicsterm [-s=servername|-r[=servername]]
[-t=[initialtransid]]
[-k=keyfile]
[-c=colorfile]
[-m=modelname]
[-n=netname]
[-a]
[-p=printcmd|-f=printfile]
[-q|-w]
[-?]

You can replace the dash (-) with the forward slash (/) character.

For example:
v On Linux and Solaris you can replace the dash by a forward slash (/) for all

parameters.
v On AIX and HP-UX you can replace the dash by a forward slash (/) for all

parameters except the ? parameter, where you must use a dash sign.

The following table shows the tasks and associated parameters that the cicsterm
command supports:

Option Description

-a Specify a terminal emulator that is sign-on
incapable

Chapter 11. 3270 terminal emulation and printing 217

Option Description

-c Specify the name of the color mapping file

-e Specify when extended attributes are
included

-f Specify a file to which print files are
appended

-k Specify the name of the keyboard mapping
file

-m and -n Define the 3270 terminal emulator
characteristics

-p Determine the print file processing

-q Inhibit all output messages

-r and -s Start a 3270 terminal emulator

-t Specify the initial transaction

-w Wait for confirmation before completing

Issue a single cicsterm command, with all the parameters you require, as shown in
the following example:

cicsterm -s=CICSTSW -t=CESN -k=mykeys.ini -c=mycols.ini
-n=cicsv123 -f=clprint.txt -q

In this example:

-s=CICSTSW
A 3270 terminal emulator is started for the server CICSTSW.

-t=CESN
The initial transaction is CESN.

-k=mykeys.ini
The keyboard mapping file is mykeys.ini.

-c=mycols.ini
The color mapping file is mycols.ini.

-n=cicsv123
The 3270 terminal emulator characteristics are defined by the terminal
definition cicsv123.

-f=clprint.txt
The print file will be appended to the file clprint.txt.

-q The display of messages output by the command is disabled.

All cicsterm parameters are optional. If you enter the cicsterm command without
any parameters, defaults are taken from the configuration file.

cicsprnt emulator
cicsprnt is a CICS 3270 printer terminal emulator. You can have multiple printer
terminal emulators running simultaneously.

218 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Using cicsprnt
An application running on a server can direct output to a printer in one of these
ways.

An application running on a server can direct output to a printer in one of the
following ways:
v An application running from a terminal can initiate printing by sending a map

or data with the PRINT indicator set.
v A user can start a 3270 Print Terminal Emulator, at a client, using the cicsprnt

command. A 3270 Print Terminal Emulator must be started for a netname or
model terminal definition predefined in the server's terminal tables. Output is
directed to such a device by starting a transaction against the printer device.

v At client workstations you can use the PrintScreen key, as defined by the
keyboard mapping file. Blank lines are not printed by default. A blank line is
defined as a line that contains only null characters or non-displayable fields, or
is undefined in the BMS map. However, there are options available to override
the default behaviour of cicsprnt, see “cicsprnt options” for more information.

cicsprnt options
A number of options and parameters are available when using the cicsprnt
command to start a 3270 printer terminal emulator.

The dash (-) can be replaced with the forward slash (/) character.
v On Linux and Solaris, you can replace the dash by a forward slash (/) for all

parameters.
v On AIX and HP-UX, you can replace the dash by a forward slash (/) for all

parameters except ? for which you must use a dash.

For example:
cicsprnt -m=modelname|-n=netname
[-s=servername|-r[=servername]]
[-t=[initialtransid]]
[-p=printcmd|-f=printfile]
[-q|-w]
[-j]
[-z]
[-b]
[-?]

The options are:

-b By default, cicsprnt does not print blank lines. A blank line is defined as a
line that contains only null characters or non-displayable fields, or is
undefined in the BMS map. This option causes blank lines in the data
stream to be printed.

-f=printfile
Specifies the name of a file to which the output of print requests is
appended. If you do not specify a full path, printfile is created in the
<install_path>/bin directory. If the name of the file contains embedded
blanks, it must be surrounded by double quotes (“). Any double quotes
within the name of the file must be entered as backslash double quote (\“).

Chapter 11. 3270 terminal emulation and printing 219

|
|
|
|
|

||
|
|
|

|

If neither of the -f or -p parameters is provided, the Print command or
Print file setting in the configuration file defines the command, file, or
default action to take with print requests.

-j Specifies that cicsprnt should concatenate all EXEC CICS SEND PRINT
commands issued on a server transaction into a single print job. This print
job is issued when the transaction terminates. Otherwise cicsprnt generates
a separate print job for every EXEC CICS SEND PRINT command issued
for a server transaction.

-m=modelname
Specifies the name of a model terminal definition, as known at the server
to which the 3270 Print Terminal emulator is to connect, to be used to
define the terminal characteristics. If this parameter is not specified, any
Model terminal definition value from the configuration file is used. If no
Model terminal definition value has been specified in the configuration file,
the server's default terminal definition is assumed.

You must specify either the -m or the -n option, or both.

This option is case-sensitive

-n=netname
Specifies the name of a particular terminal definition at the server that this
3270 Print Terminal emulator is to be installed as. The precise
interpretation of netname varies between servers. For example, on TXSeries
for AIX it is a netname.

You must specify either the -m or the -n option, or both.

This option is case-sensitive.

-p=printcmd
Specifies a command used to process the temporary print file generated
when print requests are received by the terminal emulator.

If the command contains embedded blanks, the command must be
surrounded by double quotes (“). Any double quotes within the command
must be entered as backslash double quote (\“).

If neither of the -f or -p parameters is specified, the Print command or
Print file setting in the configuration file defines the command, file, or
default action to take with print requests.

The temporary print file is post-processed by appending the file name to
the command, and executing the resultant command, so reports can be
copied to a local printer, copied into a permanent file, processed further for
inclusion into a document, and so on. If the temporary file is processed by
a print command, the command is responsible for deleting the temporary
file.

-q Disables the display of all messages output by the command.

-s=servername or -r=servername
Specifies the name of the server that the printer is to be connected to. This
servername must correspond to an entry in the configuration file. You can
specify -s, or -r, but not both.

If neither parameter is specified, the first server entry in the configuration
file is used.

If the parameter is specified as -s or -r (that is, no servername is provided)
then, if the configuration file identifies more than one potential server to

220 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

which the Client daemon can connect, the user is prompted to select from
a list of available servers. These prompts are generated even if the -q
parameter is specified.

If there is only one potential server identified in the configuration file that
server is used and the user is not prompted.

-t=initialtransid
Identifies the initial transaction to be invoked for this printer. If this option
is omitted, any initial transaction specified in the configuration file is run.
The string can be up to 128 characters long, specifying both a transaction
name, and parameters to be passed to the transaction. The transaction
name is the first four characters or the characters up to the first blank in
the string. The rest of the string is the parameter data.

If the parameter is specified as -t= (that is, the initialtransid is omitted),
any initial transaction specified in the configuration file is ignored.

Note: Be careful that transactions that you specify either here or in the
configuration file do not require terminal input to complete.

This option is case-sensitive.

-w Prompts the user, before the command completes, to press the Enter key, to
confirm that messages output to the screen (both informational and error)
have been read.

-z When cicsprnt is running in a DBCS locale and a field containing mixed
DBCS and SBCS character is displayed, blank spaces are inserted between
DBCS and SBCS characters. This option suppresses the insertion of spaces.

-? Causes the parameter syntax to be listed; any other options specified are
ignored.

cicsprnt and user exits
You can use cicsprnt to drive EPI user exits.

The EPI user exits, and how cicsprnt can use them, are described in the
information about EPI user exits in the CICS Transaction Gateway for Multiplatforms:
Programming Guide.

cicsprnt and RETURN TRANSID IMMEDIATE
cicsprnt does not support these commands, unlike cicsterm.
EXEC CICS RETURN TRANSID(name) IMMEDIATE
EXEC CICS RETURN TRANSID(name) IMMEDIATE INPUTMESSAGE(data-area)

For more information, refer to “cicsterm and RETURN TRANSID IMMEDIATE” on
page 216.

cicsprnt restrictions
There are some restrictions when you use the cicsprnt command.
v If the system running the Client daemon supports DBCS, it is assumed that the

printer attached to the processor also supports DBCS. Conversely, if the system
does not support DBCS, the Client daemon does not send DBCS data to the
printer.

Chapter 11. 3270 terminal emulation and printing 221

cicsprnt command reference
The tasks and associated parameters that the cicsprnt command supports.
cicsprnt [-s=servername|-r[=servername]]
[-t=[initialtransid]]
[-m=modelname]
[-n=netname]
[-p=printcmd|-f=printfile]
[-q|-w]
[-j]
[-z]
[-b]
[-?]

The dash (-) can be replaced with the forward slash (/) character.

For example:
v On Linux and Solaris you can replace the dash by a forward slash (/) for all

parameters.
v On AIX and HP-UX you can replace the dash by a forward slash (/) for all

parameters except the ? parameter, where you must use a dash sign.

The following table shows the tasks and associated parameters that the cicsprnt
command supports:

Option Description

-s and -r Start a 3270 print terminal emulator.

-t Specify the initial transaction.

-n and -m Define the 3270 printer terminal emulator
characteristics.

-p Determine the print file processing.

-f Specify a file to which print files are
appended. The default location is
<install_path>/bin.

-w Wait for confirmation before completing.

-q Inhibit all output messages.

-j Issue one print job per transaction.

-z Suppress the insertion of a blank character
between single-byte and double-byte
characters.

-b Causes blank lines in the data stream to be
printed.

-? Display help

Issue the cicsprnt command once with all the parameters you require, as shown in
this example:

cicsprnt -s=CICSTSW -n=P123 -t=XPRT -f=clprint.txt -q

In this example:

-s=CICSTSW
A 3270 print terminal emulator is started for the server CICSTSW.

222 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

-n=P123
The 3270 print terminal emulator characteristics are defined by the terminal
definition P123

-t=XPRT
The initial transaction is XPRT.

-f=clprint.txt
The print file to which print requests are appended is clprint.txt, in the
default location (<install_path>/bin).

-q The display of messages output by the command is disabled.

You must specify at least one of these parameters:
-n=netname

-m=modelname

All other parameters are optional, and defaults are taken from the configuration
file. Full details of the parameters are given in “cicsprnt command reference” on
page 222.

Chapter 11. 3270 terminal emulation and printing 223

224 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 12. Resolving problems

If a problem occurs you should first do some preliminary checks to try and narrow
down the cause. You can then try and analyze the problem in more detail using
tools such as trace, debug, or diagnostic commands. A wide range of additional
resources are also available for problem solving, including: forums and
newsgroups, IBM Technotes, IBM Developerworks, and IBM Redbooks. You can
also contact your IBM Support organization.

Introduction to problem determination
The usual procedure is to start with a symptom, or set of symptoms, and trace
back to the cause.

Sometimes, you cannot solve the problem yourself if, for example, it is caused by
limitations in the hardware or software you are using.

If the cause of the problem is CICS Transaction Gateway, contact IBM, as described
on the support page at: http://www-01.ibm.com/software/htp/cics/ctg/support/

Preliminary checks
Before you examine the cause of the problem in more detail, perform these
preliminary checks. These might highlight a simple cause or, at least, narrow the
range of possible causes.

As you go through the questions, make a note of anything that might be relevant
to the problem. Even if the observations you record do not at first suggest a cause,
they could be useful to you later if you need to carry out systematic problem
determination.

Has the system run successfully before?

If the system has not run successfully before, it might not have been installed or
configured correctly. You can check that CICS Transaction Gateway installed
correctly by running one of the sample programs; for more information, see “Using
the sample programs to check your configuration” on page 123. You can also use
the “JCA resource adapter installation verification test (IVT)” on page 121 to test
that the connection from WebSphere Application Server through CICS Transaction
Gateway to CICS Transaction Server is working correctly.

If you are currently upgrading CICS Transaction Gateway, ensure that you are
aware of all the changes that have been made for this release, and make sure you
have made any necessary configuration changes. For more information, see
Chapter 4, “Upgrading,” on page 27.

What messages were produced about the problem?

CICS Transaction Gateway writes information, warning and error messages to the
message logs (for more information, see “General information about messages” on
page 243). Information messages allow you to check that your system is working
correctly; warning and error messages inform you about problems. If warning or
error messages were produced when CICS Transaction Gateway started, or while

© Copyright IBM Corp. 1998, 2011 225

the system was running, these might indicate the cause of the problem.

What software components have been changed since the last
successful run?

If you have installed new versions of software components, or a new or modified
application, check for warning and error messages. Consider backing out the
changes and see if the problem still occurs.

What administrative changes have been made since the last
successful run?

If you have changed your CICS TG configuration or changed any CICS resources
check that the changes have not caused any warning or error messages. Also check
the configuration of the client application. For more information, see Chapter 5,
“Configuring,” on page 31.

What service changes have been applied since the last
successful run?

If you have applied a fix pack, check that it installed successfully and that you did
not receive any warning or error messages during installation. Also consider any
service changes that have been applied to other programs, which might affect CICS
Transaction Gateway.

Review the documentation that was supplied with the fix pack to ensure that the
instructions were followed correctly. If the fix pack was installed correctly, try
uninstalling it and see if the problem still occurs.

Is the problem related to a particular client application?

If you can identify a client application that is always in the system when the
problem occurs, check it for coding errors. If the client application has not yet run
successfully, examine it carefully to see if you can find any errors. If you have
made changes to the client application since it last ran successfully, examine the
new or modified part of the application. Consider the functions of the client
application that might not have been fully exercised before.

Is the problem related to system loading?

If the problem seems to be related to system loading, the system might be running
near its maximum capacity, or it might be in need of tuning. Check that you have
defined sufficient resources (for example, connection manager threads and worker
threads). Typically, if you had not defined sufficient resources, you might find that
the problem is related to the number of users of the application.

Does the problem occur at specific times of day?

If the problem occurs at specific times of day, it could be dependent on system
loading. Typically, peak system loading is at mid-morning and mid-afternoon, so
those are the times when load-dependent problems are most likely to happen. Use
the CICS TG interval statistics to determine when peak loading occurs and the
resource usage at the time; for more information, see “Statistics” on page 259.

Regular backup jobs or other system maintenance might also cause unexpected
problems at specific times of day.

226 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

What to do next
If preliminary checks have revealed the cause of the problem, you should now be
able to resolve it, possibly with the help of other information in the CICS
Transaction Gateway information center. If you have not yet found the cause of the
problem, you must start to investigate it in greater detail.

To investigate the problem in more detail, begin by deciding the best category for
the problem, for example is the problem related to installation, configuration or
performance? Then go to “Dealing with problems” on page 229 where you will see
a list of problems organized into the various categories. Each topic covers a single
problem, and provides details on the symptom, probable cause and action to take.

If the problem is not listed in the categories, you might need to use one of the
“Problem determination tools” or you might need to refer to “Problem solving and
support” on page 254.

Problem determination tools
Various tools are available for Java debug, JVM dump, system dump, tracing,
testing connections, and viewing the logs. TCP/IP diagnostic commands can also
be used during problem determination.

For more information about trace see “Tracing” on page 245.

Java debug tools
Links are provided in the Java installation to online information on Java diagnostic
tools.

For information about Java diagnostics tools and other tools:
1. Go to the Java installation directory that contains the IBM SDK and Runtime

Environment for Java User Guide, for example:
C:/Program Files/IBM/Java60/docs/en/sdkandruntimeguide.win32.en.htm

2. In the table of contents click “Contents of the SDK and Runtime Environment”.

For additional information on Java diagnosis see: . http://www.ibm.com/
developerworks/java/jdk/diagnosis/60.html

JVM dump and system dump
JVM dumps and system dumps provide detailed information about the internal
status of an IBM JVM, and the configuration of a running CICS Transaction
Gateway.

JVM dumps provide a snapshot of a Java Runtime Environment (JRE). System
dumps provide a snapshot of the JRE at a process level and also provide
diagnostic information regarding the system status and configuration.

For more information, see “Dumping diagnostic information” on page 199.

On some Java Virtual Machine (JVM)s you can force Java to write a stack dump
showing the states of the current threads.

Chapter 12. Resolving problems 227

For example, on IBM Java SDK you can send a SIGQUIT (-3) signal to a Java
process to make it write a stack dump to stderr. This shows the states of the
current threads. Do not do this on a working production system but only on a
system which is completely locked.

VTAM buffer trace
VTAM buffer tracing enables you to record the flow of data between logical units
in the CICS environment. The information in the trace entries includes the netname
of the terminal (logical unit) to which they relate.

For more information see VTAM problem determination in the Networking on
z/OS section of the z/OS Basic Skills Information Center: http://
publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

APING utility
APING is the APPC equivalent of the TCP/IP PING command and provides a way
of testing SNA connections.

APING exchanges data packets with a partner computer over APPC and measures
the time taken for data transfer. APING can be used to get a first estimate of the
session setup time between two computers, and the throughput and turnaround
time on that SNA session.

You can use APING to determine whether a session can be set up between two
computers and to display extensive error information if session allocation fails.
APING consists of two transaction programs: APING: which runs on the client,
and APINGD which runs on the server.

For more information see the section on APING in the IBM Personal
Communications Information Center at: http://publib.boulder.ibm.com/
infocenter/pcomhelp/v6r0/index.jsp

TCP/IP diagnostic commands
Use the TCP/IP diagnostic commands for displaying network configuration
details, statistics and other information. These commands can be useful during
problem determination.

Command Purpose

arp Display or modify IP-to-Ethernet or token ring physical address
translation tables used by address resolution protocol (ARP).

hostname Display workstation host name.

ifconfig Display all TCP/IP network configuration values. This is useful when
determining whether or not an IP interface is active. This command is
the Linux equivalent of ipconfig.

ipconfig Display all TCP/IP network configuration values. This is useful when
determining whether an IP interface is active or not.

netstat Display protocol statistics and TCP/IP network connections. This is
used for obtaining information about your own IP interfaces, for
example, listing IP addresses and TCP/IP routing tables used on your
workstation.

nslookup Display information on Domain Name System (DNS) name servers.

ping Verify connection to a remote computer or computers. The equivalent
command for IPv6 is ping6.

228 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Command Purpose

traceroute Trace TCP/IP path to a requested destination. This is useful for
determining whether a problem exists with an intermediate node or not.

Dealing with problems
The problems in this section are organized into categories, for example installation,
configuration, and performance. Each topic covers a single problem and provides
details of the symptom, probable cause, and the action to take.

Installation problems
Problems installing CICS Transaction Gateway.

Installation fails when using AIX WPARs
Installation of CICS Transaction Gateway in the Global Environment can fail if
product components are already running within a detached system WPAR
(Workload Partition).

Symptom

The installer exits without installing CICS Transaction Gateway, and the following
message is written to the installation log:
ERROR - A version of IBM CICS Transaction Gateway on your system is currently
running.

For more information see “Location of the installation logs” on page 24.

Probable cause

When trying to install the CICS Transaction Gateway into the Global Environment,
the installer detected that a version of CICS Transaction Gateway is already
running on your system in a detached system WPAR.

Action

Stop the version of CICS Transaction Gateway that is already running in the
detached system WPAR and rerun the installer in the Global Environment.

Installation fails if a component is already running
Installation can fail if product components are already running.

Symptom

The installer exits without installing the product, and the following message is
written to the installation log:

ERROR - A version of IBM CICS Transaction Gateway on your system is
currently running.

For more information see “Location of the installation logs” on page 24.

Chapter 12. Resolving problems 229

Probable cause

The installer has detected that a version of CICS Transaction Gateway is already
running on your system.

Action

Stop the version of CICS Transaction Gateway that is already running and run the
installer again.

Startup and shutdown problems
Problems when starting and stopping CICS Transaction Gateway.

Gateway startup problem on 64-bit Linux

Symptom

When attempting to start the Gateway daemon on a 64-bit Linux operating system,
startup might fail with the following error:
[root@myhost]# ctgstart
cicscli: error while loading shared libraries: libncurses.so.5:
cannot open shared object file: No such file or directory
cicscli: error while loading shared libraries: libncurses.so.5:
cannot open shared object file: No such file or directory
ctgstart - CICS Transaction Gateway start program
(C) Copyright IBM Corporation 1996, 2011. All rights reserved.
06/14/11 10:20:44:399 [0] CTG6400I CICS Transaction Gateway
is starting
06/14/11 10:20:44:399 [1] CTG6765E The Gateway daemon is unable
to load the CICS TG JNI native library DLL libctgjni.so; the
reason for the load failure is : ’ctgjni (libncurses.so.5:
cannot open shared object file: No such file or directory)’
06/14/11 10:20:44:402 [0] CTG6511I Gateway daemon has shut down
cicscli: error while loading shared libraries: libncurses.so.5:
cannot open shared object file: No such file or directory

Probable cause

The 32-bit ncurses-lib package is not installed on the machine.

Action

Install the 32-bit ncurses-lib Linux package for your distribution; the Gateway
daemon should now start successfully.

Linux compiler problem

Symptom

When compiling the C and C++ samples on a 64-bit Linux operating system, the
samples might fail with one of the following errors:
[root@myhost]# make -f samp.mak
Creating Basic ECI C Sample
cc -c -g -DCICS_LNX -m32 -I../../../include -I../../include
-I.. ecib1.c
In file included from /usr/include/features.h:385,

from /usr/include/stdio.h:28,
from ecib1.c:39:

/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such

230 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

file or directory
make[1]: *** [ecib1] Error 1
make[1]: Leaving directory `/opt/ibm/cicstg/samples/c/eci’

[root@myhost]# make -f samp.mak
Creating Basic ECI C++ Sample
c++ -c -g -DCICS_LNX -m32 -I../../include -I../../../include
ecib1.cpp
In file included from /usr/include/features.h:385,

from /usr/include/string.h:27,
from ecib1.cpp:39:

/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such
file or directory
make[1]: *** [ecib1] Error 1
make[1]: Leaving directory `/opt/ibm/cicstg/samples/cpp/eci’

[root@myhost]# make -f samp.mak
Creating Basic ECI C++ Sample
c++ -c -g -DCICS_LNX -m32 -I../../include -I../../../include
ecib1.cpp
c++ -o ecib1 ecib1.o -L../../../lib -m32 -lpthread -lc -lcclcp
/usr/bin/ld: skipping incompatible
/usr/lib/gcc/x86_64-redhat-linux/4.4.5/libstdc++.so
when searching for -lstdc++
/usr/bin/ld: skipping incompatible
/usr/lib/gcc/x86_64-redhat-linux/4.4.5/libstdc++.a
when searching for -lstdc++
/usr/bin/ld: skipping incompatible
/usr/lib/gcc/x86_64-redhat-linux/4.4.5/libstdc++.so
when searching for -lstdc++
/usr/bin/ld: skipping incompatible
/usr/lib/gcc/x86_64-redhat-linux/4.4.5/libstdc++.a
when searching for -lstdc++
/usr/bin/ld: cannot find -lstdc++
collect2: ld returned 1 exit status
make[1]: *** [ecib1] Error 1
make[1]: Leaving directory `/opt/ibm/cicstg/samples/cpp/eci’

Probable cause

The 32-bit glibc-devel package is not installed on the machine.

Action

Install the 32-bit glibc-devel and libstdc++ Linux packages for your distribution;
the applications should now compile successfully.

Gateway daemon fails to shut down
During the initiation phase of a normal shutdown, some calls and requests prevent
the shutdown from completing.

Symptom

The Gateway daemon fails to shut down normally (quiesce) or fails to shut down
in the expected time.

Probable cause

Some outstanding requests that are waiting to complete are preventing normal
shutdown.

Chapter 12. Resolving problems 231

Action
v If there are any active applications or tasks in “wait” state in CICS, you must

investigate these. For example, to query a CICS task that is in “wait” state, use
the CEMT INQ TASK command. For more information about tasks that are in
“wait” state see the CICS Transaction Server Information Center at:
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

v If normal shutdown fails you can promote this to an immediate shutdown.

Normal shutdown is blocked by an API call
Some API calls that are waiting to finish prevent a normal shutdown of CICS
Transaction Gateway.

Symptom

The Gateway daemon fails to shut down normally (quiesce).

Probable cause

API calls that have not yet completed are preventing normal shutdown.

All other ECI or EPI calls that are waiting to finish will prevent the Gateway
daemon from quiescing.

Action

Wait for the API calls to complete or perform an immediate shutdown.

The following API calls do not block a normal shutdown of CICS Transaction
Gateway:

ECI_GET_REPLY_WAIT
ECI_GET_SPECIFIC_REPLY_WAIT
EPI_GET_EVENT and waitState is EPI_WAIT (an EPIRequest.getEvent call that
has its second parameter set to EPI_WAIT causes the request object to wait for
events)

Problems starting clients and terminals

cicsterm fails to connect to the CICS server:

The Client daemon can connect to the server, but cicsterm is unable to connect.

Symptom

The cicscli -s=servername command connects successfully, but cicsterm
-s=servername command does not connect.

Probable cause

The CTIN transaction might not be defined or sign-on capable terminals are not
supported by the CICS server. Another possibility is that the CICS server does not
have 3270 terminal support over TCP/IP.

Action

1. Check that the CTIN transaction is defined on the server.

232 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

2. Issue the cicsterm -s=servername -a command to install a terminal that is not
sign-on capable. If this is successful, the server probably does not support
sign-on capable terminals. cicsterm attempts to install a sign-on capable
terminal by default.

3. Check that EPI is supported over the server connection being used.

For more information see “cicsterm options” on page 214.

Configuration problems
Problems with the way that CICS Transaction Gateway is configured.

Problems running the Configuration Tool

Symptom

The Configuration Tool does not display all characters correctly and the operating
system has issued warning messages about fonts.

Probable cause

Fonts needed for the code page for the current locale have probably not been
installed.

Action

Check the console where CICS Transaction Gateway was invoked.

Refer to the documentation supplied with your operating system and JRE for
information on which font packages are required for which locales.

Problems with Client applications
An application fails to start.

Symptom

On Linux systems, your application might fail to start with a message similar to
this:
relocation error: ./ecib1: undefined symbol:
__6CclBufPCcQ26CclBuf12DataAreaType

Probable cause

This can occur with C++ applications compiled with GNU C/C++ compiler (gcc)
2.96. This compiler is not supported.

Action

Recompile your application with a supported compiler listed at “Supported
software” on page 9.

CICS connection problems
Problems with connections to CICS Transaction Server.

Chapter 12. Resolving problems 233

Unable to connect over SNA
There are several possible reasons why CICS Transaction Gateway is not able to
connect to CICS over SNA; for example there might be a problem with an SNA
server, or there might be a CICS Transaction Gateway configuration problem.
Alternatively, there might be a problem with the connection definition in CICS.

Symptom

CICS Transaction Gateway cannot connect to CICS over SNA.

Probable cause
v CICS Transaction Gateway has not been configured for SNA correctly, or there is

a problem with the configuration.
v There is a communications problem between the client and the communications

server, when using a remote SNA client.
v There is a problem with the SNA communications server.

Action
v Check the Client daemon log for errors that indicate there is a configuration

problem. Also check the SERVER section of the CICS Transaction Gateway
configuration file. For more information see “SERVER section of the
configuration file” on page 119.

v If you are using the Remote API Client (for SNA), check the local “SNA error
log” on page 245.

v If you are using an SNA communications server, check the SNA communications
server SNA error log.

For information on configuring the Client daemon to use SNA connections see
“Configuring an SNA CICS Server definition” on page 66 and “Defining SNA
connections on CICS Transaction Server for z/OS” on page 64.

CCIN or CTIN transactions not recognized
CCIN or CTIN transactions have not been recognized.

