
1

Paper SAS3370-2019

Unlocking Your Data With SAS/ACCESS® Interface to
Salesforce

Kevin Kantesaria, Mason Morris, SAS Institute Inc., Cary, NC

ABSTRACT
Are you a SAS® programmer searching for insights within Salesforce data? Accessing and
analyzing your information is now easier than ever before with the all-new SAS/ACCESS®
Interface to Salesforce. This paper provides you with an overview of how to explore
Salesforce objects as if they were native SAS data sets. Learn how to directly execute the
SOQL language used by Salesforce by using the SQL procedure, and take advantage of the
advanced features of implicit SQL to let SAS do some of the work for you. With the help of
SAS/ACCESS Interface to Salesforce, you’ll begin to understand your data in no time!

INTRODUCTION
SAS/ ACCESS to Salesforce enables you to connect to a Salesforce organization with
minimal configuration steps and no additional software. This paper will guide you through
the configuration steps to connect to Salesforce and will then demonstrate how to navigate
your data and work with it natively from SAS.

This paper will use screenshots in the Salesforce Lightning web interface, though the same
steps can be accomplished using Salesforce Classic.

ACCESS TO SALESFORCE: GETTING STARTED

CONNECTING
Before you can begin, your Salesforce administrator will need to enable API permissions for
your Salesforce user's profile. This allows SAS to act as a client that will communicate
directly with Salesforce. For optimum security, SAS recommends that your administrator
create an isolated profile and associated user account for connecting. This will allow for
more granular control over the account's security.

Figure 1: Administrative Permisssions for a User Profile
If your administrator has enabled two-factor authentication, you will also need a "security
token" to connect. When making a LIBNAME connection in SAS, you will need to append this
string of characters directly to the end of your password. You cannot view your security
token from the dashboard. Therefore, if you do not already have it at hand, you will need to

2

reset it. A new security token will then be emailed to you. You can do this by first going to
your user settings and then locating the "Reset My Security Token" link.

Figure 2: Reset Security Tokens
Once you have received your security token, append it directly to the end of your password
(no space between the two) when creating a LIBNAME connection.

SECURITY FEATURES
When you make a connection using SAS/ACCESS to Salesforce without any non-required
LIBNAME options, the Salesforce engine will use a secure TLS connection with server-side
authentication. This means that your session data will be encrypted over the wire, and SAS
will verify the identify of Salesforce using a public certificate signed by a code authority.

If you want a more secure connection, SAS/ ACCESS to Salesforce also supports mutual
authentication. Once enabled, this feature allows you to upload your own certificate signed
by a code authority to Salesforce. In addition to SAS verifying Salesforce's public certificate,
Salesforce will then verify your identity as well on each connection and subsequent query.

There are several steps you will need to