Symptom

If CCIN is not installed correctly on the CICS server the following symptoms
occur:
v TCP/IP and SNA connections can not be established to that server.
v Client terminal installs fail on that server.

Probable cause

CCIN and CTIN have not been installed on the server. The CCIN transaction
installs a Client connection on the CICS server when using either the TCP/IP or
SNA protocol. The CTIN transaction installs your client terminal definition on the
CICS server.

Action

If you are using TCP/IP or SNA, the CICS server must have CCIN installed. CTIN
must also be installed if you require CICS 3270 emulation and are running in a
supported configuration.

234 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

IPIC connection problems
A problem can occur if a capability exchange is not valid, if a handshake failure
occurs, or if the system cannot acquire an IPCONN.

Attempting connection to CICS on wrong TCP/IP port:

If CICS Transaction Gateway attempts to connect to CICS on the wrong TCP/IP
port an error occurs.

Symptom

The following error is returned:

ECI_ERR_NO_CICS

Probable cause

CICS Transaction Server is listening on a different TCP/IP communications port to
the one through which CICS Transaction Gateway is attempting the connection.
This is because the SERVER section of the CICS Transaction Gateway configuration
file (ctg.ini) is specifying the wrong port number.

Action

1. Check which port CICS Transaction Server is listening on.
On TSO option 6, issue the command:
NETSTAT ALLCON (APPLD *CISS*

On USS, issue the command:
netstat -a -G *CISS*

Sample output:
IY2GTGA2 0005AD5F Listen
Local Socket: 1.23.456.789..1120
Foreign Socket: 2.34.567.890..43066
Application Data: DFHIIY2GTGA2CISSIPIC IP50889
IY2GTGA2 0005DB97 Establsh
Local Socket: 1.23.456.789..1120
Foreign Socket: 2.34.567.890..43066
Application Data: DFHIIY2GTGA2CISSIPIC 0000000700000007

This example shows that the IPIC TCPIPService is listening on port 50889 and
also that an IPCONN is in use. The generated IPCONN name is 00000007.

2. Change the port number in the configuration file (ctg.ini). For more
information, see “Port” on page 77.

Additional information

The Application Data string in the example contains these values:

DFH The CICS Transaction Server prefix.

I Inbound.

IY2GTGA2
The CICS APPLID.

CISS The listening transaction CISS for inbound IPIC requests.

IPIC The TCPIPService.

Chapter 12. Resolving problems 235

IP50889
The TCPIPService name.

0000007
The generated IPCONN name.

IPIC over SSL incorrectly configured:

A problem can occur if SSL has been configured for a connection that does not use
SSL.

Symptom

Whilst attempting to establish an IPIC over SSL connection between CICS
Transaction Gateway and CICS Transaction Server, the following message appears
in the CICS Transaction Server log:

Probable cause

IPIC over SSL is only supported in local mode. Either SSL on CICS Transaction
Gateway has been incorrectly configured, or the CICS Transaction Server
TCPIPSERVICE definition has been incorrectly configured for SSL.

Action

Ensure you are running IPIC over SSL in local mode and that your configuration is
correct. For more information see Chapter 6, “Scenarios,” on page 125.

IPIC connection to CICS fails
The client application receives an ECI_ERR_NO_CICS error when attempting to
send a request to CICS over an IPIC connection.

Symptom

An ECI_ERR_NO_CICS error occurs and the following message is written to the
CICS Transaction Gateway log:

CTG8431E Handshake failure for IPIC connection to CICS server CICSIPIC
response code=ISCER_EXCEPTION, reason=AUTOINSTALL_FAILED [1]

The following message is written to the CICS Transaction Server log:

Probable cause

The TCPIPService is configured to use predefined IPCONNs exclusively but a
matching IPCONN definition was not found.

Action

Check the IPCONN definitions installed on CICS; look to see if one exists that has
an APPLID that matches the APPLID and APPLID qualifier of the Gateway
daemon. For more information see “IPIC server connections” on page 46.

Alternatively you can enable autoinstall on the TCPIPService. For more
information see https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/
index.jsp

236 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

TCP/IP connection problems
Problems when connecting to CICS over TCP/IP.

A cicsterm command fails:

A cicsterm command fails because 3270 terminal emulation is not supported.

Symptom

The following message is returned to the terminal emulator:

CCL7053E Errors found while communicating with server

Probable cause

The cicsterm and cicsprnt commands use CICS 3270 emulation. However not all
mainframe CICS servers support CICS 3270 emulation over TCP/IP.

Action

Check to see whether your CICS server supports terminal emulation. For more
information see Chapter 11, “3270 terminal emulation and printing,” on page 213.

Security problems
Problems with security.

SSL problems
SSL problems might include access denied exceptions accompanied by message
CTG6651E, and non-recognition of key ring names.

SSL exceptions can occur if a non-valid digital certificate is used, or if the wrong
security credentials are sent on a request. If the Gateway daemon uses a non-valid
SSL certificate, a DFHIS2040 message is generated when the connection is
established:

CTG6651E Unable to connect to the Gateway daemon: [address = IP address ,
port = port] [error]"

If an SSL exception occurs, enable stack tracing in the CICS Transaction Gateway.
Stack tracing indicates what was happening when the exception occurred. It also
provides information about the configuration, such as the value of the
CLASSPATH environment variable. If this does not give you enough information
to diagnose the problem, obtain a standard trace and contact your IBM support
organization.

For more information see “Exception stack tracing” on page 111.

Application receives an “access denied” exception:

An application is not able to read from the file system containing the keystore.

Symptom

An application receives a message similar to this:

Chapter 12. Resolving problems 237

java.io.IOException: CTG6651E: Unable to connect to the Gateway.
[address = killerb2b, port = 8050]
[java.security.AccessControlException: access denied
(java.io.FilePermission \jssekeys\testclient.jks read)]

Probable cause

The application is running with Java security enabled and does not have
permission to read from the file system containing the keystore.

Action

Add a FilePermission for the location of the keyring file.

SSL handshake failure:

An SSL handshake failure can occur if an IPCONN is not configured to use SSL in
some situations.

Symptom

This problem results in an ECI_ERR_NO_CICS error.

Probable cause

The IPCONN definition is not configured to use SSL.

Action

Configure your IPCONN definition to use SSL.

Identity propagation not supported
A security exception and message CTG9631E occurred when a back-level CICS
server that does not support identity propagation was being used.

Symptom

The following message is returned as an API return code or as an exception to the
EJB:

Probable cause

Work is being passed to a back-level CICS server, which does not support identity
propagation, resulting in an ECI_ERR_SECURITY_ERROR return code.

Action

Use a level of CICS that supports identity propagation. For more information, see
“Support for identity propagation” in the CICS Transaction Server V4.1 Information
Center.

Security violation during identity propagation
A security violation and message DFHIS1027 occurred during identity propagation.

Symptom

The following message appears in the CICS Transaction Server log:

238 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Probable cause

The IPIC connection is incorrectly set to use VERIFY user authentication.

Action

Modify the IPCONN definition for the IPIC connection referred to in message
DFHIS1027; change the user authentication setting from USERAUTH=VERIFY to
USERAUTH=IDENTIFY.

RACF mapping problem during identity propagation
A RACF mapping problem and message ICH408I occurred during identity
propagation.

Symptom

The following message appears in the z/OS system log:

ICH408I USER userid GROUP group NAME userid owner DISTRIBUTED IDENTITY IS
NOT DEFINED: distinguished_name realm_name

Probable cause

RACF does not contain a mapping that associates the distinguished name of the
user with a RACF user ID.

Action

If the user is permitted to access the CICS resources, create a RACF mapping that
includes the distinguished name of this user. For more information see
“Configuring RACF for identity propagation” in the CICS Transaction Server
Information Center at: https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/
index.jsp

Identity propagation login module not enabled
The CICS Transaction Gateway identity propagation login module is not enabled
and verification fails with an IRR012I message.

Symptom

The following message appears in the z/OS system log:

IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND

Probable cause

The CICS Transaction Gateway identity propagation login module is not enabled.

Action

Enable the CICS Transaction Gateway identity propagation login module in
WebSphere Application Server.

Memory problems
Problems cause by insufficient memory being available.

Chapter 12. Resolving problems 239

Memory use increases over time
The amount of memory used by the Gateway daemon might increases over time
and a java.lang.OutOfMemory exception might occur.

The maximum number of connection manager threads and worker threads is
defined in the CICS Transaction Gateway configuration.

Symptom

The Gateway daemon stops responding and the JVM writes a
java.lang.OutOfMemory exception to the stderror log file or to the Java dump file.
The JVM also creates various dump files in the information log. There is probably
no noticeable decrease in performance before the problem occurs. If you happened
to be monitoring memory usage before the dump occurred, you would have seen
that memory usage gradually increased over time until eventually the limit was
reached.

Probable cause
v There is a problem with a user-written application, for example a request exit

which has remained inadvertently connected and is using Java resources.
v There are too many active Java threads (connection manager threads and worker

threads).
v The Java heap size is unnecessarily large. Because the memory required to create

Java heap and Java threads is allocated from the same finite storage area, it is
possible that making the Java heap too large could indirectly cause a
java.lang.OutOfMemory exception because there would then be insufficient
memory available to create enough Java threads.

v The Java heap size is too small.

Action
v If there is a problem with a user application, ensure that the application

practices good memory management techniques, such as freeing resources when
they are no longer required. To limit the size of the trace output file, use the
ctgstart -tfilesize option. You can also use the ctgstart -truncationsize option to
reduce to zero the size of data blocks in the trace. This reduces the effect on
performance.

v If the Java heap size is unnecessarily large or too small, set the maximum
amount of heap memory available to the JVM by using the -Xmx option. The
default heap size specified by the CICS Transaction Gateway is 128MB.

v Run a memory usage monitor against the Gateway daemon process.
v Set the amount of memory that Java allocates to each thread by using the -Xmso

and -Xss options. The maximum size of the Java stack and the native stack is the
sum of these two values. When using the IBM Runtime Environment, Java 2
Technology Edition, Version 6, the default values for the -Xmso and -Xss options
are 256KB, on most platforms. Do not change the Java stack and native stack
sizes from their default values.

Additional information

The way that Java allocates memory depends on your JVM implementation. Most
JVMs allow you to adjust the maximum amount of heap memory and adjust the
amount of memory allocated to each thread.

240 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

For more information on thread limits see “Threading model” on page 176. For
more information on Java memory allocation and JVM stack sizes, see the IBM Java
Diagnostics Guides Information Center.

Also see “Avoiding out of memory conditions” on page 187.
Related reference:
“List of statistics” on page 269
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 265
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.
“Gateway daemon resources” on page 70
Use the CICS Transaction Gateway configuration tool to configure the Gateway
daemon resources, or edit the GATEWAY section of the configuration file directly.

Performance problems
Problems with system performance.

Client daemon stops when CICS task limit is reached
A CPMI transaction or an equivalent mirror transaction task has locked in a CICS
server and cannot send data back to CICS Transaction Gateway.

Symptom

The Client daemon appears to stop responding.

Probable cause

The MAXTASKS limit of the CICS server might have been reached. This problem
prevents the mirror program from returning data to the Client daemon, which
appears to stop responding. The problem typically occurs when CICS has a high
number of concurrent transactions.

Action

Put the mirror transaction in a TranClass that has a MAXACTIVE value that is less
than the MAXTASKS value of your CICS server. All new requests to the CICS
server are queued, and CICS can continue to process current requests. The value
that you should specify for MAXACTIVE depends on your installation, and other
tasks running in the server.

Mirror transaction does not time out
A task has suspended in CICS awaiting a response from an ECI client application
during an extended LUW.

Symptom

Mirror tasks are left running in CICS.

Chapter 12. Resolving problems 241

Probable cause

The default ECI mirror transaction (CPMI or CSMI) uses a PROFILE of
DFHCICSA. The profile has an RTIMOUT value of NO. This means that if a
request using an extended LUW is suspended in the client application whilst not
in an ECI call, the CICS mirror transaction fails to time out.

Action

To enable the mirror transaction set RTIMOUT, in the mirror transaction's profile,
to purge extended LUW tasks hanging in the client application. This should ensure
that if no response is received from the client application after the timeout period
has elapsed CICS purges the mirror transaction and rolls back the associated unit
of work. It is the RTIMOUT value that causes CICS to purge the mirror.

Corrupted data when using channels and containers
Data corruption when using channels and containers can occur if an incorrect
CCSID is specified.

Symptom

Unexpected or corrupt data is returned to the client application when using an
IPIC connection and channels and containers.

Probable cause
v The wrong CCSID is specified on the client application channel and has been

inherited by the container.
v The wrong CCSID is specified on the container.

Action
1. If corrupted or unexpected data is returned, run a Gateway daemon trace to

find out which code page the JVM is running on. Look in the System Properties
section at the top of the trace.

2. For Java applications, use the setCCSID method to set the required code page
on the channel. You must explicitly specify a CCSID when creating the
container. For C or .NET applications, specify a CCSID when creating a CHAR
container.

For more information on how to find the code page that the Client has sent to the
server, see “Data conversion,” on page 285.

Resource problems
Problems due to shortage of resources.

Shortage of IPIC resources on the CICS server
An error can occur if there is a shortage of IPIC resources.

Symptom

Intermittent ECI_ERR_RESOURCE_SHORTAGE errors occur when sending an ECI
request to CICS over IPIC.

242 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|
|

Probable cause

All the defined sessions for the connection are in use. Each active session uses one
CICS task, so the maximum number of sessions allowed is 999. CICS Transaction
Gateway allocates 300 KB of memory for each session. If all the defined sessions
are in use, any new requests receive an ECI_ERR_RESOURCE_SHORTAGE error.

Action
v Increase the SENDSESSIONS value in the CICS Transaction Gateway

configuration file (ctg.ini).
v Increase the IPCONN ReceiveCount value in CICS.

For more information see “Configuring IPIC on CICS Transaction Server for z/OS”
on page 49

Java problems
Problems related to Java.

JVM dumps and system dumps provide detailed information about the internal
status of an IBM JVM, and the configuration of a running CICS Transaction
Gateway.

JVM dumps provide a snapshot of a Java Runtime Environment (JRE). System
dumps provide a snapshot of the Java Runtime Environment at a process level and
also provide diagnostic information regarding the system status or configuration.

For more information, see “Dumping diagnostic information” on page 199.

“Access denied” security exception
If an application program attempts a task that is protected by the Java 2 Security
Manager the result is an “access denied” security exception.

Symptom

When an application is using the ECI or EPI interface in a Java 2 Security Manager
environment, the following exception occurs:
java.security.AccessControlException: access denied
(java.util.PropertyPermission * read,write)

Probable cause

The application program is attempting a task that is protected by the Security
Manager.

Action

Refer to the information on security permissions required by programs running in
this environment. For more information see CICS Transaction Gateway for
Multiplatforms: Programming Guide.

General information about messages
Information about message locations, formats, and prefixes.

Chapter 12. Resolving problems 243

Message locations

The Gateway daemon and Client daemon use different logs, the configuration file
defines where log messages are written. See “Gateway daemon logging” on page
74 and “Client daemon logging” on page 87 for more information.

Message format

Messages have the following format:
CTGnnnnt: <message text>

where nnnn is a number, and t is one of the following:

Identifier Purpose of message Written to

I information Information logs

E error Error logs

W warning Error logs

Message redirection

All CICS Transaction Gateway messages can be optionally redirected to standard
error, and standard error can be written to a file called outputfile. To do this, use
the following command:
ctgstart 2>outputfile >&2

For more information about redirecting messages, see the documentation for your
operating system.

Message prefixes

CICS Transaction Gateway messages have the prefix CTG. Client daemon messages
have the prefix CCL.

For an explanation of all CICS Transaction Gateway messages, see the CICS
Transaction Gateway: Messages book.

API errors

Error codes resulting from incorrect use of the APIs are returned to the associated
applications. Applications must notify the user about such errors, and must
provide information on the required user response.

Telnet clients
Telnet clients can cause a problems with the display of information, for example by
truncating lines of text in messages.

If you are using Telnet, sometimes message text lines that exceed a certain length
are truncated.

If you run the CICS Transaction Gateway cicsterm command from a Telnet prompt,
certain Telnet clients can cause problems with the display such as truncation. This
is usually a problem with the Telnet client that you are using, or the terminal type
that you are emulating. Currently there is no solution to this problem.

244 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|

|
|

SNA error log
The SNA error log can help your support organization diagnose problems.

The default installation log locations are:

Platform Server log location Client log location

AIX /var/sna/sna.err /var/sna/sna.err

HP-UX /var/opt/sna/sna.err /var/opt/sna/sna.err

Linux /var/opt/ibm/sna/sna.err /var/opt/ibm/sna/sna.err

Solaris /var/opt/sna/sna.err /var/opt/sna/sna.err

If you are using an IBM Remote API Client for Windows to communicate with an
IBM Communications Server on Unix or Linux, the default location for the SNA
Client log is C:\IBMCS\w32cli\sna.err

The user who starts the Client daemon must have the authority to write to the
SNA error log. The IBM Communications Server for Linux uses /var/log/warn if
the user does not have authority to write to the SNA error log.

Tracing
Tracing can be enabled and controlled for different components of the CICS
Transaction Gateway.

Tracing, especially debug tracing, decreases performance.

Gateway daemon tracing
Gateway daemon tracing can be set in the Gateway daemon configuration file, or
with a command option.

For information about controlling trace at run time using the ctgadmin command
see “Trace options” on page 198.

To enable standard trace when starting the Gateway daemon use this command:
ctgstart -trace

To enable debug trace, use this command:
ctgstart -x

For more information on starting the Gateway daemon with trace options, see
“Starting and stopping the Gateway daemon” on page 193.

Specifying trace output destination

You can use the Configuration Tool to define a default destination for trace output.
See Using the Configuration Tool for more information.

If you do not define a default destination for trace output, trace output is written
to stderr by default.

To override the default destination for trace output, use the ctgstart -tfile option.

Chapter 12. Resolving problems 245

To start the Gateway daemon with debug tracing enabled and write the trace
output to the file specified in the filename variable, use this command:
ctgstart -x -tfile=filename

Gateway daemon trace levels
There are three main levels of Gateway daemon tracing: stack trace, standard trace,
and debug trace.

Stack tracing
Trace entries are written only when a Java exception occurs. They can help
to determine the source of the exception. Use this when it is important to
maintain performance. See the following sample stack trace.

Standard tracing
Java exceptions and the main Gateway daemon functions and events are
traced. By default, the Gateway daemon displays only the first 128 bytes of
any data blocks (for example the COMMAREA, or network flows) in the
trace.

Debug tracing
Java exceptions and the main Gateway daemon functions and events are
traced in greater detail than with stack or standard tracing. By default, the
Gateway daemon fully outputs any data blocks in the trace. Use this only
when performance is not important or if standard tracing did not give
enough information to solve the problem.

Client daemon tracing
Client daemon tracing is a useful problem determination tool for resolving
communication problems.

You can use the trace functions to collect detailed information on the execution of a
particular function or transaction. A trace can show how the execution of a
particular activity is affected by, for example, the execution of other tasks in a CICS
system. Each trace entry has a time stamp, which provides information on the time
taken to perform certain activities.

To learn how to turn tracing on, see “Starting client tracing” on page 206.

For information on specifying the components of the Client daemon to be traced,
see the cicscli -m command.

The output from the trace function is a binary trace file called, by default,
cicscli.bin in the /var/cicscli subdirectory. You can specify a different name for this
file, using the Configuration Tool. However, you cannot change the .BIN extension.
Using the Client trace file wrap size (KB) configuration setting, you can specify
that the binary trace file should wrap into a second trace file, and you can also
specify the maximum size of these files.

To read the trace, run the cicsftrc utility to convert the binary file or files into a text
file. This text file is called cicscli.trc by default. The default trace files are:

cicscli.bin
The binary trace file produced by running the Client daemon trace.

cicscli.wrp
The second binary trace file if wrapping of client trace is enabled.

246 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

cicscli.trc
The name of the text trace file produced when the binary trace file is
converted to a text file using the cicsftrc utility.

cicscli.bak
The backup file of the binary trace file. A backup file is produced from any
existing .BIN file when you turn tracing on.

cicscli.bbk
The backup of the first binary trace file if memory mapped tracing is
enabled.

cicscli.wbkn
The backup of subsequent binary trace files, if memory mapped tracing is
enabled, where n is the number of the original .WRP file.

See “Formatting the binary trace file” on page 248 for information on the trace
conversion utility.

Wrapping the Client trace
You can control the size of the binary trace file by specifying that it wraps into a
second trace file. Use the Client trace file wrap size (KB) configuration setting to
turn on wrapping trace; specify the maximum size of the wrapping trace (in
kilobytes). If this value is 0 (the default), wrapping trace is not turned on.

When wrapping trace is turned on with standard I/O tracing, two files (called
cicscli.bin and cicscli.wrp) are used. Each file can be up to half the size of the
Client trace file wrap size (KB) value.

Memory mapped tracing
If you enable wrapping trace, you can use the -b switch when you issue the
cicscli command to turn tracing on. This specifies that memory mapped trace
files should be used.

With memory mapped tracing, the operating system's paging mechanism is used
to swap data between memory and the trace file. This improves performance
significantly when compared to standard file I/O, because the trace file is opened
and written to less frequently. Because the operating system is responsible for
flushing data to disk, data is not normally lost if an application terminates
unexpectedly. However, if the operating system itself fails, data can be lost, and the
trace file can be corrupted. If you are diagnosing problems where the server fails
and needs to be restarted, use standard I/O tracing instead of memory mapped
tracing.

If you use memory mapped tracing, the size of the trace files is limited to 10 MB,
and in addition to cicscli.bin and cicscli.wrp, you might see a series of files of the
form cicscli.wrp1, cicscli.wrp2...cicscli.wrpn, where n is the number of files needed
to hold the total amount of trace data specified in the Client trace file wrap size
(KB) field of the Configuration Tool; see “Client trace file wrap size (KB)” on page
111 for the maximum amount of data that can be specified. The trace formatter
finds all files in the sequence when you format the binary files. Memory mapped
tracing uses up to 10MB of memory.

See “Starting client tracing” on page 206 for details of how to issue the command,
and “Security considerations for trace and log files” on page 208 for important
information on security.

Chapter 12. Resolving problems 247

Formatting the binary trace file
If you are using memory mapped tracing, note that data is not always written to
disk immediately. As a consequence, turn tracing off before you format the binary
trace file, to ensure that all data is flushed to disk.

You use the Binary Trace Formatter utility cicsftrc to convert the binary trace file
cicscli.bin to ASCII text. The utility has the following parameters:

-m=list of components
Specifies that only trace points from the listed components are written to the
text file. The components you can specify are the same as for cicscli -m; see the
cicscli -m command. If -m is not specified, all trace points in the binary trace
are written to the text file.

-w[=filename]
Indicates that there are two or more binary trace files to format and then
concatenate (that is, the binary files were created with a wrapping trace). If no
file name is specified with the -w parameter, cicsftrc assumes that the name of
the second trace file is cicscli.wrp.

-n Indents entry and exit points in the test trace file to make it more readable. By
default, indentation is turned off.

-d Specifies detailed trace formatting. If you are using EPI calls, cicsterm or
CICSPRINT, an approximation of the screen layout will be included in the
trace.

-i=filename
Specifies the name of the input (binary) trace file, which is cicscli.bin by
default.

-o=filename
Specifies the name of the output (text) trace file. If no -o parameter is specified,
the name of the text trace file is assumed to be cicscli.trc.

-f Overwrite any existing files.

-s Do summary trace formatting. Summary trace formatting is controlled by a
template file (cclsumtr.txt), which is read in at initialization time. It formats key
trace points, and shows for example the flow of user API calls, the progress of
calls through the Client daemon, and network flows to the server. For the most
detailed results, specify the API.2 component when you define the components
to be traced. Summary tracing provides an overview; use it as requested by
your IBM support organization.

Note: Versions of the CICS Transaction Gateway earlier than 5.0.1 cannot format
binary trace files produced by this version.

248 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Points to note:

1. {Time in API} shows the amount of time that the client API call took to
complete. This can help when investigating performance problems; see
Chapter 8, “Performance,” on page 173 for more information.

2. The API Summary column refers to client API code inside the user application
process. It tracks when user requests enter and leave the client API code. --->
and <--- show the program entering and leaving the Client daemon API.

3. CCLCLNT is the background Client daemon process. You get entries here only
if you specify the CCL component.

4. The Comms Summary tracks when Client daemon calls enter and leave the
network. -S-> shows a request being sent to the network; <-R- shows a reply
being received.

If a user application is making EPI calls, or using cicsterm or cicsprnt, the trace
formatter puts an approximation of the screen into the trace. The following screen
capture is from a formatted trace file, taken from the CECI transaction. It is an aid
to problem determination, not a completely accurate representation of the screen.
See “Formatting the binary trace file” on page 248 for details of how to format the
trace file.

-->Sample of API summary trace taken with API.2 and DRV options.

[Process ,Thread] Time API Summary CCLCLNT Summary Comms Summary
===
...
...
...
[000000bf,0000017c] 12:08:32.190 --->[7315] CCL3310 ECI Call type ECI_SYNC, UOW=0
[00000089,000000a4] 12:08:32.290 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=89
[00000089,00000063] 12:08:32.400 <-R-[4418] CCL4412 TCP/IP (to STEMPLAR) receive data: Length=12
[00000089,0000018b] 12:08:32.511 <-R-[4418] CCL4412 TCP/IP (to STEMPLAR) receive data: Length=29
[00000089,000000a4] 12:08:32.521 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=94
[00000089,000000a4] 12:08:32.531 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=94
[00000089,000000a4] 12:08:32.541 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=94
[00000089,000000a4] 12:08:32.541 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=94
[00000089,000000a4] 12:08:32.551 -S->[4410] CCL4411 TCP/IP (to STEMPLAR) send data: Length=94
[00000089,00000168] 12:08:32.581 <-R-[4418] CCL4412 TCP/IP (to STEMPLAR) receive data: Length=12
[00000089,0000017e] 12:08:32.601 <-R-[4418] CCL4412 TCP/IP (to STEMPLAR) receive data: Length=31
[000000bf,0000018e] 12:08:32.621 [7364] CCL3350 Event Service Thread got a request REQUEST_TYPE_ECI_1
[000000bf,0000008a] 12:08:32.671 <---[7316] CCL3311 ECI Call type ECI_SYNC, UOW=0 got rc=ECI_NO_ERROR {Time in API = 0.821 seconds}

Figure 20. Sample of API summary trace taken with API.2 and DRV options

Chapter 12. Resolving problems 249

The formatter lists the commands that built the screen, and shows an
approximation of the screen.

Format of trace entries
The format of the entries in the Client trace file.
time [process id,thread id] [number] component trace message
data

where:

time
The time the entry was written, to millisecond accuracy.

[process id, thread id]
Process ID is a unique number that the operating system uses to identify a
process. Thread ID is a unique number that the operating system uses to
identify a thread within a particular process.

Command = Erase/Write, so clearing main screen
Command2 = Read Modified
WCC = 0x32 (Free Kbd,80 char)
Set Buffer Address to (1,2)
Insert Cursor @ (1,2)
Set Buffer Address to (1,1)
Start Field Extended (Unprotected,Alphanumeric,Display,not-pen-detectable,Foreground Colour Green)
Data : ’ ’
Insert Cursor @ (1,3)
Set Buffer Address to (2,1)
Data : ’User ’
.....
.....
.....
.....
Set Buffer Address to (24,49)
Start Field Extended (Autoskip (Prot+Num),Display,not-pen-detectable,Foreground Colour Turquoise)
Data : ’9’
Set Buffer Address to (24,51)
Start Field Extended (Unprotected,Alphanumeric,Intense,pen-detectable,Foreground Colour Red)
Data : ’Messages ’

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

>+--+
01| - |
02| uSTATUS. . :uEnter one of the following: |
03| u |
04| uABend EXtract READPrev WAit |
05| uADdress FEpi READQ WRITE |
06| uALlocate FOrmattime RECeive WRITEQ |
07| uASKtime FREE RELease Xctl |
08| uASSign FREEMain RESetbr |
09| uBif Getmain RETRieve |
10| uCAncel Handle RETUrn |
11| uCHange IGnore REWrite |
12| uCONNect INquire SENd |
13| uCONVerse ISsue SET |
14| uDELAy LInk SIGNOFf |
15| uDELETE LOad SIGNON |
16| uDELETEQ PErform START |
17| uDEQ POP STARTBr |
18| uDUmp POSt SUspend |
19| uENDbr PUsh SYncpoint |
20| uENQ READ Unlock |
21| uENTer READNext Verify |
22| u |
23| uPFu1-Help u2-HEX u3-End u4-EIB u5-Variables |
24| u6-User u9-Messages |
+--+
| 1BþC000 STEMPLAR |
+--+
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8

Figure 21. Screen capture from a formatted trace file

250 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

[number]
A number that uniquely identifies the particular trace entry. This helps your
support organization in the diagnosis of serious problems.

[component]
The component of the product to which this entry applies.

trace message
The trace message number and text.

data
Some trace entries include a dump of key data blocks in addition to the trace
message.

Sample Client trace
This sample Client daemon trace shows the trace information recorded during the
successful connection of a Client daemon to a CICS server using the TCP/IP
protocol.

This trace was generated using the commands:
cicscli -s=cicstcp -d cicscli -o

Message ID Explanation

CCL1042 Start of trace message. Each time a trace is started, a backup of the
old trace file is created, and the trace file is overwritten. You can
delete the file when required. Check the time stamp to ensure that
you are reading the correct trace.

CCL2048 Maximum trace data size is at the default size of 512 bytes. You can
modify this size by specifying the size value in the start command
for the client trace; see the cicscli -d command.

CCL3251 The client sends a CCIN transaction to the server to install its
connection definition on the server.

CCL3238 A conversation ID has been successfully allocated. If more than one
conversation is active, use the conversation ID to distinguish
between them.

CCL3113 The client sends a CCIN transaction to the server with Appl ID set
to * to install its application. The Appl ID is specified in the
configuration file as Client=*. This requests the server to
dynamically generate an Appl ID that is unique within the CICS
server system.

17:03:57.580 [0000080c,00000908] [1007] TRC:CCL1042 *** CICS Client for Windows v7 Service Level 00 - service trace started ***
17:03:57.590 [0000080c,00000908] [2183] CCL:CCL2048 Maximum trace data size set to 512
17:03:57.600 [0000080c,00000908] [2114] CCL:CCL2142 GetNextTimeout timeout is 0 seconds
17:03:58.612 [0000080c,00000908] [2030] CCL:CCL2106 Comms Event : LINK-UP
17:03:58.622 [0000080c,00000908] [2019] DRV:CCL2055 Connection with server established (linkID=1)
17:03:58.622 [0000080c,00000908] [2035] CCL:CCL2109 Send server TCS data
17:03:58.632 [0000080c,00000908] [3214] CCL:CCL3251 Comms Allocate request (LinkId=1, Tran=’CCIN’)
17:03:58.632 [0000080c,00000908] [3217] CCL:CCL3238 Comms Allocate completed (LinkId=1, ConvId=1, Rc=0)
17:03:58.632 [0000080c,00000908] [2127] CCL:CCL2143 CommsBegin - OK
17:03:58.632 [0000080c,00000908] [3100] CCL:CCL3113 CCIN install request: ApplId=’* ’, Code page=819
...
...
...
17:04:00.625 [0000080c,00000908] [3102] CCL:CCL3114 CCIN install response: ApplId=’@0Z8AAAA’, Code page=8859-1, Rc=0
17:04:00.625 [0000080c,00000908] [3241] CCL:CCL3255 Comms Complete request (ConvId=1)
17:04:00.635 [0000080c,00000908] [3244] CCL:CCL3246 Comms Complete completed (ConvId=1, Rc=0)
17:04:00.635 [0000080c,00000908] [3218] CCL:CCL3252 Comms Deallocate request (ConvId=1)
17:04:00.645 [0000080c,00000908] [3221] CCL:CCL3239 Comms Deallocate completed (ConvId=1, Reason=0, Rc=0)
17:04:00.645 [0000080c,00000908] [2042] CCL:CCL2114 Processed TCS Reply - Server connected
17:04:00.645 [0000080c,00000908] [2114] CCL:CCL2142 GetNextTimeout timeout is 0 seconds
17:04:00.655 [0000080c,00000908] [2114] CCL:CCL2142 GetNextTimeout timeout is 0 seconds
17:04:00.664 [0000080c,00000908] [1004] TRC:CCL1043 *** Service trace ended ***

Figure 22. Sample Client daemon trace

Chapter 12. Resolving problems 251

Message ID Explanation

CCL3114 This shows the dynamically generated Appl ID.

CCL1043 End of trace message.

The following sample shows trace information recorded when we tried to connect
to a CICS server over TCP/IP using an invalid port number. The port number
specified in the configuration file file was not defined in the services file of the
server. Hence, the connection could not be established.

Message ID
Explanation

CCL4413
Shows the port number used for this connection request.

You must check your definitions in the SIT on the server, the configuration file on
the workstation, and the services file for the port number specified.

You must provide a valid port number or use the default value.

JNI tracing
Enable JNI trace by setting environment variables, or by using a ctgstart override,
or when starting an application in local mode.

Use one of the following methods to enable JNI trace:
v When you start the CICS Transaction Gateway, issue the command:

ctgstart -j-Dgateway.T.setJNITFile=filename

where filename is the name of the file to which trace output is to be sent. If you
do not specify a full path to the file, the location is <install_path>/bin.

v Set the following environment variables before you start the CICS Transaction
Gateway or Java Client applications running in local mode:

CTG_JNI_TRACE
Use this environment variable to set the name of the JNI trace file. This
environment variable only defines the name of the JNI trace file; it does not
enable trace. JNI trace is output as plain text, and there is no requirement to
use a particular extension for the file name.

CTG_JNI_TRACE_ON
Set this environment variable to YES (case-insensitive) to enable JNI trace
when the CICS Transaction Gateway or Java Client application is started.

v For Java Client applications running in local mode, use Java to launch your
application and set the system property gateway.T.setJNITFile, as shown in the
following example:
java -Dgateway.T.setJNITFile=filename application

16:16:41.562 [0000093c,000008ec] [1007] TRC:CCL1042 *** CICS Client for Windows v6 Service Level 00 - service trace started ***
16:16:41.572 [0000093c,000008ec] [2183] CCL:CCL2048 Maximum trace data size set to 512
16:16:41.582 [0000093c,000008ec] [2114] CCL:CCL2142 GetNextTimeout timeout is 0 seconds
16:16:41.612 [0000093c,000008ec] [2114] CCL:CCL2142 GetNextTimeout timeout is -1 seconds
16:16:41.622 [0000093c,000008ec] [3207] CCL:CCL3249 Comms Open request (Server=CICSTCP, Driver=CCLIBMIP)
16:16:41.622 [0000093c,000008ec] [4408] DRV:CCL4413 CCL4413 TCP/IP (to CICSTCP) address=192.113.36.200, port=1089, socket=3
16:16:41.622 [0000093c,000008ec] [3210] CCL:CCL3236 Comms Open completed (Server=CICSTCP, LinkId=1, Rc=0)
16:16:41.633 [0000093c,000008ec] [2114] CCL:CCL2142 GetNextTimeout timeout is 3660 seconds
16:16:41.633 [0000093c,000008ec] [1004] TRC:CCL1043 ***Service trace ended ***

Figure 23. Client daemon trace: using an invalid port number

252 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

where
– filename is the name of the file to which trace output is to be sent
– application is the application to launch

You cannot enable JNI trace through the Configuration Tool.

Tracing Java Client applications
You can enable tracing in the application by using a Java directive when you start
the JVM, or by adding calls to the CICS Transaction Gateway tracing API.

Use the -D option on the java command to specify Java directives. The tracing API
comprises several static methods in the T class of the CICS Transaction Gateway.
See the information about tracing in Java client programs in the CICS Transaction
Gateway for Multiplatforms: Programming Guide for further information.

Tracing in Java Applets

JEE Tracing
A detailed trace mechanism is provided for both the ECI and EPI resource
adapters. Trace is useful when problem solving for applications that use the CICS
resource adapters.

The CICS resource adapters support four levels of trace:

Level Trace

0 No trace messages

1 Exception tracing only (default level)

2 Exception and method entry/exit trace messages

3 Exception, method entry/exit and debug trace messages

To provide more control over tracing, these system properties are available:

Property Purpose

com.ibm.connector2.cics.tracelevel Overrides the deployed trace level for the
resource adapters without having to
redeploy or deploy another CICS resource
adapter.

com.ibm.connector2.cics.dumpoffset The offset into a byte array at which a hex
dump will start.

com.ibm.connector2.cics.dumplength The maximum length of data displayed in a
hex dump.

com.ibm.connector2.cics.outputerr Declaring this directive sends trace output
to standard error, if no other trace location
has been specified either by the JEE server,
or by the application developer working in
a nonmanaged environment. In other
circumstances the provided logwriter takes
precedence.

Chapter 12. Resolving problems 253

These are JVM System properties that can be passed to the JVM on startup. The
com.ibm.connector2.cics.tracelevel option is equivalent to the managed
environment property "tracelevel" that is set as a custom property on the
connection factory.

The connection manager thread used by your environment controls the location to
where trace is written. In a managed environment an option should be provided to
allow you to set the path of the file that will be used for storing trace. Depending
on how your environment allocates connection manager threads to resource
adapters this file might contain messages from other resource adapters using the
same connection manager.

When you deploy the CICS resource adapters into your environment, security
restrictions are set up to allow access to the local file system for the purpose of
writing trace files.

Access is given to the IBM/ctg directory in your home directory.

This might map to:
/home/ctguser/IBM/ctg/

Therefore, when setting the name and path of the trace file in your JEE
environment, use a location under this directory structure to store your trace.
Otherwise the resource adapters will not have security permissions to write to the
file.

Tracing issues when serializing Connection Factories
In a non-managed environment, when a ConnectionFactory object is serialized the
reference to the LogWriter used for tracing is lost.

If you want trace to be written to a LogWriter you can use the setLogWriter
method which can call on the DefaultConnectionManager object. This method
ensures that the LogWriter is used on any Connection created from a
ConnectionFactory, regardless of whether or not it was previously serialized and
de-serialized. An example of this, writing trace to the standard error stream, is
shown:
DefaultConnectionManager.setLogWriter(new java.io.PrintWriter(System.err));
Connection Conn = (Connection)cxf.getConnection();

The trace level within the ConnectionFactory is maintained throughout the
serialization process and is unaffected by the LogWriter in the
DefaultConnectionManager.

Problem solving and support
This section provides information about how to resolve problems with your IBM
software, including instructions for searching knowledge databases, downloading
fixes, and getting support.

IBM Technotes and other support documents are published on the CICS
Transaction Gateway support Web site. You can also search Web-based support
resources by using the customized query fields in the Web search topic. For more
information, see http://www-01.ibm.com/software/htp/cics/ctg/support/.

254 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Searching knowledge bases
If you have a problem with CICS Transaction Gateway, you want it resolved
quickly. Begin by searching the available knowledge bases to determine whether
the solution to your problem is already documented.
1. Search the CICS Transaction Gateway Information Center.
2. Search the Internet. If you cannot find an answer to your question in the

information center, search the Internet for the latest, most complete information
that might help you resolve your problem. To search multiple Internet
resources for CICS Transaction Gateway, use the Web search tool. The tool
enables you to search a variety of resources including:

IBM Technotes
Downloads
IBM Redbooks publications
IBM DeveloperWorks
Forums and newsgroups
Google

Contacting IBM Software Support
IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM.

Follow the steps in this topic to contact IBM Software Support:
1. Determine the business impact of your problem.
2. Describe your problem and gather background information.
3. Submit your problem to IBM Software Support.

Determine the business impact of your problem

When you report a problem to IBM, you will be asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the problem
you are reporting. Use the following criteria:

Severity Impact Characteristic

1 Critical You are unable to use the program, resulting in a critical
impact on operations. This condition requires an
immediate solution.

2 Significant The program is usable but is severely limited.

3 Moderate The program is usable with less significant features (not
critical to operations) unavailable.

4 Minimal The problem causes little impact on operations, or a
reasonable circumvention to the problem has been
implemented.

Describe your problem and gather background information

When explaining a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:

Chapter 12. Resolving problems 255

v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can the problem be recreated? If so, what steps led to the failure?
v Have any changes been made to the system? For example, hardware, operating

system, networking software, and so on.
v Are you currently using a workaround for this problem? If so, please be

prepared to explain it when you report the problem.

To find out what information and files you will need to supply when opening a
problem management record (PMR), see http://www-01.ibm.com/support/
docview.wss?uid=swg21287335#submit

Submit your problem to IBM Software Support

You can submit your problem in one of two ways:
v Online: Go to the Submit and track problems page on the IBM Software Support

site. Enter your information into the appropriate problem submission tool.
v By phone: For the phone number to call in your country, go to the contacts page

of the IBM Software Support Handbook on the Web and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support will create an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support will provide a workaround for you to implement until the
APAR is resolved and a fix is delivered.

IBM publishes resolved APARs on the IBM product support Web pages daily, so
that other users who experience the same problem can benefit from the same
resolutions.

256 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Chapter 13. Monitoring and statistics

Monitoring provides information about the status of individual requests. Statistics
provide information about the performance of runtime components.

Monitoring

Request monitoring exits can optionally be used for driving user exit code on a per
request basis. One or more user exit programs can be called for each request if
details of each request are made available. All user exit code is called inline; this
means that performance of the user exit code is critical.

Statistics

CICS Transaction Gateway statistics are always active and predefined by IBM.
Unlike the request monitoring exits, the statistics provide summary information
such as running totals, averages, status, and configuration values. Statistics are
either displayed from system management commands, or can be obtained through
a program that uses the statistics API.

Request monitoring exits
Request monitoring exits provide information about individual requests as they are
processed by CICS Transaction Gateway.

Exit points in the product allow user code to be run in the context of each
individual transaction. This context allows the user code to take action based on
information specific to the current request. For example, an exit might be written
to trigger an alert if an individual transaction runs for longer than a specified time.
You use request monitoring exits to analyze transaction flows to assist with
problem determination and performance tuning. Samples exits are provided; these
demonstrate how request exits can be used.

The Java based request monitoring exits are available on the Gateway classes and
the Gateway daemon and can be stacked, enabling multiple exits to be driven for
an individual request. Exits are called for each ECI flow at the point of request
entry to, and response exit from, the CICS Transaction Gateway code. The data
available to the exit depends on the type of ECI flow and the point at which the
exit is driven from.

The data values available to request monitoring exits are passed to the RequestExit
eventFired() method.

Table 21. Data available to request monitoring exits

Request data description Description

CicsAbendCode CICS abend code on a response.

CicsReturnCode CICS return code on a response.

CicsServer The server to which CICS Transaction Gateway sent the request.

ClientCtgApplid APPLID of the Client application.

ClientCtgApplidQualifier APPLID qualifier of the Client application.

ClientCtgCorrelator Correlator generated by the Java client application

© Copyright IBM Corp. 1998, 2011 257

Table 21. Data available to request monitoring exits (continued)

Request data description Description

ClientLocation Location of client Gateway classes (IP address).

CommandData Command data originating from a request monitor exit administration request.

CtgApplid CICS Transaction Gateway APPLID.

CtgApplidQualifier CICS Transaction Gateway APPLID qualifier.

CtgCorrelator CICS Transaction Gateway identifier used to track this flow within the CICS
Transaction Gateway instance.

CtgReturnCode CICS Transaction Gateway return code on a response.

DistributedIdentity Distributed identity associated with this transaction.

FlowTopology Topology from which the request exit was called:

v gateway - from the Gateway daemon

v remote - from a remote client

v local - from a local client

FlowType The flow type of this request or response.

GatewayUrl URL of the Gateway to which the Java client is connecting.

Location Location of this monitor. The value is an IP address.

LuwToken CICS Transaction Gateway logical unit of work token.

OriginData IPIC origin data. Use to identify the client that originated a CICS task. This is only
available when communicating with CICS using the IPIC protocol.

PayLoad A copy of the COMMAREA for use in the exit.

Program CICS program name.

RequestReceived Timestamp of request flow received in the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT.

RequestSent Timestamp of response flow sent from the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT

ResponseReceived Timestamp of response flow received in the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT

ResponseSent Timestamp of response flow sent from the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT

RetryCount The number of times the Gateway daemon retried sending a request to CICS.

Server Server specified in the request.

TpnName TPN Name.

TranName Transaction ID.

Userid User ID.

WireSize Number of bytes of data received from or about to be sent to the Gateway classes.

WorkerWaitTime Time in milliseconds that the Gateway daemon waited for a worker thread to
become available to process the request. If the Gateway daemon times out waiting
for a worker thread to become free, this value contains the time in milliseconds that
the Gateway daemon waited before the timeout occurred.

XaReturnCode XA return code on a response.

Xid XID for XA transaction.

Related information:
Request monitoring exits configuration
Request monitoring exit API information

Request monitoring exits configuration
In a remote mode topology, you can configure request monitoring exits
individually for the Gateway classes and the Gateway daemon. In a local mode
topology, you must configure request monitoring exits for the Gateway classes.

258 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

In both situations, the exit configuration data must follow this format:
v Each exit must be defined using a fully qualified class name.
v Exits must be delimited from each other by commas (",").

When the Gateway classes or the Gateway daemon processes the configuration
data, each class is instantiated and failures are logged. When a request monitoring
exit object is used, any exceptions or runtime errors are logged and the exit
becomes inactive.

For more information see “Configuring the request monitoring exits for a Gateway
daemon” on page 102.

Configuring the request monitoring exits for a Gateway daemon
The requestexits parameter specifies a list of one or more classes that perform
request monitoring.

Use the configuration tool to set the request monitors to use, or set the
requestexits parameter to a valid class name for a request monitor class:

requestexits=fully_qualified_class_name

For example:
requestexits=com.ibm.ctg.samples.requestexit.MyMonitor

You can define multiple exits by separating them with a comma:

For example:
requestexits=com.ibm.ctg.samples.requestexit.1stMonitor,com.ibm.ctg.samples.requestexit.2ndMonitor

This parameter is in the GATEWAY section of the configuration file, see
“GATEWAY section of the configuration file” on page 115 for more information
about other parameters in this section.

Statistics
Statistics can help with problem determination and capacity planning, and make it
possible to gain a snapshot of the current activity in CICS Transaction Gateway.

Statistics can be displayed using the administration interface or retrieved using a
program through the Statistics API. Statistical values reflect the status or activity of
the Gateway daemon and the Client daemon from which they were collected.
Statistical data for the Gateway daemon is based on Client applications that run in
remote mode. Statistical data for the Client daemon is based on Client applications
that run in both local and remote modes and use a TCP/IP or SNA server
connection. No statistical data is available for Java Client applications that run in
local mode. The collection of statistics has an insignificant impact on performance,
and statistics are always available.

CICS Transaction Gateway statistics aim to assist you in the following activities:
v Capacity planning information and throughput analysis
v Critical resource usage
v Problem determination

Chapter 13. Monitoring and statistics 259

Interval and end-of-day statistics reflect those used by the CICS Transaction Server
products to allow for synchronization of statistics collection between the products.
Further information can be found from the Statistics parameters section of the CICS
Transaction Server for z/OS System Definition Guide.

Resource group ID

A resource group ID is a logical grouping of resources, grouped for statistical
purposes. A resource group ID is associated with a number of resource group
statistics, each identified by a statistic ID.

Statistic ID

A statistic ID is a label referring to a specific statistical value, and is used to
identify or retrieve statistical data. The statistic ID consists of three parts: <resource
group ID>_<statistical type><statistic ID suffix>. For example, the statistic ID
CM_CALLOC is part of the connection manager (CM) resource group, and
represents the current (C) number of allocated (ALLOC) connection manager
threads. See “List of statistics” on page 269 for a list statistic IDs arranged by
resource group.

Statistical type

There are four statistical types:

C Current: the statistic is based on a current evaluation; the value is
dynamic.

I Interval: the statistic is based on interval equivalents of existing Lifetime
statistics, Gateway bandwidth or throughput, average response times, and
thread use. The statistical values are reset periodically.

L Lifetime: the statistic is based on observations since the Gateway daemon
started; the value is dynamic. Each lifetime statistic has a default value,
which is set when the Gateway daemon is initialized.

S Startup: the statistic is based on a configuration setting for the Gateway
daemon; the value is static.

If a characteristic of the product is reflected by a statistical ID of type Lifetime, in
general there is an equivalent statistical ID of type Interval.

Statistic ID suffix

The statistic ID suffix is the part of the statistic ID that follows the statistical type
character. This suffix is usually a noun representing the particular characteristic of
the resource group represented by the statistic ID. Similar characteristics that are
shared by resource groups can use the same statistic ID suffix for consistency. For
example, the suffix ALLOC is used in statistical IDs WT_CALLOC, CM_CALLOC,
and CS_CALLOC.

Resource groups

Statistics resource groups are a logical grouping of resources such as connection
manager threads.

260 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Statistics configuration
You can configure parameters for statistics interval, statistics end of day and
statistics API port.

Interval timing patterns

The interval and end-of-day parameters combine to form a timing pattern. This
timing pattern determines when statistics intervals begin and end. At interval
boundaries statistics of statistical type "Interval" are reset to the default values. For
examples, see “Interval timing patterns” on page 263.

Statistics interval

Statistics are gathered by CICS Transaction Gateway during a specified interval.
You can change the interval value using the statint system parameter. You can set
the statint parameter in these ways:
v The Gateway daemon panel in the Configuration Tool.
v The Gateway section of the configuration file.

The statint parameter equates to the CICS Transaction Server keyword and
concepts of the parameter of the same name.

See “Statistics Interval (HHMMSS)” on page 105 for more information.

Statistics end of day

The end-of-day value (stateod) defines a logical point in the 24–hour operation of
CICS Transaction Gateway.

You can change the end of day value:
v The Gateway daemon panel in the Configuration Tool. See “Statistics End of

Day time (HHMMSS)” on page 105
v The Gateway section of the configuration file.

The stateod parameter equates to the CICS Transaction Server keyword and
concepts of the parameter of the same name. See “Statistics End of Day time
(HHMMSS)” on page 105 for more information.

Statistics API port

The Statistics API port allows the Gateway daemon to handle incoming requests
for the Statistics API. You can select the port number on which to listen for
Statistics API requests:
v The Gateway daemon panel in the Configuration Tool. See “Statistics API

protocol settings” on page 103
v The Gateway section of the configuration file.

See “Statistics API protocol settings” on page 103 for more information.

Chapter 13. Monitoring and statistics 261

Related reference:
“Statistics API protocol settings” on page 103
Use the CICS Transaction Gateway configuration tool to configure the statistics API
protocol settings, or edit the statistics API protocol parameters in the GATEWAY
section of the configuration file directly.
Related information:
“Statistics Interval (HHMMSS)” on page 105
The statint parameter specifies the recording interval for system statistics. The
default is three hours. The interval must be at least one minute and cannot be
more than 24 hours.
“Statistics End of Day time (HHMMSS)” on page 105
The stateod parameter specifies the end-of-day time. The End of Day time is used
as a point of reference for the clock. Intervals are aligned to this rather than to the
CICS Transaction Gateway startup time. This also determines the point at which
statistics are reset and potentially recorded, and occurs at least once every 24
hours.
“GATEWAY section of the configuration file” on page 115
This table provides the names and descriptions for all parameters that can be set in
the GATEWAY section of the configuration file.

Setting up your system for statistics
Use the configuration tool to configure your system to deal with requests for
statistics.

Before you begin

Run the Configuration Tool and navigate to the Resources tab of the Gateway
daemon node.

Procedure
1. Clear the Disabled check box.
2. Optional: enter a value in the Statistics API port if the default setting is not

suitable.
3. Enter a value for the Statistics Interval in the format HHMMSS. The default

value is three hours (030000).
4. Enter a value for the End-of-Day time in the format HHMMSS. The default

value is midnight (000000).
5. Save the configuration file and then stop and restart the Gateway daemon.
Related reference:
“Statistics API protocol settings” on page 103
Use the CICS Transaction Gateway configuration tool to configure the statistics API
protocol settings, or edit the statistics API protocol parameters in the GATEWAY
section of the configuration file directly.
Related information:
“Statistics API protocol parameters” on page 117
To enable the statistics API protocol, include a protocol handler definition in the
GATEWAY section of the configuration file.

Interval statistics
Two keywords, statint and stateod, are included in the GATEWAY section of the
configuration file. The keyword statint shows the statistics interval duration and

262 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

the keyword stateod shows the End-of-Day time. These two keywords match the
equivalent setting in CICS Transaction Server, and are familiar to CICS Transaction
Server administrators.

If either or both keywords are undefined, on Gateway daemon initialization, they
default to three hours statint and midnight stateod. The default is shown in the
sample configuration file, ctgsamp.ini:

Statistics interval duration specified in the form
HHMMSS, where the overall range of valid interval
values is from 000100 (1 minute) to 240000 (24 hours)
inclusive. HH must be in the range 00 to 24, with MM
and SS values in the range 00 to 59.
statint=030000

Statistics end of day time in the form HHMMSS, and is
expressed in local time, where the overall range of
valid time is from 000000 (midnight) to 235959 (1 second
before midnight) inclusive. HH must be in the range 00
to 23, with MM and SS values in the range 00 to 59.
stateod=000000

The two fields Statistics interval and Statistics End of Day time are shown in the
Gateway daemon panel in the Configuration Tool. The fields are located below the
Statistics API port field.

The Statistics Interval combines with the Statistics End of Day time to formulate
times at which interval statistics are reset. Reset occurs at the end of the current
interval or at the Statistics End of Day time (the logical end of day), whichever
comes first. Valid values for the statistics interval parameter, statint, are between
1 minute and 24 hours. The field requires the interval to be specified in the format
HHMMSS, and accepts interval times only within the specified range.

If an irregular interval is specified and the end of interval and the Statistics End of
Day time might not coincide, that interval is truncated. The next interval starts
from Statistics End of Day time. For further details see “Interval timing patterns.”
Valid values for the End of Day time parameter, stateod, can range between
midnight (000000) and 1 second before midnight (235959). The field requires the
interval to be specified in the format HHMMSS, and accepts interval time only
within the specified range.
Related information:
“GATEWAY section of the configuration file” on page 115
This table provides the names and descriptions for all parameters that can be set in
the GATEWAY section of the configuration file.

Interval timing patterns
Interval boundaries are aligned to the logical end of day. It is most likely that the
first statistics interval after Gateway daemon initialization will be of a shorter
duration than the configured interval length.

The first interval period is shorter than subsequent interval periods if either of the
following conditions are met:
v The Gateway daemon start time does not match one of the interval end times, as

shown in the examples in the following tables.
v You select a figure for an interval period that does not divide equally into 24, for

example 5 hours (050000).

Chapter 13. Monitoring and statistics 263

Examples of Statistics Interval timings

Interval Statistics timing – Example 1:

The Gateway daemon starts at 5:20 a.m. (052000) and is configured with
statint=030000 stateod=000000.

The first Interval is scheduled to end at 6:00 a.m. (060000), and is of 40 minutes
duration. This schedule allows subsequent intervals be aligned with the end-of-day
event. In this case, statistics are reset and optionally recorded at the following
times during the 27 hours following Gateway initialization:

Table 22. Interval Statistics timing – Example 1

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

06:00:00 Interval reset 00:40:00

09:00:00 Interval reset 03:00:00

12:00:00 Interval reset 03:00:00

15:00:00 Interval reset 03:00:00

18:00:00 Interval reset 03:00:00

21:00:00 Interval reset 03:00:00

00:00:00 End of Day reset 03:00:00

03:00:00 Interval reset 03:00:00

Sequence repeats

Interval Statistics timing – Example 2:

The Gateway daemon starts at 5:20 a.m. (052000) and is configured for six hour
statistics intervals, with logical end of day at 23:59 with statint=060000
stateod=235900.

The first Interval is scheduled to end at 5:59 a.m. (055900), and is of 39 minutes
duration. This schedule allows subsequent intervals be aligned with the end-of-day
event. In this case, statistics are reset and optionally recorded at the following
times during the 30 hours following Gateway initialization:

Table 23. Interval Statistics timing – Example 2

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

05:59:00 Interval reset 00:39:00

11:59:00 Interval reset 06:00:00

17:59:00 Interval reset 06:00:00

23:59:00 End of Day reset 06:00:00

05:59:00 Interval reset 06:00:00

11:59:00 Interval reset 06:00:00

Sequence repeats

Interval Statistics timing - Example 3:

264 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

The Gateway daemon starts at 5:20 a.m. (052000) and is configured for a 24 hour
statistics interval, with logical end of day at 23:59 with statint=240000
stateod=235900.

The first Interval is scheduled to end at 23:59 (235900), and is of 17 hours and 39
minutes duration. This schedule allows subsequent intervals be aligned with the
end-of-day event. In this case, statistics are reset and optionally recorded at the
following times during the days following Gateway initialization:

Table 24. Interval Statistics timing – Example 3

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

23:59:00 End of Day reset 17:39:00

23:59:00 End of Day reset 24:00:00

23:59:00 End of Day reset 24:00:00

Sequence repeats

Displaying statistics
You can use the ctgadmin command to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Use ctgadmin to display statistical information about the CICS Transaction
Gateway. Use the options listed in Statistical options to display statistical
information. Do not combine options.

Enter a command like the following at the command line:
ctgadmin -a stats options

For example, to display all available statistics about the CICS Transaction Gateway,
enter the following command:
ctgadmin -a stats -gs

The command is not case-sensitive.

Displaying all available statistics
Use ctgadmin with the -gs option with no parameters, to display all available
statistical information about the CICS Transaction Gateway.

Enter the following command:
v ctgadmin -a stats -gs.

Selecting the statistics to display
Use ctgadmin, with the -gs option followed by a list of IDs, to display statistics for
one or more statistical IDs and resource groups.

Use the -gs option, followed by a list of IDs for the statistics or resource groups.
Separate each item in the list by a colon (:).

For example, to display information about the worker thread resource group, the
maximum number of connection managers, and the Gateway daemon resource
group, enter the following command:

Chapter 13. Monitoring and statistics 265

ctgadmin -a stats -gs wt:cm_smax:gd

You might use an optional parameter, stattype, (st) to filter on statistic type. The
parameter is case-insensitive and consists of colon-separated single characters each
of which denotes a statistic type:
v S = Startup
v C = Current
v L = Lifetime
v I = Interval

To display the interval statistical values, for all resource groups, enter one of the
following commands:

ctgadmin –a stats –gs –st=i

ctgadmin –a stats –getstats –stattype=i

To display the current statistical values from the CS resource group, enter the
following command:

ctgadmin –a stats –gs=cs –st=c

To display all lifetime and interval statistical values from the GD resource group,
enter the following command:

ctgadmin –a stats –gs=gd –st=L:I

If the stattype option is omitted, the output is unfiltered. Any repeated statistical
type characters or unrecognized statistical type characters are ignored. If any of the
specified statistical type characters are unrecognized, the command produces a
warning message.

Listing available resource groups
Use ctgadmin, together with the -rg parameter with no other options, to list
available resource groups.

To list available resource groups, enter the following command:
v ctgadmin -a stats -rg.

Listing all available statistical IDs
Use ctgadmin, together with the -si parameter, to list available statistical IDs.

To list all available statistical IDs, enter the following command:
v ctgadmin -a stats -si.

Listing statistical IDs for selected resource groups
Use ctgadmin, with the -si parameter followed by a list IDs, to list available
statistical IDs.

To list statistical IDs for one or more resource groups, use the -si parameter
followed by a colon-separated list of resource groups. For example, to list statistical
IDs for the connection manager and worker thread resource groups, enter the
following command:
v ctgadmin -a stats -si cm:wt.

266 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Getting help on statistics
Use ctgadmin -a stats -? to get help on statistics.

Before you begin

Issue the following command:

Procedure

ctgadmin -a stats -?

Statistics resource groups
Every statistic belongs to a resource group. Resource groups define an area for
which statistical data can be associated and retrieved. Resource groups are
available from the CICS Transaction Gateway.

A resource group is a logical grouping of resources, such as connection managers.
It defines an area for which statistical data can be associated and retrieved. Each
resource group has these characteristics:

ID A unique identifier for the resource group. The ID is used by ctgadmin and the
statistical API to retrieve statistics, and is not case-sensitive.

Name
The name of the resource group, displayed when ctgadmin is used to display
statistical information.

Description
A description of the resource group.

These resource groups are defined:

Table 25. Resource groups

ID Name Description

CD Client daemon statistics Statistics about the Client daemon process.

CM Connection manager
statistics

Statistics about connection manager threads.

CS CICS server (all) statistics Statistics about all CICS servers.

CSx CICS server (instance)
statistics

Statistics for an individual CICS server, where x is the APPLID of the
CICS server.

GD Gateway daemon statistics Statistics on transaction counts, request counts, and Gateway status.

PH Protocol handler statistics Statistics about protocol handlers.

SE System environment
statistics

Statistics about the System Environment of the Gateway daemon.

WT Worker thread statistics Statistics about worker threads.

Client daemon resource group (CD)

The Client daemon resource group contains statistical values reflecting the status
and activity of the Client daemon component. Client daemon statistics are only
available through the Gateway daemon administration interface, ctgadmin, or the
statistics API. This means that both the Gateway daemon and the Client daemon
must be active to display or retrieve Client daemon statistics.

Chapter 13. Monitoring and statistics 267

Client daemon statistics are initialized when the Client daemon is started and the
values are not reset if the Gateway daemon is started later. If a CICS server
connection is stopped using the CICSCLI command, then statistics for that CICS
server will persist for the lifetime of the Client daemon. If a CICS server
connection is stopped and restarted the statistic values are not reset.

Connection manager resource group (CM)

Statistics are available for connection manager threads. These statistics identify the
characteristics for the pool of connection manager threads and are useful for
analyzing resource usage, capacity planning and diagnosing system problems.

CICS Server (all) resource group (CS)

Statistics are available that summarize interactions with all associated CICS servers.

CICS Server (instance) resource group (CSx)

Statistics are available for each specific CICS server "x". In general, the statistic IDs
of the CS resource group which summarize activity across all associated CICS
servers, can be found for each CICS server in the corresponding CSx resource
group.

For example, a CICS Transaction Gateway connected to a CICS server defined by
the name CICSAOR1 is represented by resource group CSCICSAOR1. An example
of a statistical ID available for such a resource group is CSCICSAOR1_LALLREQ. If
the server name contains any underscores (_), they are replaced with hyphens (-) in
the resource group ID.

A CSx resource group is available for a connected CICS server regardless of the
protocol used. However, there are some protocol-specific statistic IDs. The
CSx_SPROTOCOL statistic is provided to distinguish the set of values that can be
expected for a given CSx resource group, especially for use by a Statistics API
program.

Statistics for CICS servers connected over SNA and TCP/IP are available
immediately after initialization. Statistics for CICS servers connected over IPIC are
available after a connection is attempted.

Gateway daemon resource group (GD)

Statistics are available for the Gateway daemon. These statistics include status, an
indication of work done on behalf of remote mode Client applications, completed
and active transactions. Although there is a correlation between the number of
requests counted in the GD and CS resource groups, requests counted in the GD
resource group reflect remote Client requests and are likely to be different from the
CS resource group request counts. Some Client requests do not require any
interaction with a CICS server; for example, list systems. Other Client requests
might require more than one interaction with a CICS server.

System environment resource group (SE)

Statistics are available to assist in the analysis of storage usage by the Gateway
daemon. JVM Heap storage and Garbage Collection (GC) information is provided.

268 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Worker thread resource group (WT)

Statistics are available for the worker threads. These statistics identify the
characteristics for the pool of worker threads that can be used by connection
managers. These statistics are useful for analyzing resource usage and capacity
planning, and for diagnosing system problems.

List of statistics
These statistics are available from the CICS Transaction Gateway.

Each statistic has the following characteristics:

ID A unique identifier for the statistic. The ID is used by ctgadmin and the
statistical API to retrieve statistics, and is not case-sensitive. The structure of
the ID is as follows:
<resource group>_<statistics type><statistics suffix>

Each part of the ID is mandatory; their characteristics are as follows:

<resource group>
An alphanumeric string of one or more characters representing the
resource group to which the statistic belongs.

<statistics type>
A single character; valid values are C, I, L, and S.

C Current: the statistic is based on a current evaluation; the value
is dynamic.

I Interval: the statistic is based on interval equivalents of
existing Lifetime statistics, Gateway bandwidth or throughput,
average response times, and thread utilization.

L Lifetime: the statistic is based on observations since the
Gateway daemon started; the value is dynamic. Each lifetime
statistic has a default value, which is set when the Gateway
daemon is initialized.

S Startup: the statistic is based on a configuration setting for the
Gateway daemon; the value is static.

<statistics suffix>
An alphanumeric string of one or more characters representing the
resource about which information is being returned.

Short description
The short description is displayed when ctgadmin is used to display statistical
information.

Description
A description of the information returned by the statistic.

Value returned
The type of information returned by the statistics:

Integer
The string value represents a 4-byte numeric value.

Long The string value represents an 8-byte numeric value.

String The string value represents character data.

These subtopics describe the statistics that are defined:

Chapter 13. Monitoring and statistics 269

Connection manager statistics:

The statistics listed here belong to the connection manager resource group.

Table 26. Connection manager statistics

ID Description Default value Data type

CM_CALLOC The current number of connection manager
threads allocated to clients.

0 Integer

CM_CCURR The current number of connection manager
threads created.

0 Integer

CM_CWAITING The current number of connection managers
waiting for a worker thread to become
available.

0 Integer

CM_IALLOC The number of allocations for connection
manager threads representing the number of
connections that have been established from
remote clients. A low value represents
efficient connection reuse.

0 Integer

CM_IALLOCHI The peak number of connection manager
threads concurrently allocated to client
applications. This number represents a high
water mark for CM_CALLOC.

<CM_CALLOC> Integer

CM_ICREATED The number of connection manager threads
created.

0 Integer

CM_ITIMEOUTS The number of times that the Gateway
daemon failed to allocate a connection
manager thread to a client application
within the defined connecttimeout length of
time.

0 Integer

CM_LALLOC The number of allocations for connection
manager threads representing the number of
connections that have been established from
remote clients. A stable value represents
efficient connection reuse.

0 Integer

CM_LTIMEOUTS The number of times that the Gateway
daemon failed to allocate a connection
manager thread to a client application
within the defined (connecttimeout) length
of time.

0 Integer

CM_SINIT The initial number of connection manager
threads initconnect created by the Gateway
daemon.

0 Integer

CM_SMAX The maximum number of connection
manager threads maxconnect that can
possibly be created and allocated by the
Gateway daemon.

0 Integer
Note: A value of
-1 indicates no
limit.

CICS server (all) statistics:

The statistics listed here belong to the CICS server (all) resource group.

270 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 27. CICS server (all) statistics

ID Description Default value Data type

CS_CORPHANREQ The number of requests currently waiting
for a response from CICS for which the
owning application has timed out or ended.

0 Integer

CS_CREQCURR The current number of active requests in the
Client daemon. The maximum number of
active requests is defined by CS_SREQMAX

0 Integer

CS_CSESSCURR The number of IPIC sessions in use with
CICS servers.

0 Integer

CS_CSESSMAX The number of IPIC sessions negotiated with
CICS servers.

0 Integer

CS_CTERM The current number of installed terminals
including EPI, cicsterm and cicsprnt.

0 Integer

CS_CWAITING The number of requests currently waiting
for a response from a CICS server.

0 Integer

CS_ISESSFAIL The number of failures on IPIC sessions to
CICS servers.

0 Integer

CS_LALLREQ The number of requests to CICS servers
(successful and failed) that have been
processed.

0 Integer

CS_LAVRESP The average time taken (in milliseconds) for
a connected CICS server to respond to the
Gateway daemon over the lifetime of the
current Gateway daemon.

0 Integer

CS_LCONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CS_LCOUNT The number of CICS servers to which
requests have been sent. This number equals
the number of CICS servers in CS_LLIST.

0 Integer

CS_LIDLETIMEOUT The number of times a connection to a CICS
server has timed out.

0 Integer

CS_LLIST The list of CICS servers to which requests
have been sent.

<empty string> String

CS_LLOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CS_LORPHANREQ The number of requests that have had to
wait for a response from CICS for which the
owning application has timed out or ended.

0 Integer

CS_LRESPDATA The amount of response data (in bytes)
received from connected CICS servers. This
amount includes both application and CICS
protocol data. For Client daemon and IPIC,
the data comprises COMMAREA and CICS
headers.

0 Long

CS_LREQDATA The amount of request data (in bytes) sent
to connected CICS servers. This amount
includes both application and CICS protocol
data. For Client daemon and IPIC, the data
comprises COMMAREA and CICS headers.

0 Long

CS_LSESSFAIL The number of failures on IPIC sessions to
CICS servers.

0 Integer

Chapter 13. Monitoring and statistics 271

Table 27. CICS server (all) statistics (continued)

ID Description Default value Data type

CS_LTERMINST The number of terminal installs processed
by the Client daemon including EPI,
cicsterm and cicsprnt. Successful and failed
requests are included.

0 Integer

CS_LTERMUNINST The number of terminals uninstalled by the
Client daemon including EPI, cicsterm and
cicsprnt. An uninstall event might be
triggered by an application request or
cleanup processing.

0 Integer

CS_SCOUNT The number of CICS servers defined in the
configuration file.

0 Integer

CS_SLIST The list of all CICS servers defined in the
configuration file.

<empty string> String

CS_SREQMAX The defined maximum number of active
requests in the Client daemon. For the client
this value is the same as the configuration
file parameter MAXREQUEST

0 Integer

CICS server (instance) statistics:

The statistics listed here belong to the CICS server (instance) resource group.

Table 28. CICS server (instance) statistics

ID Description Default value Data type

CSx_CAPPLID The APPLID of the connected CICS server x. <empty string> String

CSx_CAPPLIDQ The APPLID qualifier of the connected CICS
server x.

<empty string> String

CSx_CORPHANREQ The number of requests currently waiting
for a response from CICS server x for which
the owning application has timed out or
ended.

0 Integer

CSx_CREQCURR The current number of active requests to
CICS server x.

0 Integer

CSx_CSESSCURR The number of IPIC sessions in use with
CICS server x.

0 Integer

CSx_CSESSMAX The number of IPIC sessions negotiated with
CICS server x.

0 Integer

CSx_CTERM The current number of terminals installed to
CICS server x including EPI, cicsterm and
cicsprnt.

0 Integer

CSx_CWAITING The number of requests currently waiting
for a response from CICS server x.

0 Integer

CSx_ISESSFAIL The number of failures on IPIC sessions to
CICS server x.

0 Integer

CSx_LALLREQ The number of requests to CICS server x
(successful and failed) that have been
processed.

0 Integer

CSx_LAVRESP The average time taken (in milliseconds) for
connected CICS server x to respond.

0 Integer

272 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 28. CICS server (instance) statistics (continued)

ID Description Default value Data type

CSx_LCOMMSFAIL The number of times communication with
CICS server x has failed after a connection
has already been established, or when there
has been a failure with the link during
communication with the server.

0 Integer

CSx_LCONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CSx_LIDLETIMEOUT The number of times a connection to CICS
server x has timed out.

0 Integer

CSx_LLOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CSx_LORPHANREQ The number of requests that have had to
wait for a response from CICS server x for
which the owning application has timed out
or ended.

0 Integer

CSx_LREQDATA The amount of request data (in bytes) sent
to connected CICS server x. This amount
includes both application and CICS protocol
data. For Client daemon and IPIC, the data
comprises COMMAREA and CICS headers.

0 Long

CSx_LRESPDATA The amount of response data (in bytes)
received from connected CICS server x. This
amount includes both application and CICS
protocol data. For Client daemon and IPIC,
the data comprises COMMAREA and CICS
headers.

0 Long

CSx_LSESSFAIL The number of failures on IPIC sessions to
CICS server x.

0 Integer

CSx_LTERMINST The number of terminal installs processed
for CICS server x including EPI, cicsterm
and cicsprnt. Successful and failed requests
are included.

0 Integer

CSx_LTERMUNINST The number of terminals uninstalled from
CICS server x by the Client daemon
including EPI, cicsterm and cicsprnt. An
uninstall event might be triggered by an
application request or cleanup processing.

0 Integer

CSx_SIPADDR The defined host name or IP address of the
CICS server.

<empty string> String

CSx_SIPPORT The TCP/IP port of the CICS server. 0 Integer

CSx_SMODE The defined SNA mode name of the LU 6.2
connection to the CICS server.

<empty string> String

CSx_SNETNAME The defined SNA partner LU 6.2 name for
the CICS server. This name is a fully
qualified LU name or an LU alias.

<empty string> String

CSx_SPROTOCOL The protocol used to communicate with the
CICS server x. The protocol name is one of
the following: IPIC, SNA, TCPIP.

N/A String

CSx_SSESSMAX The number of requested IPIC sessions for
CICS server x.

0 Integer

Chapter 13. Monitoring and statistics 273

Gateway daemon statistics:

The statistics listed here are members of the Gateway daemon resource group.

Table 29. Gateway daemon statistics

ID Description Default value Data type

GD_CLUWTXN The current number of inflight extended
LUW transactions. These transactions might
or might not be active in a CICS server;
however, they always represent one mirror
transaction, which might be in a suspended
state.

0 Integer

GD_CNEXTRESET The local time of the next scheduled interval
statistics reset event (and optionally
recording event). The value is in 24-hour
HHMMSS format.

First scheduled
reset time.

String

GD_CSTATUS The status of the Gateway daemon. Status is
one of the following: STARTING,
RUNNING, SHUTTING DOWN.

N/A String

GD_CSYNCTXN The current number of inflight
SYNCONRETURN transactions.

0 Integer

GD_IALLREQ The number of API calls (ECI, ESI, EPI) and
XA requests that have been processed.
Successful and failed requests are included.
Administrative requests and handshakes are
excluded.

0 Integer

GD_IAVRESP The average time taken in milliseconds for
the Gateway daemon to respond to API
(ECI, ESI, EPI) and XA requests from remote
clients. Successful and failed requests are
included. This value is inclusive of the CICS
response time, as provided by the
corresponding CS_IAVRESP statistic.

0 Integer

GD_IAVRESPIO The average time in milliseconds for the
Gateway daemon to respond to API (ECI)
and XA requests from remote clients
including network I/O time. Successful and
failed requests are included. This value is
inclusive of the Gateway response time, as
provided by the corresponding
GD_IAVRESP statistic.

0 Integer

GD_IHAEXIT The number of times the CICS request exit
was called.

0 Integer

GD_ILUWTXNC The number of extended LUW-based
transactions that were committed. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_ILUWTXNR The number of extended LUW-based
transactions that were rolled back. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_IREQDATA The amount of request data in bytes
received from client applications. All
requests are included.

0 Long

274 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

||

||
|
||

Table 29. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_IRESPDATA The amount of response data in bytes sent
to client applications. All responses are
included.

0 Long

GD_IRUNTIME The time in seconds since the last reset
event, or age of the current interval.

0 Integer

GD_ISYNCFAIL The number of SYNCONRETURN
transactions that have failed in the current
interval.

0 Integer

GD_ISYNCTXN The number of successful
SYNCONRETURN transactions.

0 Integer

GD_LALLREQ The number of API calls (ECI, ESI, EPI) and
XA requests that have been processed.
Successful and failed requests are included.
Administrative requests and handshakes are
excluded.

0 Integer

GD_LAVRESP The average time in milliseconds for the
Gateway daemon to respond to API (ECI,
ESI, EPI) and XA requests from remote
clients. Successful and failed requests are
included. This value is inclusive of the CICS
response time, as provided by the
corresponding CS_LAVRESP statistic.

0 Integer

GD_LAVRESPIO The average time in milliseconds for the
Gateway daemon to respond to API (ECI)
and XA requests from remote clients
including network I/O time. Successful and
failed requests are included. This value is
inclusive of the Gateway response time, as
provided by the corresponding
GD_LAVRESP statistic.

0 Integer

GD_LHAEXIT The number of times the CICS request exit
was called.

0 Integer

GD_LLUWTXNC The number of extended LUW-based
transactions that were committed. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_LLUWTXNR The number of extended LUW-based
transactions that were rolled back. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_LREQDATA The amount of request data in bytes
received from client applications. All
requests are included.

0 Long

GD_LRESPDATA The amount of response data in bytes sent
to client applications. All responses are
included.

0 Long

GD_LRUNTIME The length of time in seconds since the
Gateway daemon successfully initialized.

0 Long

GD_LSYNCFAIL The number of SYNCONRETURN
transactions that have failed for the duration
of the Gateway daemon process.

0 Integer

Chapter 13. Monitoring and statistics 275

|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

||

||
|
||

Table 29. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_LSYNCTXN The number of successful
SYNCONRETURN transactions.

0 Integer

GD_SAPPLID The APPLID of the CICS Transaction
Gateway, which identifies the instance of the
CICS Transaction Gateway on CICS server
connections.

<empty string> String

GD_SAPPLIDQ The APPLID qualifier of the CICS
Transaction Gateway. GD_SAPPLIDQ is
used as a high-level qualifier for the
APPLID of the CICS Transaction Gateway.
In combination with the APPLID, the fully
qualified APPLID identifies the Gateway to
the CICS system to which it connects.

<empty string> String

GD_SHOSTNAME The host name of the CICS Transaction
Gateway computer. If the host name cannot
be determined this statistic is set to
“Unknown”.

N/A String

GD_SPLATFORM The platform on which the CICS Transaction
Gateway is running. Platform is one of the
following: AIX, HP-UX (Itanium), Linux
(Intel), Linux (POWER), Linux (zSeries),
Solaris, Windows, z/OS, Unknown.

“Unknown” String

GD_SDFLTSRV The default CICS server for the CICS
Transaction Gateway.

N/A String

GD_SSTATEOD The local time to be designated as the
logical end of day by a Gateway daemon. At
the logical end-of-day, all interval statistics
are reset according to their defined default
value. If the statint parameter has been set
to an irregular value, the interval
immediately prior to the stateod end-of-day
is truncated. The value is in 24-hour
HHMMSS format.

The value of the
stateod parameter
in the
configuration file.
If not specified in
the configuration
file the default
value will be
midnight, local
time.

String

GD_SSTATINT The duration of the statistics interval in use
by a Gateway daemon. At the end of each
interval, all interval statistics are reset
according to their defined default value. The
value is in HHMMSS format.

The value of the
statint parameter
in the
configuration file.
If not specified in
the configuration
file the default
value represents 3
hours.

String

GD_SVER The version of the CICS Transaction
Gateway.

N/A String

Client daemon statistics:

The statistics listed here belong to the Client daemon resource group.

276 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 30. Client daemon statistics

ID Description Default value Data type

CD_CAPPCURR The current number of
client application processes
connected to the Client
daemon. The Gateway
daemon counts as one
application.

0 Integer

CD_CSTATUS The status of the Client
daemon. Status is one of
the following: STARTING,
RUNNING, SHUTTING
DOWN, SHUT DOWN.

N/A String

CD_LALLREQ The number of API calls
(ECI, EPI, ESI) requests that
have been processed.
Successful and failed
requests are included.
Administrative requests are
excluded. The Client
daemon counts API list
system requests and CICS
server requests.

0 Integer

CD_LRUNTIME The length of time (in
seconds) since the Client
daemon successfully
initialized.

0 Long

System environment statistics:

The statistics listed here belong to the System Environment resource group.

Table 31. System Environment statistics

ID Description Default value Data type

SE_CHEAPGCMIN The Gateway
daemon JVM heap
size (in bytes) after
the last garbage
collection (GC).

0 Long

SE_IGCCOUNT The number of
garbage collection
(GC) events.

0 Long

SE_IGCTIME The length of time
(in milliseconds)
taken by the JVM for
garbage collection
(GC).

0 Long

SE_LGCCOUNT The number of
garbage collection
(GC) events.

0 Long

SE_LGCTIME The length of time
(in milliseconds)
taken by the JVM for
garbage collection
(GC).

0 Long

Chapter 13. Monitoring and statistics 277

Table 31. System Environment statistics (continued)

ID Description Default value Data type

SE_SHEAPINIT The size of the
Gateway daemon
initial JVM heap (in
bytes).

0 Long

SE_SHEAPMAX The size of the
Gateway daemon
maximum JVM heap
(in bytes).

0 Long

Protocol handler statistics:

The protocol handler bind and port statistics listed here belong to the Protocol
handler resource group.

Table 32. Protocol handler statistics

ID Description Default value Data type

PH_SBINDSSL The address or host name to which the SSL
protocol handler is bound. This statistic does
not contain a value if the protocol handler is
not enabled.

none String

PH_SBINDTCP The address or host name to which the TCP
protocol handler is bound. This statistic does
not contain a value if the protocol handler is
not enabled.

none String

PH_SPORTSSL The SSL protocol handler port number, or -1
if the protocol is not enabled.

-1 Integer

PH_SPORTTCP The TCP protocol handler port number, or -1
if the protocol is not enabled.

-1 Integer

Worker thread statistics:

The statistics listed here belong to the worker thread resource group.

Table 33. Worker thread statistics

ID Description Default value Data type

WT_CALLOC The current number of worker threads that
are being used by connection managers.
Another way of viewing this value is the
number of worker threads processing
requests.

0 Integer

WT_CCURR The current number of worker threads
created.

0 Integer

WT_IALLOCHI The peak number of worker threads
concurrently allocated to connection
manager threads. This number represents a
high water mark for WT_CALLOC.

<WT_CALLOC> Integer

WT_ITIMEOUTS The number of times the Gateway daemon
failed to allocate a worker thread to a
connection manager within the defined
workertimeout length of time.

0 Integer

278 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

||
|
|
|

||

||
|
|
|

||

Table 33. Worker thread statistics (continued)

ID Description Default value Data type

WT_LTIMEOUTS The number of times the Gateway daemon
failed to allocate a worker thread to a
connection manager within the defined
workertimeout length of time.

0 Integer

WT_SINIT The initial number of worker threads
initworker created by the Gateway daemon.

0 Integer

WT_SMAX The maximum number of parallel requests
maxworker that the Gateway daemon can
process.

0 Integer

A value of -1
indicates no limit.

Using the statistics
This information classifies statistics into different categories, according to how they
are most likely to be used. Some statistics are in more than one category.

Statistics for tuning and capacity planning
Look at these key statistics when analyzing the performance of the CICS
Transaction Gateway.

Capture statistics when the CICS Transaction Gateway is operating under a
number of different operating conditions. This will help you understand changes
that might affect the performance of the system.

CM_CALLOC
The current number of connection manager threads allocated to clients.

CM_CCURR
The current number of connection manager threads created. If this value is
greater than the configuration parameter initconnect, it signifies the peak
number of remote clients connected at any one time. This value cannot exceed
the maximum number of connection managers defined in CM_SMAX.

CM_CWAITING
The current number of connection managers waiting for a worker thread to
become available. This statistic shows the number of requests that are queuing
in the Gateway daemon. It is usually low or zero in a well-tuned Gateway
daemon. If it is higher than expected, consider increasing the maxworker
configuration parameter.

CM_IALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A low
value represents efficient connection reuse.

CM_IALLOCHI
The peak number of connection manager threads concurrently allocated to
client applications. This number represents a high water mark for
CM_CALLOC.

CM_ICREATED
The number of connection manager threads created.

Chapter 13. Monitoring and statistics 279

CM_ITIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined connecttimeout
length of time.

CM_LALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A stable
value represents efficient connection reuse.

CM_LTIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined (connecttimeout)
length of time. This statistic shows the number of incoming connection
requests that have been refused. It is usually low or zero in a well-tuned
Gateway daemon. If it is high, consider increasing the connecttimeout or
maxconnect configuration parameters.

CM_SMAX
The maximum number of connection manager threads maxconnect that can
possibly be created and allocated by the Gateway daemon. This value limits
the number of Java clients that can be connected at any one time.

WT_CALLOC
The current number of worker threads that are being used by connection
managers. Another way of viewing this value is the number of worker threads
processing requests. If this value is close to WT_SMAX, consider increasing the
maxworker configuration parameter.

WT_CCURR
The current number of worker threads created. If this value is greater than the
configuration parameter initworker, it signifies the peak number of parallel
requests that have been in process at any one time. This value cannot exceed
the maximum number of worker threads defined in WT_SMAX.

WT_IALLOCHI
The peak number of worker threads concurrently allocated to connection
manager threads. This number represents a high water mark for WT_CALLOC.

WT_ITIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time.

WT_LTIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time. This
number signifies that requests are timing out while queuing in the Gateway
daemon. It is typically low or zero in a well-tuned Gateway daemon. If it is
higher than expected, consider increasing the maxworker or workertimeout
configuration parameters.

WT_SMAX
The maximum number of parallel requests maxworker that the Gateway
daemon can process.

Statistics for diagnosing system problems
Look at these key statistics when diagnosing system problems.

280 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

CM_ITIMEOUTS and CM_LTIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined connecttimeout
length of time.

GD_IAVRESP and GD_LAVRESP
The average time taken in milliseconds for the Gateway daemon to respond to
API (ECI, ESI, EPI) and XA requests from remote clients. Successful and failed
requests are included. This value is inclusive of the CICS response time, as
provided by the corresponding CS_IAVRESP statistic.

WT_ITIMEOUTS and WT_LTIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time.

Statistics for the analysis of resource usage
Look at these key statistics when considering the resources used by your system.

CM_CALLOC
The current number of connection manager threads allocated to clients.

CM_CCURR
The current number of connection manager threads created. If this value is
greater than the configuration parameter initconnect, it signifies the peak
number of remote clients connected at any one time. This value cannot exceed
the maximum number of connection managers defined in CM_SMAX.

CM_IALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A low
value represents efficient connection reuse.

CM_IALLOCHI
The peak number of connection manager threads concurrently allocated to
client applications. This number represents a high water mark for
CM_CALLOC.

CM_ICREATED
The number of connection manager threads created.

CM_LALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A stable
value represents efficient connection reuse.

CS_LCOUNT
The number of CICS servers to which requests have been sent. This number
equals the number of CICS servers in CS_LLIST.

CS_LLIST
The list of CICS servers to which requests have been sent.

WT_CALLOC
The current number of worker threads that are being used by connection
managers. Another way of viewing this value is the number of worker threads
processing requests. If this value is close to WT_SMAX, consider increasing the
maxworker configuration parameter.

WT_CCURR
The current number of worker threads created. If this value is greater than the
configuration parameter initworker, it signifies the peak number of parallel

Chapter 13. Monitoring and statistics 281

|
|
|
|

requests that have been in process at any one time. This value cannot exceed
the maximum number of worker threads defined in WT_SMAX.

WT_IALLOCHI
The peak number of worker threads concurrently allocated to connection
manager threads. This number represents a high water mark for WT_CALLOC.

Statistics for throughput analysis
Look at these key statistics when considering transaction throughput through the
Gateway daemon.

GD_IALLREQ
The number of API calls (ECI, ESI, EPI) and XA requests that have been
processed. Successful and failed requests are included. Administrative requests
and handshakes are excluded.

GD_ILUWTXNC
The number of extended LUW-based transactions that were committed. This
statistic returns information about 1–phase commit transactions.

GD_ILUWTXNR
The number of extended LUW-based transactions that were rolled back. This
statistic returns information about 1–phase commit transactions.

GD_IREQDATA
The amount of request data in bytes received from client applications. All
requests are included.

GD_IRESPDATA
The amount of response data in bytes sent to client applications. All responses
are included.

GD_IRUNTIME
The time in seconds since the last reset event, or age of the current interval.

GD_ISYNCTXN
The number of successful SYNCONRETURN transactions.

GD_LALLREQ
The number of API calls (ECI, ESI, EPI) and XA requests that have been
processed. Successful and failed requests are included. Administrative requests
and handshakes are excluded.

GD_LLUWTXNC
The number of extended LUW-based transactions that were committed. This
statistic returns information about 1–phase commit transactions.

GD_LLUWTXNR
The number of extended LUW-based transactions that were rolled back. This
statistic returns information about 1–phase commit transactions.

GD_LREQDATA
The amount of request data in bytes received from client applications. All
requests are included.

GD_LRESPDATA
The amount of response data in bytes sent to client applications. All responses
are included.

GD_LRUNTIME
The length of time in seconds since the Gateway daemon successfully
initialized.

282 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

GD_LSYNCTXN
The number of successful SYNCONRETURN transactions.

CICS TG plug-in for CICS Explorer
The CICS TG perspective of the CICS Explorer includes a Gateway daemons view,
CICS connections view, and a CICS TG Explorer view.

To download the CICS TG plug-in see CICS Explorer.

Chapter 13. Monitoring and statistics 283

http://www-01.ibm.com/software/htp/cics/explorer/

284 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Appendix. Data conversion

Character data might sometimes have to be converted as it is passed between a
client and CICS. For example data conversion would be required if the data on the
client is encoded in ASCII format but in EBCDIC format on CICS. Data conversion
is performed by the CICS server.

Data conversion is controlled by ASCII and EBCDIC encoding schemes. Each
encoding scheme is identified by a CCSID (Coded Character Set Identifier) that
defines a set of graphic characters, and a CPGID (Code Page Global Identifier) that
specifies the code points used to represent the graphic characters. For more
information see IBM Character Data Representation Architecture Reference and Registry
(SC09-2190).

Data managed by a CICS server can be accessed from client systems that use
different ASCII encoding schemes. In this situation, each client system supplies a
CCSID tag to CICS to ensure that the data is converted correctly.

Supported conversions
The method used to perform data conversion depends on the server platform.

The range of data conversions supported also depends on the platform. The
following information is taken from Communicating from CICS on System/390®, and
is provided as a guide; check the current copy of the book for full information.
ASCII and EBCDIC CCSIDs are assigned to geographic or linguistic groups.

Data conversion is supported between ASCII and EBCDIC where both CCSIDs
belong to the same group, as shown in this table.

Table 34. Data conversion support

Geographic group Country CCSIDs supported

Arabic Arabic Arabic client and server CCSIDs

Baltic Rim Latvia, Lithuania Baltic Rim client and server
CCSIDs

Cyrillic Eastern Europe: Bulgaria, Russia,
former Yugoslavia

Cyrillic client and server CCSIDs

Estonian Estonia Estonian client and server CCSIDs

Greek Greece Greek client and server CCSIDs

Hebrew Israel Hebrew client and server CCSIDs

Japanese Japan Japanese ASCII and EBCDIC

Korean Korea Korean ASCII and EBCDIC

Latin-1 and
Latin-9

USA, Western Europe, and many
other countries.

Latin-1 and Latin-9 client and
server CCSIDs

Latin-2 Eastern Europe: Albania, Czech
Republic, Hungary, Poland,
Romania, Slovakia, former
Yugoslavia

Latin-2 ASCII and server CCSIDs

Latin-5 Turkey Latin-5 client and server CCSIDs

© Copyright IBM Corp. 1998, 2011 285

Table 34. Data conversion support (continued)

Geographic group Country CCSIDs supported

Simplified
Chinese

People's Republic of China Simplified Chinese ASCII and
EBCDIC

Traditional
Chinese

Taiwan Traditional Chinese ASCII and
EBCDIC

Vietnamese Vietnam Vietnamese client and server
CCSIDs

The tables in the links above list the CCSIDs supported for each group. For each
CCSID, they show:
v The value to be specified for the CLINTCP or SRVERCP keyword.
v The code page identifier or identifiers (CPGIDs).
v The current CICS on System z products that support the CCSID. Three levels of

support are defined: “Base”, “T01”, and “T02”.

Base

– CICS Transaction Server for z/OS
– CICS TS for VSE

T01

– CICS Transaction Server for z/OS
– CICS TS for VSE

T02

– CICS Transaction Server for z/OS

Arabic
A list of the Arabic client and server CCSIDs.

Table 35. Arabic client CCSIDs

CLINTCP in CCSID CPGID Comments

864 Base 00864 00864 PC data: Arabic

1089
8859-6

Base 01089 01089 ISO 8859-6: Arabic

1256 T01 01256 01256 MS Windows: Arabic

5352 T02 05352 05352 MS Windows: Arabic, version 2 with euro

17248 T02 17248 00864 PC Data: Arabic with euro

Table 36. Arabic server CCSIDs

SRVERCP in CCSID CPGID Comments

420 Base 00420 00420 Host: Arabic

16804 T02 16804 00420 Host: Arabic with euro

Note: Data conversion does not change the direction of Arabic data.

286 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Baltic Rim
A list of the Baltic Rim client and server CCSIDs, which includes Latvia and
Lithuania.

Table 37. Baltic Rim client CCSIDs

CLINTCP in CCSID CPGID Comments

901 T02 00901 00901 PC data: Latvia, Lithuania; with euro

921 T01 00921 00921 PC data: Latvia, Lithuania

1257 T01 01257 01257 MS Windows: Baltic Rim

5353 T02 05353 05353 MS Windows: Baltic Rim, version 2 with euro

Table 38. Baltic Rim server CCSIDs

SRVERCP in CCSID CPGID Comments

1112 T01 01112 01112 Host: Latvia, Lithuania

1156 T02 01156 01156 Host: Latvia, Lithuania; with euro

Cyrillic
A list of the Cyrillic client and server CCSIDs for Eastern Europe, which includes
Bulgaria, Russia, and Yugoslavia.

Table 39. Cyrillic client CCSIDs

CLINTCP in CCSID CPGID Comments

808 T02 00808 00808 PC data: Cyrillic, Russia; with euro

848 T02 00848 00848 PC data: Cyrillic, Ukraine; with euro

849 T02 00849 00849 PC data: Cyrillic, Belarus; with euro

855 Base 01235 00855 PC data: Cyrillic

866 Base 00866 00866 PC data: Cyrillic, Russia

872 T02 00872 00872 PC data: Cyrillic with euro

915
8859-5

Base 00915 00915 ISO 8859-5: Cyrillic

1124 T02 01124 01124 8-bit: Cyrillic, Belarus

1125 T02 01125 01125 PC Data: Cyrillic, Ukraine

1131 T02 01131 01131 PC Data: Cyrillic, Belarus

1251 T01 01251 01251 MS Windows: Cyrillic

5347 T02 05347 05347 MS Windows: Cyrillic, version 2 with euro

Table 40. Cyrillic server CCSIDs

SRVERCP in CCSID CPGID Comments

1025 Base 01025 01025 Host: Cyrillic multilingual

1123 T02 01123 01123 Host: Cyrillic Ukraine

1154 T02 01154 01154 Host: Cyrillic multilingual; with euro

1158 T02 01158 01158 Host: Cyrillic Ukraine; wtih euro

Appendix. Data conversion 287

Estonian
A list of the Estonian client and server CCSIDs.

Table 41. Estonian client CCSIDs

CLINTCP in CCSID CPGID Comments

902 T02 00902 00902 PC data: Estonia with euro

922 T01 00922 00922 PC data: Estonia

1257 T01 01257 01257 MS Windows: Baltic Rim

5353 T02 05353 05353 MS Windows: Baltic Rim, version2 with euro

Table 42. Estonian server CCSIDs

SRVERCP in CCSID CPGID Comments

1122 T01 01122 01122 Host: Estonia

1157 T01 01157 01157 Host: Estonia with euro

Greek
A list of the Greek client and server CCSIDs.

Table 43. Greek client CCSIDs

CLINTCP in CCSID CPGID Comments

813
8859-7

Base 00813 00813 ISO 8859-7: Greece

869 Base 00869 00869 PC data: Greece

1253 T01 01253 01253 MS Windows: Greece

4909 T02 04909 00813 ISO 8859-7: Greece with euro

5349 T02 05349 01253 MS Windows: Greece, version 2 with euro

9061 T02 09061 00869 PC Data: Greece with euro

Table 44. Greek server CCSIDs

SRVERCP in CCSID CPGID Comments

875 Base 00875 00875 Host: Greece

4971 T02 04971 00875 Host: Greece with euro

Hebrew
A list of the Hebrew client and server CCSIDs.

Table 45. Hebrew client CCSIDs

CLINTCP in CCSID CPGID Comments

856 Base 00856 00856 PC data: Hebrew

862 T02 00862 00862 PC data: Hebrew (upgrade)

867 T02 00867 00867 PC Data: Hebrew with euro

916
8859-8

Base 00916 00916 ISO 8859-8: Hebrew

288 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 45. Hebrew client CCSIDs (continued)

CLINTCP in CCSID CPGID Comments

1255 T01 01255 01255 MS Windows: Hebrew

5351 T02 05351 05351 MS Windows: Hebrew, version 2 with euro

Table 46. Hebrew server CCSIDs

SRVERCP in CCSID CPGID Comments

424 Base 00424 00424 Host: Hebrew

803 T02 00803 00803 Host: Hebrew (Character Set A)

4899 T02 04899 00803 Host: Hebrew (Character Set A) with euro

12712 T02 12712 00424 Host: Hebrew with euro and new sheqel

Note: Data conversion does not change the direction of Hebrew data.

Japanese
A list of the Japanese ASCII and EBCDIC.

Table 47. Japanese ASCII

CLINTCP in CCSID CPGID Comments

932 Base 00932 1. 00897
2. 00301

1. PC data: SBCS
2. PC data: DBCS including 1880 user-defined

characters

942 Base 00942 1. 01041
2. 00301

1. PC data: Extended SBCS
2. PC data: DBCS including 1880 user-defined

characters

943 T01 00943 1. 00897
2. 00941

1. PC data: SBCS
2. PC data: DBCS for Open environment including

1880 IBM user-defined characters

954
EUCJP

Base 00954 1. 00895
2. 00952
3. 00896
4. 00953

1. G0: JIS X201 Roman
2. G1: JIS X208-1990
3. G1: JIS X201 Katakana
4. G1: JIS X212

5050 T02 05050 1. 00895
2. 00952
3. 00896
4. 00953

1. G0: JIS X201 Roman
2. G1: JIS X208-1990
3. G1: JIS X201 Katakana
4. G1: JIS X212

Table 48. Japanese EBCDIC

SRVERCP CCSID CPGID Comments

930 Base 00930 1. 00290
2. 00300
3. 00290
4. 00300

1. Katakana Host: extended SBCS
2. Kanji Host: DBCS including 4370 user-defined

characters
3. Katakana Host: extended SBCS
4. Kanji Host: DBCS including 1880 user-defined

characters

931 Base 00931 1. 00037
2. 00300

1. Latin Host: SBCS
2. Kanji Host: DBCS including 4370 user-defined

characters

Appendix. Data conversion 289

Table 48. Japanese EBCDIC (continued)

SRVERCP CCSID CPGID Comments

939 Base 00939 1. 01027
2. 00300
3. 01027
4. 00300

1. Latin Host: extended SBCS
2. Kanji Host: DBCS including 4370 user-defined

characters
3. Latin Host: extended SBCS
4. Kanji Host: DBCS including 1880 user-defined

characters

1390 T02 01390 1. 00290
2. 00300

1. Katakana Host: extended SBCS; with euro
2. Kanji Host: DBCS including 6205 user-defined

characters

1399 T02 01399 1. 01027
2. 00300

1. Latin Host: extended SBCS; with euro
2. Kanji Host: DBCS including 4370 user-defined

characters; with euro

Korean
A list of the Korean ASCII and EBCDIC.

Table 49. Korean ASCII

CLINTCP in CCSID CPGID Comments

934 Base 00934 1. 00891
2. 00926

1. PC data: SBCS
2. PC data: DBCS including 1880 user-defined

characters

944 Base 00944 1. 01040
2. 00926

1. PC data: Extended SBCS
2. PC data: DBCS including 1880 user-defined

characters

949 Base 00949 1. 01088
2. 00951

1. IBM KS Code - PC data: SBCS
2. IBM KS code - PC data: DBCS including 1880

user-defined characters

970
EUCKR

Base 00970 1. 00367
2. 00971

1. G0: ASCII
2. G1: KSC X5601-1989 including 1880 user-defined

characters

1363 T01 01363 1. 01126
2. 01362

1. PC data: MS Windows Korean SBCS
2. PC data: MS Windows Koran DBCS including

11172 full Hangul

Table 50. Korean EBCDIC

SRVERCP in CCSID CPGID Comments

933 Base 00933 1. 00833
2. 00834

1. Host: Extended SBCS
2. Host: DBCS including 1880 user-defined characters

and 11172 full Hangul characters

1364 T02 01364 1. 00833
2. 00834

1. Host: Extended SBCS
2. Host: DBCS including 1880 user-defined characters

and 11172 full Hangul characters

Latin-1 and Latin-9
A list of the Latin-1 and Latin-9 client and server CCSIDs, which includes the
United States of America, Western Europe, and many other countries.

290 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 51. Latin-1 client CCSIDs

CLINTCP in CCSID CPGID Comments

437 Base 00437 00437 PC data: PC Base; USA, many other countries

819
8859-1

Base 00819 00819 ISO 8859-1: Latin-1 countries

850 Base 00850 00850 PC data: Latin-1 countries

858 T01 00858 00858 PC data: Latin-1 countries; with euro

923 T01 00923 00923 ISO 8859-15: Latin-9

924 T02 00924 00924 ISO 8859-15: Latin-9

1047 T02 01047 01047 Host: Open Edition Latin-1

1252 T01 01252 01252 MS Windows: Latin-1 countries

5348 T01 05348 01252 MS Windows: Latin-1 countries, version 2 with euro

Table 52. Latin-1 and Latin-9 server CCSIDs

SRVERCP in CCSID CPGID Comments

037 Base 00037 00037 Host: USA, Canada (ESA), Netherlands, Portugal,
Brazil, Australia, New Zealand

273 Base 00273 00273 Host: Austria, Germany

277 Base 00277 00277 Host: Denmark, Norway

278 Base 00278 00278 Host: Finland, Sweden

280 Base 00280 00280 Host: Italy

284 Base 00284 00284 Host: Spain, Latin America (Spanish)

285 Base 00285 00285 Host: United Kingdom

297 Base 00297 00297 Host: France

500 Base 00500 00500 Host: Belgium, Canada (AS/400®), Switzerland,
International Latin-1

871 Base 00871 00871 Host: Iceland

924 T01 00924 00924 Host: Latin-9

1047 T01 01047 01047 Host: Open Edition Latin-1

1140 T01 01140 01140 Host: USA, Canada (ESA), Netherlands, Portugal,
Brazil, Australia, New Zealand; with euro

1141 T01 01141 01141 Host: Austria, Germany; with euro

1142 T01 01142 01142 Host: Denmark, Norway; with euro

1143 T01 01143 01143 Host: Finland, Sweden; with euro

1144 T01 01144 01144 Host: Italy; with euro

1145 T01 01145 01145 Host: Spain, Latin America (Spanish); with euro

1146 T01 01146 01146 Host: United Kingdom; with euro

1147 T01 01147 01147 Host: France; with euro

1148 T01 01148 01148 Host: Belgium, Canada (AS/400), Switzerland,
International Latin-1; with euro

1149 T01 01149 01149 Host: Iceland; with euro

Appendix. Data conversion 291

Note: Conversions are supported between non euro-supported CCSIDs and
euro-supported CCSIDs. These should be used with care because:
v The international currency symbol in each non euro-supported EBCDIC CCSID

(for example, 00500) has been replaced by the euro symbol in the equivalent
euro-supported EBCDIC CCSID (for example, 01148).

v The dotless i in non euro-supported ASCII CCSID 00850 has been replaced by
the euro symbol in the equivalent euro-supported ASCII CCSID 00858.

Latin-2
A list the Latin-2 ASCII and server CCSIDs for Eastern Europe, which includes
Albania, Czech Republic, Hungary, Poland, Romania, Slovakia, Yugoslavia, and
former Yugoslavia.

Table 53. Latin-2 ASCII

CLINTCP in CCSID CPGID Comments

852 Base 00852 00852 PC data: Latin-2 multilingual

912
8859-2

Base 00912 00912 ISO 8859-2: Latin-2 multilingual

1250 T01 01250 01250 MS Windows: Latin-2

5346 T02 05346 01250 MS Windows: Latin-2, version 2 with euro

9044 T02 09044 00852 PC data: Latin-2 multilingual with euro

Table 54. Latin-2 Server CCSIDs

SRVERCP in CCSID CPGID Comments

500 T02 00500 00500 Host: International Latin-1

870 Base 00870 00870 Host: Latin-2 multilingual

1148 T02 01148 01148 Host: International Latin-1 with euro

1153 T02 01153 01153 Host: Latin-2 multilingual with euro

Note: Conversions are supported for some combinations of Latin-2 ASCII CCSIDs
and Latin-1 EBCDIC CCSIDs.

Latin-5
A list of the Latin-5 client and server CCSIDs, which includes Turkey.

Table 55. Latin-5 client CCSIDs

CLINTCP in CCSID CPGID Comments

857 Base 00857 00857 PC data: Latin-5 (Turkey)

920
8859-9

Base 00920 00920 ISO 8859-9: Latin-5 (ECMA-128, Turkey TS-5881)

1254 T01 01254 01254 MS Windows: Turkey

5350 T02 05350 01254 MS Windows: Turkey, version 2 with euro

9049 T02 09049 00857 PC data: Latin-5 (Turkey) with euro

292 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Table 56. Latin-5 server CCSIDs

SRVERCP in CCSID CPGID Comments

1026 Base 01026 01026 Host: Latin-5 (Turkey)

1155 T02 01155 01155 Host: Latin-5 (Turkey) with euro

Simplified Chinese
A list of the simplified Chinese ASCII and EBCDIC.

Table 57. Simplified Chinese ASCII

CLINTCP in CCSID CPGID Comments

946 Base 00946 1. 01042
2. 00928

1. PC data: Extended SBCS
2. PC data: DBCS including 1880 user-defined

characters

1381 Base 01381 1. 01115
2. 01380

1. PC data: Extended SBCS (IBM GB)
2. PC data: DBCS (IBM GB) including 31

IBM-selected, 1880 user-defined characters

1383
EUCCN

T01 01383 1. 00367
2. 01382

1. G0: ASCII
2. G1: GB 2312-80 set

1386 T01 01386 1. 01114
2. 01385

1. PC data: S-Chinese GBK and T-Chinese IBM BIG-5
2. PC data: S-Chinese GBK

Table 58. Simplified Chinese EBCDIC

SRVERCP in CCSID CPGID Comments

935 Base 00935 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880 user-defined characters

1388 T02 01388 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880 user-defined characters

9127 T02 09127 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880 user-defined characters

Traditional Chinese
A list of the traditional Chinese ASCII and EBCDIC.

Table 59. Traditional Chinese ASCII

CLINTCP in CCSID CPGID Comments

938 Base 00938 1. 00904
2. 00927

1. PC data: SBCS
2. PC data: DBCS including 6204 user-defined

characters

948 Base 00948 1. 01043
2. 00927

1. PC data: Extended SBCS
2. PC data: DBCS including 6204 user-defined

characters

950
BIG5

Base 00950 1. 01114
2. 00947

1. PC data: SBCS (IBM BIG5)
2. PC data: DBCS including 13493 CNS, 566 IBM

selected, 6204 user-defined characters

964
EUCTW

Base 00964 1. 00367
2. 00960
3. 00961

1. G0: ASCII
2. G1: CNS 11643 plane 1
3. G1: CNS 11643 plane 2

Appendix. Data conversion 293

Table 59. Traditional Chinese ASCII (continued)

CLINTCP in CCSID CPGID Comments

1370 T02 01370 1. 01114
2. 00947

1. PC data: Extended SBCS; with euro
2. PC data: DBCS including 6204 user-defined

characters; with euro

Table 60. Traditional Chinese EBCDIC

SRVERCP in CCSID CPGID Comments

937 Base 00937 1. 00037
2. 00835

1. Host: Extended SBCS
2. Host: DBCS including 6204 user-defined characters

1371 T02 01371 1. 01159
2. 00835

1. Host: Extended SBCS; with euro
2. Host: DBCS including 6204 user-defined characters;

with euro

Vietnamese
A list of the Vietnamese client and server CCSIDs.

Table 61. Vietnamese client CCSIDs

CLINTCP in CCSID CPGID Comments

1129 T02 01129 01129 ISO-8: Vietnamese

1163 T02 01163 01163 ISO-8: Vietnamese with euro

1258 T02 01258 01258 MS Windows: Vietnamese

5354 T02 05354 01258 MS Windows: Vietnamese, version 2 with euro

Table 62. Vietnamese server CCSIDs

SRVERCP in CCSID CPGID Comments

1130 T02 01130 01130 Host: Vietnamese

1164 T02 01164 01164 Host: Vietnamese with euro

Unicode data
CICS on System z provides limited support for Unicode-encoded character data.
This support allows workstations to share UCS-2 or UTF-8 encoded data with the
operating system provided that no conversion is required.

Table 63. Unicode

CLINTCP
SRVERCP

in CCSID CPGID Comments

1200 UCS-2 T01 01200 01400 UCS-2 level 3, maximal (growing) character set

1208 UTF-8 T01 01200 01400 UTF-8 based on UCS-2 level 3, maximal (growing)
character set

13488 T01 13488 01400 UCS-2 level 1 (level 3 tolerant), subset (fixed) character
set

294 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Product library and related literature

The CICS Transaction Gateway product library contains information on
administration, messages and programming; this information is available in this
information center, and is also available in PDF form. IBM Redbooks publications
provide a further source of information about working with CICS Transaction
Gateway.

CICS Transaction Gateway books
The books in the library cover administration, programming and messages.
v CICS Transaction Gateway: Windows Administration, SC34-7055-00 describes the

administration of the CICS Transaction Gateway for Windows.
v CICS Transaction Gateway: UNIX and Linux Administration, SC34-7054-00 describes

the administration of the CICS Transaction Gateway for UNIX and Linux.
v CICS Transaction Gateway for Multiplatforms: Programming Guide, SC34-7056-00

introduces programming for the CICS Transaction Gateway and provides
information on working with user applications in a client/server environment.

v CICS Transaction Gateway for Multiplatforms: Programming Reference, SC34-7057-00
provides information on the APIs for the programming languages supported by
the CICS Transaction Gateway for UNIX, Linux and Windows.
Additional HTML pages contain JAVA programming reference information.

v CICS Transaction Gateway: Messages, SC34-7061-00 describes the error messages
that can be generated by the CICS Transaction Gateway.

Sample configuration documents

Several sample configuration documents are available as PDFs. These documents
give step-by-step guidance for configuring CICS Transaction Gateway for
communication with CICS servers, using various protocols. They provide detailed
instructions that extend the information in the CICS Transaction Gateway library.
v Migrating TCP62 connections to Communications Server Remote API Client ,

GC34-6889
v Configuring Enterprise Extender Connections, GC34-6976

Sample configuration documents
Several sample configuration documents are available in portable document format
(PDF).

These documents give step-by-step guidance for configuring CICS Transaction
Gateway for communication with CICS servers, using various protocols. They
provide detailed instructions that extend the information in the CICS Transaction
Gateway library.

Visit the following Web site:
www.ibm.com/software/cics/ctg

and follow the Library link.

© Copyright IBM Corp. 1998, 2011 295

http://www.ibm.com/software/cics/ctg

IBM Redbooks publications
IBM Redbook titles are available on a wide range of subjects relevant to CICS
Transaction Gateway programming, installation, operation and troubleshooting.

The following International Technical Support Organization (ITSO) Redbook
publication contains many examples of client/server configurations:
v CICS Transaction Gateway V5 - The WebSphere Connector for CICS, SG24-6133

describes how to use the different protocols (TCP/IP, TCP62, APPC and EXCI)
for communication with CICS, and how to securely connect a Java client
application to a CICS region.

v Revealed! Architecting Web Access to CICS, SG24-5466 is intended for IT architects
who select, plan, and design SOA solutions that make use of CICS assets

v Enterprise JavaBeans for z/OS and z/OS CICS Transaction Server V2.2, SG24-6284
describes the EJB and the way it has been implemented within the CICS
architecture, also describes how to set up and configure a CICS region to
support EJBs

v Java Connectors for CICS: Featuring the J2EE Connector Architecture, SG24-6401
provides information on developing J2EE applications.

v Systems Programmer's Guide to Resource Recovery Services (RRS), SG24-6980-00
describes how to use RRS in various scenarios.

v Communications Server for z/OS V1R2 TCP/IP Implementation Guide, SG24-6517-00
provides information on using Communications Server for z/OS V1R2,
including load balancing.

v Redpaper: Transactions in J2EE, REDP-3659-00 discusses transactions in the J2EE
environment, including one-phase commit and two-phase commit XA
transactions.

v Exploring Systems Monitoring for CICS Transaction Gateway V7.1 for z/OS,
SG24-7562-00 looks at product installation and customization, and also covers
systems monitoring for CICS Transaction Gateway using IBM Tivoli
OMEGAMON XE, and statistics provided by CICS Performance Analyzer.

v CICS Transaction Gateway for z/OS Version 6.1 SG24-7161-00 introduces the new
facilities of the CICS TG for z/OS V6.0 and V6.1, which provide improvements
in the areas of transactional integration, systems management, performance,
security, and ease of use.

The ITSO Redbooks are available from various sources. For the latest information,
see:
www.ibm.com/redbooks/

Other useful information
Other sources of useful information include the CICS Transaction Server
information center and associated publications.

The CICS Transaction Server for z/OS V4.1 information center is located at:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

CICS Transaction Server publications
The CICS Transaction Server books on security, inter-product communication and
problem determination also provide a useful source of information.

296 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

http://www.ibm.com/redbooks/
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

CICS Transaction Server for z/OS RACF Security Guide, SC34-7003

CICS inter-product communication

The following books describe the intercommunication facilities of the CICS server
products:
v CICS Family: Interproduct Communication, SC34–6853
v CICS Transaction Server for z/OS CICS External Interfaces Guide, SC34-7019
v CICS Transaction Server for z/OS: Intercommunication Guide, SC34-7018
v CICS TS for VSE: Intercommunication Guide, SC33-0701
v CICS Transaction Server for iSeries: Intercommunication, SC41-5456
v TXSeries for Multiplatforms: Intercommunication Guide, SC34-6644

The first book above is a CICS family book containing a platform-independent
overview of CICS inter-product communication.

CICS problem determination

The following books describe the problem determination facilities of the CICS
server products:
v Transaction Server for Windows Problem Determination, GC34-6210
v CICS Transaction Server for z/OS Problem Determination Guide, SC34-7034
v CICS TS for VSE 2.3 Problem Determination Guide, SC33-0716
v CICS Transaction Server for iSeries: Problem Determination, SC41-5453
v TXSeries for Multiplatforms: Problem Determination Guide, SC34-6636

APPC-related publications
Publications related to APPC also provide a useful source of additional
information.

If you are using HP-UX or Solaris, see the SNA documentation for your platform.

IBM products
The IBM Communications Server and IBM Personal Communications library pages
provide an additional source of information related to APPC.

IBM Communications Server

See this Web page:
www.ibm.com/software/network/commserver/library

IBM Personal Communications

See this Web page:
www.ibm.com/software/network/pcomm/library

Systems Network Architecture (SNA)
The IBM SNA publications also provide a useful source of information related to
APPC.

The IBM SNA publications are:
v SNA Formats, GA27-3136

Product library and related literature 297

http://www.ibm.com/software/network/commserver/library
http://www.ibm.com/software/network/pcomm/library

v Systems Network Architecture Technical Overview, GC30-3073
v Guide to SNA over TCP/IP, SC31-6527

298 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Accessibility

Accessibility features help users with a physical disability, for example restricted
mobility or limited vision, to use information technology products successfully.
CICS Transaction Gateway provides accessibility by enabling keyboard-only
operation.

For more information about the IBM commitment to accessibility, visit the IBM
Accessibility Center.

Installation
The InstallAnywhere wizard is not fully accessible to screen readers.

To use the installer with a screen reader you must use console mode installation.
Console mode installation is run at a command prompt and is specified by using
the -i console option.

The console mode option displays text over a number of screens and you can
make various choices during the installation process. The command prompt
interface does not have a cursor to navigate over the displayed text. When you use
the JAWS screen reader the displayed text can be repeated with the command to
read the current window using the key sequence Insert+B.

The first screen displayed by the installer is to select language, the default varies
with the system's regional settings. To avoid the language selection screen use the
-l <lang> option; where land can be one of the following:
v de to specify German
v en to specify English
v es to specify Spanish
v fr to specify French
v it to specify Italian
v ja to specify Japanese
v ko to specify Korean
v tr to specify Turkish
v zh_CN to specify Chinese

For example; to install with the console interface in French, enter the command:
installer -i console -l fr

Configuration Tool accessibility
The configuration file uses the number sign (#) character to denote a comment;
consider configuring your screen reader accordingly.

The recommended way to configure the CICS Transaction Gateway if you use a
screen reader is by editing the configuration file.

© Copyright IBM Corp. 1998, 2011 299

http://www.ibm.com/able
http://www.ibm.com/able

Components
Each component in the Configuration Tool has a name and description for screen
readers.

Keys
Keyboard shortcuts provide an alternative way of working with the Configuration
Tool.

Alt, Space
Press and release the Alt key, then press Space, to open the window menu.
This allows you to move, size, maximize or minimize the window.

Ctrl+key
Certain actions have shortcuts assigned to them. Hold down the Ctrl key and
type the letter to do the action.

Action Ctrl+key

Activate a link. Spacebar

Copy the selected value C except in the following locales:

Locale Key

German
K

Turkish
P

Create a new configuration N

Create a new server definition W except in the following locales:

Locale Key

German
N

Italian V

Spanish
V

Turkish
S

Cut the selected value U except in the following locales:

Locale Key

Italian G

Spanish
O

Turkish
E

Cycle between the navigation panel, objects on the settings panel,
and the buttons

Use this key combination on panels that contain
a table. Otherwise use Tab.

Next link or other focusable object T

300 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Action Ctrl+key

Open an existing configuration O except in the following locales:

Locale Key

German
F

Italian A

Spanish
B

Turkish
A

Paste P except in the following locales:

Locale Key

French L

German
F

Italian I

Turkish
P

Previous link or other focusable object Shift+T

Save the current configuration S except in the following locales:

Locale Key

Spanish
G

Italian L

Scroll left Page Up

Scroll right Page Down

Arrows (left and right)

1. (Applies if the menus are active.) Move to a different menu.
2. (Applies if the buttons are active.) Cycle through the buttons.
3. (Applies if the navigation panel is active.) If a node contains subnodes, the

left arrow collapses the node, the right arrow expands it. If a node cannot
be expanded further, pressing the right arrow moves down to the next
node. If a subnode is selected, pressing the left arrow moves to the parent
node.

Arrows (up and down)

1. (Applies if the navigation panel is active.) Move up and down through the
navigation panel.

2. (Applies if the buttons are active.) Cycle through the buttons.
3. (Applies if the Authorized Hosts list box is active.) Move through the

entries in the list. If only one entry is in the list, press the Home key to
select it.

Escape
Closes the menu.

F2 Select and change an editable number field in a table.

Accessibility 301

F6 (Applies if the navigation panel or the settings panel is active.) Toggles
between the navigation panel and the settings panel.

F8 (Applies if the navigation panel or the settings panel is active.) Allows you to
gain control of the split between the navigation panel and settings panel areas.
After pressing F8, use the arrow keys to move the split:
v Press the left arrow key to move the split left (decrease the width of the

navigation panel, increase the width of the settings panel).
v Press the right arrow key to move the split right (increase the width of the

navigation panel, decrease the width of the settings panel).

F10
Opens the file menu.

Home
Selects the first entry in the Authorized Hosts list box.

Page Up
Scroll up.

Page Down
Scroll down.

Scroll bars
You cannot use the keyboard to control scroll bars in the navigation panel. Use
the up and down arrow keys to navigate the tree; settings for the selected item
are shown in the settings panel.

Shift+Tab
If the cursor is on a field in the settings panel other than the first field, moves
backwards through the fields. Otherwise, toggles between the navigation panel
and the settings panel.

Space

1. Activates a button.
2. Selects a check box.
3. Selects a node in the tree.

Tab
Cycles through the tree, fields in the settings panel, and the buttons.

Customizing colors and fonts
Use the Settings option on the menu to change colors and fonts.

Fields that contain errors are displayed by default in the font warning color,
preceded by an asterisk. Use the Settings->Font option on the menu to change the
warning color.

Starting the Gateway daemon
You can start the Gateway daemon from a command prompt using a screen reader.

In some Telnet sessions, the screen reader might reread CICS Transaction Gateway
log output or the command prompt after the CICS Transaction Gateway has
started. This behavior is expected, and does not mean that the CICS Transaction
Gateway has failed to start.

To determine if the CICS Transaction Gateway started correctly, check for the
message:

302 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

’CTG6512I CICS Transaction Gateway initialization complete’.

If the CICS Transaction Gateway did not start successfully, this message is
produced:
’CTG6513E CICS Transaction Gateway failed to initialize’.

cicsterm
Although cicsterm is accessible, it relies on the application that is being processed
to define an accessible 3270 screen.

Keyboard mapping depends on the terminal type that you are using.

The bottom row of cicsterm contains status information. The following list shows
this information, as it appears from left to right:

Status For example, 1B is displayed while cicsterm is connecting to a server.
Displayed at columns 1 – 3.

Terminal name
Also referred to as LU Name. Columns 4 – 7.

Action
For example, X-System, indicating that you cannot enter text in the
terminal window because cicsterm is waiting for a response from the
server. Columns 9 – 16.

Error number
Errors in the form CCLNNNN, relating to the CICS Transaction Gateway.
Columns 17 – 24.

Server name
The server to which cicsterm is connected. Columns 27 – 35.

Uppercase
An up arrow is displayed when the Shift key is pressed. Column 42.

Caps Lock
A capital A is displayed when Caps Lock is on. Column 43.

Insert on
The caret symbol (^) is displayed if text will be inserted, rather than
overwriting existing text. If you have difficulty seeing the caret, change the
font face and size, or use a screen magnifier to increase the size of the
status line. Column 52.

Cursor position
The cursor position, in the form ROW/COLUMN, where ROW is a
two-digit number, and COLUMN a three-digit number. The top left of the
screen is 01/001. Column 75–80.

Note: You might need to change the default behavior of your screen
reader if it reads only the last digit of the cursor position. Customize your
screen reader to specify that columns 75–80 of the status row are to be
treated as one field. This will cause the full area to be read when any digit
changes.

Accessibility 303

304 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Glossary

This glossary defines the terms and abbreviations used in CICS Transaction
Gateway and in the information centers.

A

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition
that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)
An implementation of the SNA/SDLC LU 6.2 protocol that allows
interconnected systems to communicate and share the processing of
programs. The Client daemon uses APPC to communicate with CICS
systems.

APAR See Authorized program analysis report.

API See application programming interface.

APPC See Advanced program-to-program communication.

application programming interface (API)
A functional interface that allows an application program that is written in
a high-level language to use specific data or functions of the operating
system or another program.

APPLID

1. On CICS Transaction Gateway: The application identifier that is used to
identify connections on the CICS server and tasks in a CICSplex. See
also APPLID qualifier and fully-qualified APPLID.

2. On CICS Transaction Server: The name by which a CICS system is
known in a network of interconnected CICS systems. CICS Transaction
Gateway application identifiers do not need to be defined in
SYS1.VTAMLST. The CICS APPLID is specified in the APPLID system
initialization parameter.

APPLID qualifier
Optionally used as a high-level qualifier for the APPLID to form a
fully-qualified APPLID. See also APPLID and fully-qualified APPLID.

ARM See automatic restart manager.

Authorized program analysis report (APAR)
A request for correction of a defect in a current release of an IBM-supplied
program.

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a conversation.

Attach Manager
The component of APPC that matches attaches received from remote
computers to accepts issued by local programs.

autoinstall
A method of creating and installing resources dynamically as terminals log
on, and deleting them at logoff.

© Copyright IBM Corp. 1998, 2011 305

automatic restart manager (ARM)
A z/OS recovery function that can improve the availability of specific
batch jobs or started tasks, and therefore result in faster resumption of
productive work.

automatic transaction initiation (ATI)
The initiation of a CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or the reaching of a
transient data trigger level. CICS resource definition can associate a trigger
level and a transaction with a transient data destination. When the number
of records written to the destination reaches the trigger level, the specified
transaction is automatically initiated.

B

bean A definition or instance of a JavaBeans component. See also JavaBeans.

bean-managed transaction
A transaction where the JEE bean itself is responsible for administering
transaction tasks such as committal or rollback. See also container-managed
transaction.

BIND command
In SNA, a request to activate a session between two logical units (LUs).

business logic
The part of a distributed application that is concerned with the application
logic rather than the user interface of the application. Compare with
presentation logic.

C

CA See certificate authority.

CCIN The CCIN transaction is invoked by the Client daemon, for each TCP/IP
or SNA connection established. CCIN installs a Client connection on the
CICS server.

CCSID
Coded Character Set Identifier. A 16-bit number that includes a specific set
of encoding scheme identifiers, character set identifiers, code page
identifiers, and other information that uniquely identifies the coded
graphic-character representation.

CTIN The CTIN transaction is invoked by the Client daemon to install a Client
terminal definition on the CICS server.

callback
A way for one thread to notify another application thread that an event
has happened.

certificate authority (CA)
In computer security, an organization that issues certificates. The certificate
authority authenticates the certificate owner's identity and the services that
the owner is authorized to use. It issues new certificates and revokes
certificates from users who are no longer authorized to use them.

change-number-of-sessions (CNOS)
An internal transaction program that regulates the number of parallel
sessions between the partner LUs with specific characteristics.

306 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

||
|
|

||
|

channel
A channel is a set of containers, grouped together to pass data to CICS.
There is no limit to the number of containers that can be added to a
channel, and the size of individual containers is limited only by the
amount of storage that you have available.

CICS connectivity components
A generic reference to the Client daemon, EXCI, and the IPIC protocol.

CICS connectivity components
The Client daemon, the EXCI (External CICS Interface), and the IPIC (IP
Interconnectivity) protocol are collectively called the 'CICS connectivity
components'. The Client daemon handles the TCP/IP and the SNA
protocols.

CICS Request Exit
An exit that is invoked by the CICS Transaction Gateway for z/OS at run
time to determine which CICS server to use.

CICS server name
A defined server known to CICS Transaction Gateway.

CICS TS
Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore,
common properties, operations, and behavior. An object is an instance of a
class.

CLASSPATH
In the execution environment, an environment variable keyword that
specifies the directories in which to look for class and resource files.

Client API
The Client API is the interface used by Client applications to interact with
CICS using the Client daemon. See External Call Interface, External
Presentation Interface, and External Security Interface.

Client application
The client application is a user application written in a supported
programming language that uses one or more of the CICS Transaction
Gateways APIs.

Client daemon
The Client daemon manages TCP/IP and SNA connections to CICS servers
on UNIX, Linux, and Windows. It processes ECI, EPI, and ESI requests,
sending and receiving the appropriate flows to and from the CICS server
to satisfy Client application requests. It can support concurrent requests to
one or more CICS servers. The CICS Transaction Gateway initialization file
defines the operation of the Client daemon and the servers and protocols
used for communication.

client/server
Pertaining to the model of interaction in distributed data processing in
which a program on one computer sends a request to a program on
another computer and awaits a response. The requesting program is called
a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

Glossary 307

|
|
|
|
|
|
|

code page
An assignment of hexadecimal identifiers (code points) to graphic
characters. Within a given code page, a code point can have only one
meaning.

color mapping file
A file that is used to customize the 3270 screen color attributes on client
workstations.

COMMAREA
See communication area.

commit phase
The second phase in a XA process. If all participants acknowledge that
they are prepared to commit , the transaction manager issues the commit
request. If any participant is not prepared to commit the transaction
manager issues a back-out request to all participants.

communication area (COMMAREA)
A communication area that is used for passing data both between
programs within a transaction and between transactions.

Configuration file
A file that specifies the characteristics of a program, system device, server
or network.

connection
In data communication, an association established between functional units
for conveying information.

In Open Systems Interconnection architecture, an association established by
a given layer between two or more entities of the next higher layer for the
purpose of data transfer.

In TCP/IP, the path between two protocol application that provides
reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one system to
a TCP application on another system.

container
A container is a named block of data designed for passing information
between programs. A container is a "named COMMAREA" that is not
limited to 32KB. Containers are grouped together in sets called channels.

container-managed transaction
A transaction where the EJB container is responsible for administration of
tasks such as committal or rollback. See also bean-managed transaction.

control table
In CICS, a storage area used to describe or define the configuration or
operation of the system.

conversation
A connection between two programs over a session that allows them to
communicate with each other while processing a transaction.

conversation security
In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

D

308 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

daemon
A program that runs unattended to perform continuous or periodic
systemwide functions, such as network control. A daemon can be launched
automatically, such as when the operating system is started, or manually.

data link control (DLC)
A set of rules used by nodes on a data link (such as an SDLC link or a
token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

default CICS server
The CICS server that is used if a server name is not specified on an ECI,
EPI, or ESI request. The default CICS server name is defined as a product
wide setting in the configuration file (ctg.ini).

dependent logical unit
A logical unit that requires assistance from a system services control point
(SSCP) to instantiate an LU-to-LU session.

deprecated
Pertaining to an entity, such as a programming element or feature, that is
supported but no longer recommended, and that might become obsolete.

digital certificate
An electronic document used to identify an individual, server, company, or
some other entity, and to associate a public key with the entity. A digital
certificate is issued by a certificate authority and is digitally signed by that
authority.

digital signature
Information that is encrypted with an entity's private key and is appended
to a message to assure the recipient of the authenticity and integrity of the
message. The digital signature proves that the message was signed by the
entity that owns, or has access to, the private key or shared secret
symmetric key.

distinguished name
The name that uniquely identifies an entry in a directory. A distinguished
name is made up of attribute:value pairs, separated by commas. The
format of a distinguished name is defined by RFC4514. For more
information, see http://www.ietf.org/rfc/rfc4514.txt. See also realm
name and identity propagation.

distributed application
An application for which the component application programs are
distributed between two or more interconnected processors.

distributed identity
User identity information that originates from a remote system. The
distributed identity is created in one system and is passed to one or more
other systems over a network. See also distinguished name and realm name.

distributed processing
The processing of different parts of the same application in different
systems, on one or more processors.

distributed program link (DPL)
A link that enables an application program running on one CICS system to
link to another application program running in another CICS system.

DLC See data link control.

Glossary 309

DLL See dynamic link library.

domain
In the Internet, a part of a naming hierarchy in which the domain name
consists of a sequence of names (labels) separated by periods (dots).

domain name
In TCP/IP, a name of a host system in a network.

domain name server
In TCP/IP, a server program that supplies name-to-address translation by
mapping domain names to IP addresses. Synonymous with name server.

dotted decimal notation
The syntactical representation for a 32-bit integer that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. It is used
to represent IP addresses.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing, display,
and printing of DBCS characters requires hardware and programs that
support DBCS. Contrast with single-byte character set.

DPL See distributed program link.

dynamic link library (DLL)
A collection of runtime routines made available to applications as required.

dynamic server selection (DSS)
The mapping of a logical CICS server name to an actual CICS server name
at run time.

E

EBCDIC
See extended binary-coded decimal interchange code.

ECI See external call interface.

EJB See Enterprise JavaBeans.

emulation program
A program that allows a host system to communicate with a workstation
in the same way as it would with the emulated terminal.

emulator
A program that causes a computer to act as a workstation attached to
another system.

encryption
The process of transforming data into an unintelligible form in such a way
that the original data can be obtained only by using a decryption process.

enterprise bean
A Java component that can be combined with other resources to create JEE
applications. There are three types of enterprise beans: entity beans, session
beans, and message-driven beans.

Enterprise Information System (EIS)
The applications that comprise an enterprise's existing system for handling

310 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|

company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Enterprise JavaBeans (EJB)
A component architecture defined by Sun Microsystems for the
development and deployment of object-oriented, distributed,
enterprise-level applications (JEE).

environment variable
A variable that specifies the operating environment for a process. For
example, environment variables can describe the home directory, the
command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet
A local area network that allows multiple stations to access the
transmission medium at will without prior coordination, avoids contention
by using carrier sense and deference, and resolves contention by using
collision detection and transmission. Ethernet uses carrier sense multiple
access with collision detection (CSMA/CD).

EXCI See external CICS interface.

extended binary-coded decimal interchange code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data.

extended logical unit of work (extended LUW)
A logical unit of work that is extended across successive ECI requests to
the same CICS server.

external call interface (ECI)
A facility that allows a non CICS program to run a CICS program. Data is
exchanged in a COMMAREA or a channel as for usual CICS interprogram
communication.

external communications interface (EXCI)
An MVS application programming interface provided by CICS Transaction
Server for z/OS that enables a non-CICS program to call a CICS program
and to pass and receive data using a COMMAREA. The CICS application
program is started as if linked-to by another CICS application program.

external presentation interface (EPI)
A facility that allows a non CICS program to appear to CICS as one or
more standard 3270 terminals. 3270 data can be presented to the user by
emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)
A facility that enables client applications to verify and change passwords
for user IDs on CICS servers.

External Security Manager (ESM)
A security manager that operates outside CICS. For example, RACF can be
used as an external security manager with CICS Transaction Server.

F

Glossary 311

|
|
|

|
|
|

firewall
A configuration of software that prevents unauthorized traffic between a
trusted network and an untrusted network.

FMH See function management header.

fully-qualified APPLID
Used to identify CICS Transaction Gateway connections on the CICS server
and tasks in a CICSplex. It is composed of an APPLID with an optional
network qualifier. See also APPLID and APPLID qualifier.

function management header (FMH)
One or more headers, optionally present in the leading request units (RUs)
of an RU chain, that allow one LU to (a) select a transaction program or
device at the session partner and control the way in which the end-user
data it sends is handled at the destination, (b) change the destination or
the characteristics of the data during the session, and (c) transmit between
session partners status or user information about the destination (for
example, a program or device). Function management headers can be used
with LU type 1, 4, and 6.2 protocols.

G

gateway
A device or program used to connect two systems or networks.

gateway classes
The gateway classes provide APIs for ECI, EPI, and ESI that allow
communication between Java client applications and the Gateway daemon.

Gateway daemon
A long-running Java process that listens for network requests from remote
Client applications. It issues these requests to CICS servers using the CICS
connectivity components. The Gateway daemon on z/OS processes ECI
requests and on UNIX, Windows, and Linux platforms it process EPI and
ESI requests as well. The Gateway daemon uses the GATEWAY section of
ctg.ini for its configuration.

Gateway group
A set of Gateway daemons that share an APPLID qualifier, and where each
Gateway daemon has a unique APPLID within the Gateway group.

gateway token
A token that represents a specific Gateway daemon, when a connection is
established successfully. Gateway tokens are used in the C language
statistics and ECI V2 APIs.

global transaction
A recoverable unit of work performed by one or more resource managers
in a distributed transaction processing environment and coordinated by an
external transaction manager.

H

HA group
See highly available gateway group.

highly available gateway group (HA group)
A Gateway group that utilizes TCP/IP load balancing, and can be viewed

312 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

as a single logical Gateway daemon. A Gateway daemon instance in a HA
group can recover indoubt XA transactions on behalf of another Gateway
daemon within the HA group

host A computer that is connected to a network (such as the Internet or an SNA
network) and provides an access point to that network. The host can be
any system; it does not have to be a mainframe.

host address
An IP address that is used to identify a host on a network.

host ID
In TCP/IP, that part of the IP address that defines the host on the network.
The length of the host ID depends on the type of network or network class
(A, B, or C).

host name
In the Internet suite of protocols, the name given to a computer.
Sometimes, host name is used to mean the fully qualified domain name;
other times, it is used to mean the most specific subname of a fully
qualified domain name. For example, if mycomputer.city.company.com is
the fully qualified domain name, either of the following can be considered
the host name: mycomputer.city.company.com, mycomputer.

hover help
Information that can be viewed by holding a mouse over an item such as
an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS
See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol (HTTP)
In the Internet suite of protocols, the protocol that is used to transfer and
display hypertext and XML documents.

Hypertext Transfer Protocol Secure (HTTPS)
A TCP/IP protocol that is used by World Wide Web servers and Web
browsers to transfer and display hypermedia documents securely across
the Internet.

I

ID data
An ID data structure holds an individual result from a statistical API
function.

identity propagation
The concept of preserving a user's security identity information (the
distributed identity) independent of where the identity information has
been created, for use during authorization and for auditing purposes. The
distributed identity is carried with a request from the distributed client
application to the CICS server, and is incorporated in the access control of
the server as part of the authorization process, for example, using RACF.
CICS Transaction Gateway flows the distributed identity to CICS. See also
distributed identity.

identity propagation login module
A code component that provides support for identity propagation. The
identity propagation login module is included with the CICS Transaction

Glossary 313

|
|
|

Gateway ECI resource adapter (cicseci.rar), conforms to the JAAS
specification and is contained in a single Java class within the resource
adapter. See also identity propagation.

iKeyman
A tool for maintaining digital certificates for JSSE.

in doubt
The state of a transaction that has completed the prepare phase of the
two-phase commit process and is waiting to be completed.

in flight
The state of a transaction that has not yet completed the prepare phase of
the two-phase commit process.

independent logical unit
A logical unit (LU) that can both send and receive a BIND, and which
supports single, parallel, and multiple sessions. See BIND.

<install_path>
This term is used in file paths to represent the directory where you
installed the product.

Internet Architecture Board
The technical body that oversees the development of the internet suite of
protocols known as TCP/IP.

Internet Protocol (IP)
In TCP/IP, a protocol that routes data from its source to its destination in
an Internet environment.

interoperability
The capability to communicate, run programs, or transfer data among
various functional units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

IP Internet Protocol.

IPIC See IP interconnectivity.

IP address
A unique address for a device or logical unit on a network that uses the IP
standard.

IP interconnectivity (IPIC)
The IPIC protocol enables Distributed Program Link (DPL) access from a
non-CICS program to a CICS program over TCP/IP, using the External
Call Interface (ECI). IPIC passes and receives data using COMMAREAs, or
containers.

J

JEE (formerly J2EE)
See Java 2 Platform Enterprise Edition

JEE Connector architecture (JCA)
A standard architecture for connecting the JEE platform to heterogeneous
enterprise information systems (EIS).

Java An object-oriented programming language for portable interpretive code
that supports interaction among remote objects.

Java 2 Platform Enterprise Edition (JEE)
An environment for developing and deploying enterprise applications,

314 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|

defined by Sun Microsystems Inc. The JEE platform consists of a set of
services, application programming interfaces (APIs), and protocols that
allow multi-tiered, Web-based applications to be developed.

JavaBeans
As defined for Java by Sun Microsystems, a portable, platform-
independent, reusable component model.

Java Client application
The Java client application is a user application written in Java, including
servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)
The name of the software development kit that Sun Microsystems provided
for the Java platform, up to and including v 1.1.x. Sometimes used
erroneously to mean the Java platform or as a generic term for any
software developer kits for Java.

JavaGateway
The URL of the CICS Transaction Gateway with which the Java Client
application communicates. The JavaGateway takes the form
protocol://address:port. These protocols are supported: tcp://, ssl://,
and local:. CICS Transaction Gateway runs with the default port value of
2006. This parameter is not relevant if you are using the protocol local:.
For example, you might specify a JavaGateway of tcp://
ctg.business.com:2006. If you specify the protocol as local: you will
connect directly to the CICS server, bypassing any CICS Transaction
Gateway servers.

Java Native Interface (JNI)
A programming interface that allows Java code running in a Java virtual
machine to work with functions that are written in other programming
languages.

Java Runtime Environment (JRE)
A subset of the Java Software Development Kit (SDK) that supports the
execution, but not the development, of Java applications. The JRE
comprises the Java Virtual Machine (JVM), the core classes, and supporting
files.

Java Secure Socket Extension (JSSE)
A Java package that enables secure Internet communications. It implements
a Java version of the Secure Sockets Layer (SSL) and Transport Layer
Security (TSL) protocols and supports data encryption, server
authentication, message integrity, and optionally client authentication.

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JDK See Java development kit.

JCA See JEE Connector Architecture .

JNI See Java Native Interface.

JRE See Java Runtime Environment

JSSE See Java Secure Socket Extension.

JVM See Java Virtual Machine.

K

Glossary 315

keyboard mapping
A list that establishes a correspondence between keys on the keyboard and
characters displayed on a display screen, or action taken by a program,
when that key is pressed.

Keystore
In the JSSE protocol, a file that contains public keys, private keys, trusted
roots, and certificates.

L

local mode
Local mode describes the use of the CICS Transaction Gateway local
protocol. The Gateway daemon is not used in local mode.

local transaction
A recoverable unit of work managed by a resource manager and not
coordinated by an external transaction manager.

logical CICS server
An alias that can be passed on an ECI request when running in remote
mode to CICS Transaction Gateway for z/OS. The alias name is mapped to
an actual CICS server name by a dynamic server selection (DSS)
mechanism.

logical end of day
The local time of day on the 24-hour clock to which a Gateway daemon
aligns statistics intervals. If the statistics interval is 24 hours, this is the
local time at which interval statistics will be reset and, on z/OS, optionally
recorded to SMF. This time is set using the stateod parameter in the
configuration file (ctg.ini).

logical unit (LU)
In SNA, a port through which an end user accesses the SNA network to
communicate with another end user and through which the end user
accesses the functions provided by system services control points (SSCP).
An LU can support at least two sessions, one with an SSCP and one with
another LU, and might be capable of supporting many sessions with other
logical units. See also network addressable unit, primary logical unit, secondary
logical unit.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between
programs in a distributed processing environment.

The LU type that supports sessions between two applications using APPC.

logical unit of work (LUW)
The processing that a program performs between synchronization points

LU See logical unit.

LU 6.2 See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It
provides communication between two end users, or between an end user
and an LU services component.

LU-LU session type 6.2
In SNA, a type of session for communication between peer systems.
Synonymous with APPC protocol.

316 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

LUW See logical unit of work.

M

managed mode
Describes an environment in which connections are obtained from
connection factories that the JEE server has set up. Such connections are
owned by the JEE server.

media access control (MAC) sublayer
One of two sublayers of the ISO Open Systems Interconnection data link
layer proposed for local area networks by the IEEE Project 802 Committee
on Local Area Networks and the European Computer Manufacturers
Association (ECMA). It provides functions that depend on the topology of
the network and uses services of the physical layer to provide services to
the logical link control (LLC) sublayer. The OSI data link layer corresponds
to the SNA data link control layer.

method
In object-oriented programming, an operation that an object can perform.
An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a session
between two LUs.

N

name server
In TCP/IP, synonym for Domain Name Server. In Internet
communications, a host that translates symbolic names assigned to
networks and hosts into IP addresses.

NAU See network addressable unit.

network address
In SNA, an address, consisting of subarea and element fields, that
identifies a link, link station, or network addressable unit (NAU). Subarea
nodes use network addresses; peripheral nodes use local addresses. The
boundary function in the subarea node to which a peripheral node is
attached transforms local addresses to network addresses and vice versa.
See also network name.

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point.
The NAU is the origin or the destination of information transmitted by the
path control network. See also logical unit, network address, network name.

network name
In SNA, the symbolic identifier by which end users refer to a network
addressable unit (NAU), link station, or link. See also network address.

node type
In SNA, a designation of a node according to the protocols it supports and
the network addressable units (NAUs) it can contain. Four types are
defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral nodes; type
4 and type 5 nodes are subarea nodes.

nonextended logical unit of work
See SYNCONRETURN.

nonmanaged mode
An environment in which the application is responsible for generating and

Glossary 317

configuring connection factories. The JEE server does not own or know
about these connection factories and therefore provides no Quality of
Service facilities.

O

object In object-oriented programming, a concrete realization of a class that
consists of data and the operations associated with that data.

object-oriented (OO)
Describing a computer system or programming language that supports
objects.

one-phase commit
A protocol with a single commit phase, that is used for the coordination of
changes to recoverable resources when a single resource manager is
involved.

OO See object-oriented.

P

pacing
A technique by which a receiving station controls the rate of transmission
of a sending station to prevent overrun.

parallel session
In SNA, two or more concurrently active sessions between the same two
LUs using different pairs of network addresses. Each session can have
independent session parameters.

PING In Internet communications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destinations an Internet
Control Message Protocol (ICMP) echo request and waiting for a reply.

partner logical unit (PLU)
In SNA, the remote participant in a session.

partner transaction program
The transaction program engaged in an APPC conversation with a local
transaction program.

password phrase
A character string, between 9 and 100 characters in length, that is used for
authentication when a user signs on to CICS. Because a password phrase
can provide an exponentially greater number of possible combinations of
characters than a standard 8 character password, the use of password
phrases can enhance system security. Password phrases are verified by the
External Security Manager (ESM), and can contain alphanumeric
characters, and any of the other non alphanumeric characters that are
supported by the ESM. See also External Security Manager (ESM).

PLU See primary logical unit and partner logical unit.

port An endpoint for communication between devices, generally referring to a
logical connection. A 16-bit number identifying a particular Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) resource within a
given TCP/IP node.

port sharing
A way of load balancing TCP/IP connections across a group of servers
running in the same z/OS image.

318 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

|
|
|
|
|
|
|
|
|

prepare phase
The first phase of a XA process in which all participants are requested to
confirm readiness to commit.

presentation logic
The part of a distributed application that is concerned with the user
interface of the application. Compare with business logic.

primary logical unit (PLU)
In SNA, the logical unit that contains the primary half-session for a
particular logical unit-to-logical unit (LU-to-LU) session. See also secondary
logical unit.

protocol boundary
The signals and rules governing interactions between two components
within a node.

Q

Query strings
Query strings are used in the statistical data API. A query string is an
input parameter, specifying the statistical data to be retrieved.

R

RACF See Resource Access Control Facility.

realm A named collection of users and groups that can be used in a specific
security context. See also distinguished name and identity propagation.

Recoverable resource management services (RRMS)
The registration services, context services, and resource recovery services
provided by the z/OS sync point manager that enable consistent changes
to be made to multiple protected resources.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users
to the system; verifying users of the system; authorizing access to protected
resources; logging detected unauthorized attempts to enter the system; and
logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows, an
instance of a CICS server.

remote mode
Remote mode describes the use of one of the supported CICS Transaction
Gateway network protocols to connect to the Gateway daemon.

remote procedure call (RPC)
A protocol that allows a program on a client computer to run a program
on a server.

Request monitoring exits
Exits that provide information about individual requests as they are
processed by the CICS Transaction Gateway.

request unit (RU)
In SNA, a message unit that contains control information such as a request
code, or function management (FM) headers, end-user data, or both.

request/response unit
A generic term for a request unit or a response unit. See also request unit
and response unit.

Glossary 319

response file
A file that contains predefined values that is used instead of someone
having to enter those values one at a time. See also CID methodology.

response unit (RU)
A message unit that acknowledges a request unit; it can contain prefix
information received in a request unit.

Resource adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components
deployed on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

resource group ID
A resource group ID is a logical grouping of resources, grouped for
statistical purposes. A resource group ID is associated with a number of
resource group statistics, each identified by a statistic ID.

resource ID
A resource ID refers to a specific resource. Information about the resource
is included in resource-specific statistics. Each statistic is identified by a
statistic ID.

resource manager
The participant in a transaction responsible for controlling access to
recoverable resources. In terms of the CICS resource adapters this is
represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)
A z/OS facility that provides two-phase sync point support across
participating resource managers.

Result set
A result set is a set of data calculated or recorded by a statistical API
function.

Result set token
A result set token is a reference to the set of results returned by a statistical
API function.

rollback
An operation in a transaction that reverses all the changes made during the
unit of work. After the operation is complete, the unit of work is finished.
Also known as a backout.

RU See Request unit and Response unit.

RPC See remote procedure call.

RRMS
See Recoverable resource management services.

RRS See Resource Recovery Services.

S

SBCS See single-byte character set.

320 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

secondary logical unit (SLU)
In SNA, the logical unit (LU) that contains the secondary half-session for a
particular LU-LU session. Contrast with primary logical unit. See also
logical unit.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL applies only
to internet protocols, and is not applicable to SNA.

server name remapping
See dynamic server selection.

servlet
A Java program that runs on a Web server and extends the server's
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

session limit
In SNA, the maximum number of concurrently active logical unit to logical
unit (LU-to-LU) sessions that a particular logical unit (LU) can support.

silent installation
Installation that does not display messages or windows during its progress.
Silent installation is not a synonym of "unattended installation", although it
is often improperly used as such.

single-byte character set (SBCS)
A character set in which each character is represented by 1 byte. Contrast
with double-byte character set.

sign-on capable terminal
A sign-on capable terminal allows sign-on transactions that are either
supplied with CICS (CESN) or written by the user, to be run. Contrast with
sign-on incapable terminal.

SIT See system initialization table.

SLU See secondary logical unit.

SMIT See System Management Interface Tool.

SNA See Systems Network Architecture.

SNA sense data
An SNA-defined encoding of error information In SNA, the data sent with
a negative response, indicating the reason for the response.

SNASVCMG mode name
The SNA service manager mode name. This is the architecturally-defined
mode name identifying sessions on which CNOS is exchanged. Most
APPC-providing products predefine SNASVCMG sessions.

socket A network communication concept, typically representing a point of
connection between a client and a server. A TCP/IP socket will normally
combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer.

SSLight
An implementation of SSL, written in Java, and no longer supported by
CICS Transaction Gateway.

Glossary 321

statistic data
A statistic data structure holds individual statistical result returned after
calling a statistical API function.

statistic group
A generic term for a collection of statistic IDs.

statistic ID
A label referring to a specific statistic. A statistic ID is used to retrieve
specific statistical data, and always has a direct relationship with a statistic
group.

standard error
In many workstation-based operating systems, the output stream to which
error messages or diagnostic messages are sent.

subnet
An interconnected, but independent segment of a network that is identified
by its Internet Protocol (IP) address.

subnet address
In Internet communications, an extension to the basic IP addressing scheme
where a portion of the host address is interpreted as the local network
address.

sync point
Synchronization point. During transaction processing, a reference point to
which protected resources can be restored if a failure occurs.

SYNCONRETURN
A request where the CICS server takes a sync point on successful
completion of the server program. Changes to recoverable resources made
by the server program are committed or rolled-back independently of
changes to recoverable resources made by the client program issuing the
ECI request, or changes made by the server in any subsequent ECI request.
Also referred to as a nonextended logical unit of work.

system initialization table (SIT)
A table containing parameters used to start a CICS control region.

System Management Command
An administrative request received by a Gateway daemon (or Gateway
daemon address space on z/OS) from the ctgadmin command (on UNIX,
Linux, or Windows) or the z/OS console. The request might be made to
retrieve information about the Gateway daemon, or to alter some aspect of
Gateway daemon behavior. Typically, a ctgadmin command in the form
ctgadmin <command string> is entered by an operator using the command
line interface, or a modify command in the form /F <job
name>,APPL=<command string> is entered by an operator on the z/OS
console.

System Management Interface Tool (SMIT)
An interface tool of the AIX operating system for installing, maintaining,
configuring, and diagnosing tasks.

Systems Network Architecture (SNA)
An architecture that describes the logical structure, formats, protocols, and
operational sequences for transmitting information units through the
networks and also the operational sequences for controlling the
configuration and operation of networks.

322 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

System SSL
An implementation of SSL, no longer supported by CICS Transaction
Gateway on z/OS.

T

TCP/IP
See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing
The ability to distribute TCP/IP connections across target servers.

terminal emulation
The capability of a personal computer to operate as if it were a particular
type of terminal linked to a processing unit and to access data. See also
emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

timeout
A time interval that is allotted for an event to occur or complete before
operation is interrupted.

TLS See Transport Layer Security.

token-ring network
A local area network that connects devices in a ring topology and allows
unidirectional data transmission between devices by a token-passing
procedure. A device must receive a token before it can transmit data.

trace A record of the processing of a computer program. It exhibits the
sequences in which the instructions were processed.

transaction manager
A software unit that coordinates the activities of resource managers by
managing global transactions and coordinating the decision to commit
them or roll them back.

transaction program
A program that uses the Advanced Program-to-Program Communications
(APPC) application programming interface (API) to communicate with a
partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communications protocols that
provide reliable end-to-end connections between applications over
interconnected networks of different types.

Transport Layer Security (TLS)
A security protocol that provides communication privacy. TLS enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. TLS applies only
to internet protocols, and is not applicable to SNA. TLS is also known as
SSL 3.1.

Two-phase commit
A protocol with both a prepare and a commit phase, that is used for the
coordination of changes to recoverable resources when more than one
resource manager is used by a single transaction.

Glossary 323

type 2.0 node
A node that attaches to a subarea network as a peripheral node and
provides a range of end-user services but no intermediate routing services.

type 2.1 node
An SNA node that can be configured as an endpoint or intermediate
routing node in a network, or as a peripheral node attached to a subarea
network.

U

unattended installation
Unattended installation is installation performed without user interaction
during its progress, or, with no user present at all, except for the initial
launch of the process. -

Uniform Resource Locator (URL)
A sequence of characters that represent information resources on a
computer or in a network such as the Internet. This sequence of characters
includes (a) the abbreviated name of the protocol used to access the
information resource and (b) the information used by the protocol to locate
the information resource.

unit of recovery (UR)
A defined package of work to be performed by the RRS.

unit of work (UOW)
A recoverable sequence of operations performed by an application between
two points of consistency. A unit of work begins when a transaction starts
or at a user-requested sync point. It ends either at a user-requested sync
point or at the end of a transaction.

UOW See unit of work.

UR See unit of recovery.

URL See Uniform Resource Locator.

user registry
The location where the distinguished name of a user is defined and
authenticated. See also distinguished name.

user session
Any APPC session other than a SNASVCMG session.

V

verb A reserved word that expresses an action to be taken by an application
programming interface (API), a compiler, or an object program.

In SNA, the general name for a transaction program's request for
communication services.

version string
A character string containing version information about the statistical data
API.

W

WAN See wide area network.

324 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Web browser
A software program that sends requests to a Web server and displays the
information that the server returns.

Web server
A software program that responds to information requests generated by
Web browsers.

wide area network (WAN)
A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that can use or provide public communication facilities.

Wrapping trace
On Windows, UNIX, and Linux, a configuration in which the Maximum
Client wrap size setting is greater than 0. The total size of Client daemon
binary trace files is limited to the value specified in the Maximum Client
wrap size setting. With standard I/O tracing, two files, called cicscli.bin
and cicscli.wrp, are used; each can be up to half the size of the
Maximum Client wrap size.

X

XA request
Any request sent or received by the CICS Transaction Gateway in support
of an XA transaction. These requests include the XA commands commit,
complete, end, forget, prepare, recover, rollback, and start.

XA transaction
A global transaction that adheres to the X/Open standard for distributed
transaction processing (DTP.)

Glossary 325

326 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Index

Special characters
<install_path> 21
'no cics' error when sending request over

IPIC 236

Numerics
3270 data streams 213, 217, 219

A
access denied security exception 243
accessibility 299
accessibility, installation 299
activating identity propagation in CICS

Transaction Gateway 101
administration 197
advanced program-to-program

communication (APPC) 61
Advantages and benefits 1
Advantages of local mode 5
Advantages of remote mode 4
APIs 3, 4
APPC (advanced program-to-program

communication) 61
APPC-related publications 297
application development tools 14
Application programming interfaces 3
application programming languages 4
application tracing 253
Applid 37
APPLID configuration setting 45
APPLID qualifier configuration

setting 46
ApplidQualifier 37
applying, trace settings 109
asymmetric keys 164

B
background task 196
binary trace formatter 248
bind address 116
Bind address 77, 80, 104
Bind address configuration setting 77,

80, 104
browsers, web 11
bthdinst 21
Byte offset 110

C
CA (certification authority) 164
certification authority (CA) 164
changing settings for Client daemon

loggin 87
changing the system locale 31
changing the system time 192
changing the user ID and password 167

CICS connection problems 234
CICS Explorer 283
CICS request exit 102, 189
CICS request exit options 201
CICS resource adapters 36
CICS servers that support CICS

Transaction Gateway 12
CICS servers, communicating with 48
CICS TG plug-in for CICS Explorer 283
CICS TG V8.1 enhancements ix
CICS Transaction Gateway 1, 195, 196,

197
CICS Transaction Gateway Desktop

Edition 2
CICS Universal Client 30
CICS_EPI_ERR_FAILED 191
cicscli command 204
CICSCLI environment variable 44
cicscli options 210
cicscli.bin 246, 247, 248
cicscli.log 88
cicscli.trc 246
cicscli.wrp 247
CICSCOL environment variable 108
cicseci resource adapters 37
cicsftrc utility 248
CICSKEY environment variable 106
cicsprnt 221
cicsprnt command 219

using cicsprnt 219
cicsprnt command reference 222
cicsrequestexit 102
cicsterm 303
cicsterm command 213
cicsterm command reference 217
cicsterm restrictions 217
Cipher Suites 42
CLASSPATH 35
CLASSPATH environment variable 98
Client daemon 204, 205, 206
Client daemon information 209
Client daemon, restarting 206
Client daemon, shutting down 205
Client daemon, starting 204, 205
Client daemon, stopping 205
client security 209
Client side security 6
Client trace file configuration setting 111
Client trace file wrap size (KB)

configuration setting 111
client tracing 206, 207, 208

security considerations 208
ClientSecurity 37, 41
code page identifier override

configuration setting 87
code page support 20
code pages 20
color mapping file 108, 109, 217
Communicating with CICS servers 48
communication

cicscli 204

communication (continued)
cicsprnt 219
cicsterm 213

communication protocols and interfaces
API 17
EXCI 16
IPIC 16
SNA 16
TCP/IP 16
which API can be used? 17

compatibility
CICS server compatibility 18

compilers 14
compression 174
configuration

CLASSPATH 35
programming environment 35
setting the time 31

configuration file 44
referencing 44

configuration file, editing 114
configuration file, GATEWAY

section 115
configuration file, interval statistics 263
configuration file, SERVER section

of 119
configuration settings

Log file 88
server retry interval 54, 87
use client authentication 82

Configuration settings
APPLID 45
APPLID qualifier 46
Bind address 77, 80, 104
Client trace file 111
Client trace file wrap size (KB) 111
code page identifier override 87
Connection timeout 59
Connection timeout (ms) 78, 80, 104
Description 52, 57, 66
Display TCP/IP hostnames 76
Drop working connections 79, 81
Enable reading input from

console 71
Error and warning log destination 74
Error log file name 75
Gateway trace file 110
Gateway trace file wrap size

(KB) 110
Host name or IP address 53, 59
Idle timeout (ms) 78, 81
Information log file 88
Information log file name 75
Initial number of Connection Manager

threads 70
Initial number of worker threads 71
Initial transaction 58, 67
Java clients obtaining generic ECI

replies 72
Key ring file 82
Key ring password 83

© Copyright IBM Corp. 1998, 2011 327

Configuration settings (continued)
Local LU name 68
Log CICS messages 76
Log Client connections and

disconnections 76
Log terminal installations and

deletions 88
Maximum buffer size 84
Maximum number of connection

manager threads 70
Maximum number of information log

files 75
Maximum number of Worker

threads 71
Maximum requests 85
Maximum servers 85
Mode name 68
Model terminal definition 58, 67
Partner LU name 68
Ping time frequency (ms) 78, 81
Port 53, 59, 77, 80, 104
Port for local administration 74
Print command 86
Print file 86
Require Java Clients to use security

classes 79, 82
Send sessions 53
Send TCP KeepAlive packets 55
Send TCP/IP KeepAlive packets 60
Server idle timeout (mins) 60, 69
Server name 52, 57, 66
SO_LINGER setting 79, 81
Statistics API port 103
Statistics End of Day time

(HHMMSS) 105
Statistics Interval (HHMMSS) 105
Target CICS APPLID 54
Terminal exit 85
Timeout for in-progress requests to

complete 73
Trace 112
Trace settings 246
Use only these ciphers 83
Use Partner LU alias name 68
Use upper case security 61, 69
Validate message qualifiers 72
Validate Units of Work 72
worker thread available timeout 73

Configuration Tool 44
configuration, request monitoring

exits 259
configure SSL 89
configure SSL server

SSL server, configuring 93
configuring a remote mode topology 35
configuring an IPIC CICS Server

definition 52
configuring CICS connection

autoinstall 65
Configuring IBM communications server

for ATI 63
configuring IPCONN 135
configuring IPCONN autoinstall user

program DFHISCIP 127
configuring IPCONN template 129
configuring IPIC in local mode 51
configuring local mode 35

configuring monitoring and
statistics 102

configuring request monitoring exits,
gateway classes 103

configuring request monitoring exits,
Gateway daemon 102, 259

configuring secure autoinstalled IPIC
connection 125

configuring secure predefined IPIC
connection 132

configuring the ctg.ini file 127, 134
configuring the TCPIPService on CICS

TS 128, 134
configuring your SSL clients

SSL clients, configuring 95
configuring your system, high

availability 102
connecting to CICS servers 205
Connection 78, 80, 104
connection timeout 54
Connection timeout 78, 80, 104
Connection timeout (ms) configuration

setting 78, 80, 104
Connection timeout configuration

setting 59
ConnectionURL 37, 40
console output 77
contacting IBM Software Support 255
CRSR transaction 61
CTG_JNI_TRACE environment

variable 113, 252
CTG_JNI_TRACE_ON environment

variable 113, 252
ctgadminoptions 203
ctgcfg command 44
ctgd command 196
customizing

keyboard 106
screen colors 108

D
data conversion 285

Arabic conversions 286
Baltic Rim conversions 287
Cyrillic conversions 287
Estonian conversions 288
Greek conversions 288
Hebrew conversions 288
Japanese conversions 289
Korean conversions 290
Latin-1 conversions 291
Latin-2 conversions 292
Latin-5 conversions 292
Latin-9 conversions 291
simplified Chinese conversions 293
traditional Chinese conversions 293
Vietnamese conversions 294

DBCS 24
DBCS multibyte characters 20
default connection settings 166
default server 48
defining 3270 printer terminal emulator

characteristics 219
defining 3270 terminal emulator

characteristics 217

deploying .NET applications to remote
systems 43

deploying CICS TG applications 36
deploying ECI V2 and ESI V2 to remote

systems 43
deployment topologies 4
Description configuration setting 52, 57,

66
development tools 14
DeviceType 42
diagnosing problems 225, 227
digital certificates

maintaining 89
digital signatures 164
disability 299
disabling the display of messages 209
DISPLAY environment variable 24
Display TCP/IP hostnames configuration

setting 76
distinguished name 99, 101, 170
distinguished name (DN) 164
distributed identity 99, 101, 170

precedence over user ID 171
documentation 295
DRIVER section of the configuration

file 120
Drop working connections configuration

setting 79, 81
Dump options 199

dump parameters 200
dump responses 200
dumpoffset 110

E
ECI resource adapters 37
ECI_ERR_NO_CICS 236
ECI_ERR_SECURITY_ERROR 238
ECI_ERR_SYSTEM_ERROR 191
Enable reading input from console

configuration setting 71
Encoding 42
End of Day time 105
End to end security 6
environment variables

CICSCLI 44
CICSCOL 108
CICSKEY 106
CLASSPATH 35, 98
JAVA_HOME 89

environment variables, setting 34
EPI resource adapter 40
EPI terminal security 167
Error and warning log destination

configuration setting 74
Error log file name configuration

setting 75
euro support 87
exception stack tracing 111
EXEC CICS RETURN TRANSID

IMMEDIATE command 216, 221

F
free memory 84
fully-qualified APPLID 45

328 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

G
gateway classes, configuring request

monitoring exits 103
Gateway daemon 196

operating 193
gateway daemon, configuring request

monitoring exits 102, 259
gateway identification 45
GATEWAY section of configuration

file 115
Gateway trace file configuration

setting 110
Gateway trace file wrap size (KB) 110
Gateway trace file wrap size (KB)

configuration setting 110
generic ECI replies

Configuration 72
glossary of terms and abbreviations 305

H
HA 6, 189
hardware requirements 9
high availability 102
High availability 6
High Availability 189
Host name or IP address configuration

setting 53, 59
how an SSL connection is

established 162

I
IBM JVM

dump 197
dump responses 200

identity propagation 99, 101, 170
configure CICS Transaction Server for

identity propagation 99
configure RACF for identity

propagation 101
distinguished name 101
precedence over user ID 171
RACF mappings for identity

propagation 101
USERAUTH=IDENTIFY and identity

propagation 99
identity propagation overview 99, 170
Idle timeout (ms) configuration

setting 78, 81
iKeyMan 89
Information log file configuration

setting 88
Information log file name configuration

setting 75
Initial number of Connection Manager

threads configuration setting 70
Initial number of worker threads

configuration setting 71
initial transaction 217, 219
Initial transaction configuration

setting 58, 67
initialization files

cicscol.inicicscol.ini 108
cicskey.inicicskey.ini 106

installation logs 24

installed files, location 21
installing a supported Java 23
installing a supported JVM 23
installing CICS Transaction Gateway 21
installing, graphical interface 22
installing, silently 22
installing, unattended 22
InstallTimeout 42
Integration with CICS Explorer 7
Integration with IBM Rational

Application Developer 7
Integration with statistical data

interface 7
Interfaces 3
internal client communication 33
Interval 105
interval statistics, configuration file 263
interval timing patterns 263
introduction 225
IP interconnectivity 48
IPIC

acquiring CICS connections 48
IPIC CICS Server definition,

configuring 52
IPIC connection problems 235, 236
IPIC server connections 46

J
Java 11
Java clients obtaining generic ECI replies

configuration setting 72
Java debug 227
JAVA_HOME environment variable 89
JCA resource adapter

installation verification test (IVT) 121
JEE Tracing 253
JNI trace file 113, 198, 252
JNI tracing 113, 197, 252
JREs that CICS Transaction Gateway

supports 11
JSSE 89
JVM (Java virtual machine) 31
JVM, install 23

K
key combinations 108
Key ring file configuration setting 82
Key ring password configuration

setting 83
keyboard 300
keyboard mapping file 106, 217
KeyRingClass 37, 41
KeyRingPassword 37, 41
KeyStores 89
keytool 89, 93
knowledge bases 255

L
list of ctgstart override options 193
listing connected servers 209
Local LU name configuration setting 68
Local mode 5
local mode, configuring IPIC in 51

Log CICS messages configuration
setting 76

Log Client connections and
disconnections configuration setting 76

Log file configuration setting 88
Log terminal installations and deletions

configuration setting 88
logical unit (LU) 61
Logical units of work

extending 180
LogonLogoffClass 42

M
mainframe CICS servers 168
maxconn 74, 105
Maximum buffer size configuration

setting 84
Maximum number of connection

manager threads configuration
setting 70

maximum number of connections 74,
105

Maximum number of information log
files configuration setting 75

Maximum number of Worker threads
configuration setting 71

Maximum requests configuration
setting 85

Maximum servers configuration
setting 85

MAXTHREADS parameter 176
MAXTHREADSTASK parameter 176
memory mapped tracing 206, 208, 247,

248
memory requirements 84
message queues 33
message queues on Linux 34
message queues, Solaris 34
messages, disabling the display of 209
messages, redirecting 210
migration

CICS Transaction Gateway API 18
Client API 18
compatibility 18, 19
ECI Version 2 applications 18
Java Client applications 18
resource adapters 19
statistics and applications 19
user exit programs 19

mode definitions, APPC 61
Mode name configuration setting 68
Model terminal definition configuration

setting 58, 67
monitoring 200, 265, 266, 267, 269, 270,

271, 272, 274, 277, 278, 279, 281, 282
Monitoring 7
monitoring and statistics 257

N
network protocol 53, 58, 67
Network Provider Interface 21
network security 162

about SSL 162
accountability (non-repudiation) 161

Index 329

network security (continued)
authentication 161
authorization 161
cipher suites 165
concepts 161
confidentiality 161
data integrity 161
digital certificates 164

maintaining 89
digital signatures 164
encryption 164
iKeyMan 89
JSSE 89
keys 164
KeyStores 89
keytool 89, 93
Secure Sockets Layer (SSL) 161
signer certificate 164
SSL 89
SSL (Secure Sockets Layer) 161
SSL and IPIC 98
SSL cipher suites 165
what is SSL? 162
Why use SSL? 161
X.509 protocol 164

notime 77
NPI 21

O
operating

Gateway daemon 193
Operating mode (local) 5
Operating mode (remote) 4
operating modes 4
operating systems 9
operation

CICS Transaction Gateway 195
options

cicscli command 210
cicsprnt command 222
cicsterm command 217
ctgadmin command 203

Overview 1, 2

P
Partner LU name configuration

setting 68
Password 37, 41
password expiry management

(PEM) 167
PEM (password expiry

management) 167
performance 173

avoiding
out of memory conditions 187

configuration 178
considerations 180
data compression 174
factors that affect performance 173
factors that improve

performance 173
improving 184

poor response times 184
indicators 173

performance (continued)
monitoring 183
other system factors 180
out of memory conditions 187
poor response times 184
statistics 184
tracing 183

performance problems 241
PICTG 4
Ping time frequency (ms) configuration

setting 78, 81
planning 9
Port configuration setting 53, 59, 77, 80,

104
Port for local administration

configuration setting 74
Port number 77, 80, 104
Port sharing 6
PortNumber 37, 41
preparing for identity propagation 99
Preparing to install 21
prerequisites, scenario IPIC 126, 133
preset options

ctgstart command 193
Print command configuration setting 86
Print file configuration setting 86
print file, processing 217, 219
print terminal emulator, starting 219
printer terminal emulator characteristics,

defining 219
problem determination 225, 227, 234,

235, 236, 238, 241, 242, 243, 254, 255
access denied exception 237
APING utility 228
application tracing 253
attempted connection to CICS on

wrong TCP/IP port 235
CCIN or CTIN transactions not

recognized 234
cicsterm command fails 237
cicsterm fails to connect to the CICS

server 232
code page problem 242
configuration problems 233
CPMI 241
CPMI task or transaction has locked

in CICS 241
CTG6651E 237
CTG9631E 238
dealing with problems 229
DFHIS1027 238
Gateway daemon fails to shut

down 231
Gateway daemon tracing 245
Gateway startup on 64-bit Linux 230
ICH4081 239
identity propagation login module not

enabled 239
Identity propagation not

supported 238
install fail due to product component

already running 229
install fail when using AIX

WPARs 229
insufficient thread memory 240
IRR012I 239
Java problems 243

problem determination (continued)
java.lang.OutOfMemory

exception 240
JNI tracing 252
JVM dumps and system dumps 227
key ring name not recognized 237
Linux compiler problem 230
MAXACTIVE 241
MAXTASKS 241
message location, format, code,

prefix 244
mirror transaction does not time

out 241
normal shut down is blocked by an

API call 232
preliminary checks 225
problems installing CICS Transaction

Gateway 229
problems starting clients and

terminals 232
problems when connecting to CICS

over TCP/IP 237
RACF mapping problem during

identity propagation 239
RACF problems 237
security violation during identity

propagation 238
ServiceException 229
shortage of IPIC resources 242
SSL encryption problems 237
SSL key ring problems 237
SSL problems 237
startup and shutdown problems 230
TCP/IP diagnostic commands 228
Telnet problems 244
tools 227
tracing

Client daemon 246
Gateway daemon 245

unable to acquire SNA
connection 234

VTAM buffer trace 228
work in progress preventing Gateway

daemon shutdown 231
WPAR problems 229

problem solving and support 254
Product integration 7
Product overview 1
products that support SNA 14
programming for CICS Transaction

Gateway 4
protocols 48
public key encryption 164
publications 295

Q
quiet 77

R
re authentication support 37
README file 9
ReadTimeout 42
reauthentication support 43
redirecting messages 210

330 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

redistributable components 24
remote and local modes 4
Remote mode 4
request flows, local and remote

mode 174
request monitoring exit options 201
request monitoring exits

configuration 259
Require Java Clients to use security

classes configuration setting 79, 82
requirements, hardware 9
resetting interval statistics, configuration

tool 263
resource adapters 36
resource shortages 242
restarting the Client daemon

immediately 206
restrictions 221

cicsterm 217
restrictions, using CICS servers 13
running in the background 196
runtime environment

64-bit 37

S
sample client trace 251
scenario 127, 134

configure SSL 138
scenario: configure SSL

configure SSL on the Gateway
daemon 143

prerequisites 139
testing the SSL scenario 144
verify that SSL is enabled on a

connection to the Gateway
daemon 143

scenario: configure SSL between CICS TG
and CICS

configure SSL client
authentication 149

configure SSL server authentication -
step 1 147

configure SSL server authentication -
step 2 148

configure the IPIC connection on
CICS 151

configure WebSphere Application
Server 153

prerequisites 146
test the SSL scenario 155
verify the connection 152

scenario: configure SSL on connection
between CICS TG local mode and CICS

overview 145
scenarios 125, 127, 128, 129, 130, 131,

132, 134, 135, 136, 138
security 61, 69

CICS connection security 159, 160,
161

IPIC connection security 159
security considerations 157
SNA connection security 160
TCP/IP connection security 161

Security 6
security realm 99, 101, 170
Send sessions configuration setting 53

Send TCP KeepAlive packets
configuration setting 55

Send TCP/IP KeepAlive packets
configuration setting 60

Server idle timeout (mins) configuration
setting 60, 69

Server name configuration setting 52,
57, 66

Server name remapping 6
server retry interval configuration

setting 54, 87
SERVER section of configuration file 119
Server side security 6
ServerName 37, 41
servers

application 13
servers, listing 209
ServerSecurity 37, 41
service 196
setting the Gateway trace 197
shortcut keys 300
sign-on capability of a terminal 168
sign-on capability of a terminal,

specifying 168
SignonType 42
SNA 14

configuring 61
SNA and TCP/IP server connections 47
SNA error log default locations 245
SO_LINGER setting configuration

setting 79, 81
SocketConnectTimeout 37, 41
specify which JVM to use 31
specifying ctgstart override options 193
SSL

client authentication 162
server authentication 162
SSL handshake 162
X.509 certificate 162

SSL encryption 164
SSL handshake failure 238
SSL not required 236
SSL protocol 116
SSL protocol settings 80
stack 111
start Gateway daemon with override

options 193
starting a 3270 print terminal

emulator 219
starting a 3270 terminal emulator 217
starting and stopping 196
starting CICS Transaction Gateway 191
Statistical data 7
statistics 200, 259, 265, 266, 267, 269,

270, 271, 272, 274, 277, 278, 279, 281, 282
Statistics 7, 105
Statistics and monitoring, differences 7
Statistics API port 103
Statistics API port configuration

setting 103
statistics API protocol 117
statistics configuration 261
Statistics End of Day time (HHMMSS)

configuration setting 105
Statistics Interval (HHMMSS)

configuration setting 105
statistics requests 103

statistics, system setup 262
stopping 195
stopping a terminal emulator 216
stopping the CICS Transaction

Gateway 191
support for Java base classes JEE

application servers 13
supported configurations 170
supported JEE application servers 13
symmetric keys 164
Sysplex recovery 6

T
Target CICS APPLID 54
TCP protocol 116
TCP protocol settings 77
TCP/IP (Transmission Control

Protocol/Internet Protocol) 55
TCP/IP port number 77, 80, 104
terminal emulator characteristics,

defining 217
terminal emulator, starting 217
terminal emulator, stopping 216
Terminal exit configuration setting 85
testing your scenario 130, 136
timeout 42
Timeout 78, 80, 104
Timeout for in-progress requests to

complete configuration setting 73
timing information 77
TLS 164
TLS (Transport Layer Security) 164
Tooling 7
tools, application development 14
topologies 4
TPNName 37
Trace configuration setting 112
trace data blocks, maximum size 110
trace entries, format 250
trace settings 109
Trace settings

cicscli.bin 246
Configuration Tool 246

trace settings, applying 109
trace, wrapping 247
TraceLevel 37, 42
tracing

Client daemon 246
dynamic 197
Gateway daemon 197, 245
JNI 197
levels 253
query current trace settings 197

tracing, JNI 252
tracing, memory mapped 206, 208, 247,

248
trademarks 330
TranName 38
transaction management models 37
transaction programs (TP), APPC 61
transaction support 37, 43
Transmission Control Protocol/Internet

Protocol (TCP/IP) 55
Transport Layer Security (TLS) 164
truncationsize 110
trusted root key 164

Index 331

U
unicode data 294
uninstalling 23
UNIX System Services parameters

MAXTHREADS 176
MAXTHREADSTASK 176

uowvalidation 72
upgrade issues 30
upgrading 30
upgrading from Version 6 Release 0 30
upgrading from Version 7 Release 0 29
upgrading from Version 7.1 28
upgrading from Version 7.2 27
upgrading from Version 8 Release 0 27
use client authentication configuration

setting 82
Use only these ciphers configuration

setting 83
Use Partner LU alias name configuration

setting 68
Use upper case security configuration

setting 61, 69
Use Windows credentials for security 21
user exits, monitoring 257
User ID 41
Userid 39
using alternative code sets on AIX 32
using an alternative code set 33
using the APPLID to identify your CICS

TG 131, 138

V
Validate message qualifiers configuration

setting 72
Validate Units of Work configuration

setting 72

W
web browsers 11
what's new in CICS TG V8.1 ix
Windows secured environment 88
worker thread available timeout

configuration setting 73
Workload balancing 6
wrapping trace 247

X
X-Window System 24

332 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1998, 2011 333

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at http://www.ibm.com/
legal/copytrade.shtml.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

334 CICS Transaction Gateway for Multiplatforms V8.1: UNIX and Linux Administration

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Gateway
Version 8 Release 1
UNIX and Linux Administration

Publication No. SC34-7216-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7216-00

SC34-7216-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7216-00

	Contents
	About this information
	What's new in CICS Transaction Gateway V8.1
	Chapter 1. Overview
	CICS Transaction Gateway for Multiplatforms
	CICS Transaction Gateway Desktop Edition
	Application programming interfaces (APIs)
	Programming Guide
	Programming
	Deployment topologies
	Remote mode
	Local mode

	High availability
	Security
	Statistics and monitoring
	Tooling and product integration

	Chapter 2. Planning
	Hardware requirements
	Supported software
	Supported operating systems
	Web browsers
	Java support for the Gateway daemon
	Java support for Java Client applications
	Supported CICS servers
	Restrictions on CICS Transaction Server for iSeries

	Supported JEE application servers
	Java base classes in J2EE application servers

	Supported SNA communications products
	Supported compilers and application development tools
	GPL licence and copyright issues on Linux

	Virtualization
	Dynamic logical partitioning on AIX
	Which protocol can be used?
	Which API can be used?
	Compatibility
	Application compatibility
	Java client application compatibility
	C application compatibility
	Statistics application compatibility
	User exit program compatibility

	Resource adapter compatibility

	Code page support
	Server code page support
	DBCS multibyte characters

	Chapter 3. Installing
	Preparing to install CICS Transaction Gateway
	Location of product files
	Installing CICS Transaction Gateway
	Installing a supported JVM
	Uninstalling CICS Transaction Gateway
	Location of the installation logs
	Redistributable components
	Using X-Window System from a remote system

	Chapter 4. Upgrading
	Upgrading from Version 8 Release 0
	Upgrading from Version 7 Release 2
	Upgrading from Version 7 Release 1
	Upgrading from Version 7 Release 0
	Upgrading from Version 6 and earlier
	Upgrading from CICS Universal Client

	Chapter 5. Configuring
	Configuring the system environment
	Set the JVM
	Set the time
	Changing the system locale
	Using an alternative code set on AIX
	Using an alternative code set on other operating systems

	Configuring inter-process communication message queues
	Message queues on HP-UX
	Message queues on Linux
	Message queues on Solaris

	Environment variable reference

	Configuring a local mode topology
	Configuring a remote mode topology
	Configuring remote Client application environments
	Recommended Java options for the Solaris JVM

	Deploying CICS TG applications
	Deploying the CICS resource adapters
	64-bit runtime environments
	Transaction management models
	ECI resource adapter deployment parameters
	Deployment parameters for the EPI resource adapter

	Deploying ECI V2 and ESI V2 to remote systems
	Deploying .NET applications to remote systems

	Using the Configuration Tool
	Identification using APPLID
	Gateway APPLID
	Gateway APPLID qualifier
	IPIC server connections
	SNA and TCP/IP server connections

	Configuring CICS server connections
	Default server
	Configuring IPIC
	IP interconnectivity (IPIC)
	Verifying the TCP/IP installation
	Configuring IPIC on CICS Transaction Server for z/OS
	Configuring IPIC in local mode
	Configuring IPIC in remote mode
	Configuring an IPIC CICS Server definition

	Configuring TCP/IP
	Verifying the TCP/IP installation
	Configuring TCP/IP on CICS Transaction Server for z/OS
	Configuring a TCP/IP CICS Server definition

	Configuring SNA
	Overview of SNA configuration definitions
	Configuring IBM Communications Server for Linux
	Configuring for ATI
	Defining SNA connections on CICS Transaction Server for z/OS
	Configuring an SNA CICS Server definition

	Configuring Gateway daemon settings
	Gateway daemon resources
	Initial number of connection manager threads
	Maximum number of connection manager threads
	Initial number of worker threads
	Maximum number of worker threads
	Enable reading input from console
	ECI generic replies
	Validate Units of Work
	Validate message qualifiers
	Timeout for in-progress requests to complete
	Worker thread availability timeout
	Port for local administration
	Maximum number of connections

	Gateway daemon logging
	Log destinations
	Log file names
	Maximum file sizes
	Maximum number of files
	Log Client connections and disconnections
	Log CICS messages
	Display TCP/IP hostnames
	Timing information
	Console output

	TCP protocol settings
	Bind address
	Port
	Connection timeout (ms)
	Idle timeout (ms)
	Ping frequency interval (ms)
	Drop working connections
	SO_LINGER setting
	Require Java Clients to use security classes

	SSL protocol settings
	Bind address
	Port
	Connection timeout (ms)
	Idle timeout (ms)
	Ping frequency interval (ms)
	Drop working connections
	SO_LINGER setting
	Require Java Clients to use security classes
	Use client authentication
	Key ring file
	Key ring password
	Use only these ciphers

	Configuring Client daemon settings
	Maximum buffer size
	Terminal exit
	Maximum servers
	Maximum requests
	Print command
	Print file
	Code page identifier override
	Server retry interval (Client daemon connections to CICS)
	Client daemon logging
	Error and warning log file
	Information log file
	Log terminal installations and deletions

	Configuring SSL
	Creating and maintaining digital certificates
	Configuring server authentication with iKeyman
	Configuring client authentication with iKeyman
	Using keytool for certificate management
	Configuring your SSL server
	Configuring your SSL clients

	Gateway daemon SSL configuration
	Using hardware cryptography
	Using the SSL protocol
	SSL configuration for IPIC connections

	Configuring identity propagation
	Configuring identity propagation on CICS
	Configuring identity propagation on WebSphere Application Server
	Configuring identity propagation on RACF
	Configuring identity propagation for CICS Transaction Gateway

	Configuring high availability
	Configuring a CICS request exit

	Configuring monitoring and statistics
	Configuring the request monitoring exits for a Gateway daemon
	Configuring the request monitoring exits for Gateway classes
	Configuring statistics settings
	Statistics API protocol settings
	Statistics Interval (HHMMSS)
	Statistics End of Day time (HHMMSS)

	Configuring the terminal emulator
	Keyboard mapping for cicsterm
	Keyboard mapping file syntax
	The keyboard mapping file

	Customizing the screen colors for cicsterm
	Color mapping syntax
	The color mapping file

	Configuring trace settings
	Gateway trace file
	Gateway trace file wrap size (KB)
	Data byte offset in trace data
	Maximum size of trace data blocks
	Exception stack tracing
	Client trace file
	Client trace file wrap size (KB)
	Client trace components
	Starting JNI trace

	Configuration parameter reference
	The configuration file
	PRODUCT section of the configuration file
	GATEWAY section of the configuration file
	TCP protocol parameters
	SSL protocol parameters
	Statistics API protocol parameters

	CLIENT section of the configuration file
	IPICSERVER section of the configuration file
	SERVER section of the configuration file
	DRIVER section of the configuration file

	Summary of environment variables
	Testing your configuration
	JCA resource adapter installation verification test (IVT)
	Prerequisites for running the JCA IVT
	Deploying and configuring the JCA IVT
	Running the JCA IVT

	Using the sample programs to check your configuration

	Chapter 6. Scenarios
	Sample files
	Configuring a secure autoinstalled IPIC connection (SC01)
	Prerequisites
	Configuring the IPIC server on CICS TG
	Configuring the IPCONN autoinstall user program DFHISCIP on CICS TS
	Configuring the TCPIPSERVICE on CICS TS
	Configuring the IPCONN template on CICS TS
	Testing your scenario
	Optional: using the APPLID to identify your CICS TG

	Configuring a secure predefined IPIC connection (SC02)
	Prerequisites
	Configuring the IPIC server on CICS TG
	Configuring the TCPIPService on CICS TS
	Configuring the IPCONN on CICS TS
	Testing your scenario
	Optional: specifying CICSAPPLID and CICSAPPLIDQUALIFIER in the IPICSERVER definition

	Configuring SSL between a Java client and CICS TG (SC06)
	Prerequisites for the SSL scenario
	Configuring SSL server authentication
	Configuring SSL client authentication (optional)
	Configuring the Gateway daemon for SSL
	Verifying that SSL is enabled on the connection
	Testing the SSL scenario

	Configuring SSL between CICS TG and CICS (SC07)
	Prerequisites for the SSL scenario
	Configuring SSL server authentication on the CICS server
	Configuring SSL server authentication on the client
	Configuring SSL client authentication
	Configuring the IPIC connection on CICS
	Verifying the connection
	Configuring WebSphere Application Server
	Testing the SSL scenario

	Chapter 7. Security
	Security considerations
	CICS connection security
	IPIC connection security
	SNA connection security
	TCP/IP connection security

	Gateway connection security and SSL
	Why use SSL?
	What is SSL?
	How an SSL connection is established

	Client security overview
	Default connection settings
	EPI terminal security
	Changing the user ID and password
	Password expiry management
	Sign-on capable and sign-on incapable terminals
	Specifying the sign-on capability of a terminal

	Identity propagation
	Benefits of using identity propagation
	Configurations that support identity propagation
	Precedence of distributed identities over asserted user IDs

	Chapter 8. Performance
	Performance indicators and factors
	Data compression
	Request flows
	Threading model
	Tuning your configuration parameters
	Java considerations
	Other system factors
	Performance considerations for heavy IPIC workloads
	Performance considerations with large containers
	Tracing and performance
	Performance monitoring tools
	Statistics and performance assessment
	Investigating poor response times
	Slow transaction response times in CICS
	Worker thread queuing in the Gateway daemon
	I/O errors during connection to the Gateway daemon
	Constraints in the network between the remote client and the Gateway daemon
	Constraints in the network between CICS Transaction Gateway and CICS
	JVM stress causing poor performance in the Gateway daemon

	Avoiding out of memory conditions

	Chapter 9. High availability
	CICS request exit

	Chapter 10. Operating
	Starting CICS Transaction Gateway
	Stopping CICS Transaction Gateway
	Changing the system time
	Operating the Gateway daemon
	Starting and stopping the Gateway daemon
	Starting the Gateway daemon with preset options
	Starting the Gateway daemon with override options
	Stopping the Gateway daemon

	Running the Gateway daemon as a background process
	Gateway daemon administration
	Setting the Gateway trace
	Setting the JNI trace
	Querying trace settings
	Trace options
	Dumping diagnostic information
	Querying statistics
	Request monitoring exit control
	CICS request exit control
	Shutting down the Gateway daemon
	Viewing message help
	Getting help

	ctgadmin command reference

	Operating the Client daemon
	Administering the Client daemon
	Starting the Client daemon
	Starting server connections
	Shutting down the Client daemon
	Restarting the Client daemon normally
	Restarting the Client daemon immediately
	Starting client tracing
	Specifying the trace components
	Stopping client tracing
	Security considerations for trace and log files
	Setting security for server connections
	Displaying the version of CICS Transaction Gateway
	Controlling cicscli command messages
	Listing the connected servers
	Destination for error messages

	cicscli command reference

	Chapter 11. 3270 terminal emulation and printing
	cicsterm emulator
	Using cicsterm
	cicsterm options
	Stopping a terminal emulator
	cicsterm and user exits
	cicsterm and RETURN TRANSID IMMEDIATE
	Using clients for X-Window System
	Keyboard mapping in cicsterm
	cicsterm restrictions

	cicsterm command reference
	cicsprnt emulator
	Using cicsprnt
	cicsprnt options
	cicsprnt and user exits
	cicsprnt and RETURN TRANSID IMMEDIATE
	cicsprnt restrictions

	cicsprnt command reference

	Chapter 12. Resolving problems
	Introduction to problem determination
	Preliminary checks
	What to do next
	Problem determination tools
	Java debug tools
	JVM dump and system dump
	VTAM buffer trace
	APING utility
	TCP/IP diagnostic commands

	Dealing with problems
	Installation problems
	Installation fails when using AIX WPARs
	Installation fails if a component is already running

	Startup and shutdown problems
	Gateway startup problem on 64-bit Linux
	Linux compiler problem
	Gateway daemon fails to shut down
	Normal shutdown is blocked by an API call
	Problems starting clients and terminals

	Configuration problems
	Problems running the Configuration Tool
	Problems with Client applications

	CICS connection problems
	Unable to connect over SNA
	CCIN or CTIN transactions not recognized
	IPIC connection problems
	IPIC connection to CICS fails
	TCP/IP connection problems

	Security problems
	SSL problems
	Identity propagation not supported
	Security violation during identity propagation
	RACF mapping problem during identity propagation
	Identity propagation login module not enabled

	Memory problems
	Memory use increases over time

	Performance problems
	Client daemon stops when CICS task limit is reached
	Mirror transaction does not time out
	Corrupted data when using channels and containers

	Resource problems
	Shortage of IPIC resources on the CICS server

	Java problems
	“Access denied” security exception

	General information about messages
	Telnet clients
	SNA error log

	Tracing
	Gateway daemon tracing
	Gateway daemon trace levels

	Client daemon tracing
	Wrapping the Client trace
	Memory mapped tracing
	Formatting the binary trace file
	Format of trace entries
	Sample Client trace

	JNI tracing
	Tracing Java Client applications
	JEE Tracing
	Tracing issues when serializing Connection Factories

	Problem solving and support
	Searching knowledge bases
	Contacting IBM Software Support

	Chapter 13. Monitoring and statistics
	Request monitoring exits
	Request monitoring exits configuration
	Configuring the request monitoring exits for a Gateway daemon

	Statistics
	Statistics configuration
	Setting up your system for statistics
	Interval statistics
	Interval timing patterns

	Displaying statistics
	Displaying all available statistics
	Selecting the statistics to display
	Listing available resource groups
	Listing all available statistical IDs
	Listing statistical IDs for selected resource groups
	Getting help on statistics

	Statistics resource groups
	List of statistics

	Using the statistics
	Statistics for tuning and capacity planning
	Statistics for diagnosing system problems
	Statistics for the analysis of resource usage
	Statistics for throughput analysis

	CICS TG plug-in for CICS Explorer

	Appendix. Data conversion
	Supported conversions
	Arabic
	Baltic Rim
	Cyrillic
	Estonian
	Greek
	Hebrew
	Japanese
	Korean
	Latin-1 and Latin-9
	Latin-2
	Latin-5
	Simplified Chinese
	Traditional Chinese
	Vietnamese
	Unicode data

	Product library and related literature
	CICS Transaction Gateway books
	Sample configuration documents
	IBM Redbooks publications
	Other useful information
	CICS Transaction Server publications
	APPC-related publications
	IBM products
	Systems Network Architecture (SNA)

	Accessibility
	Installation
	Configuration Tool accessibility
	Components
	Keys
	Customizing colors and fonts

	Starting the Gateway daemon
	cicsterm

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

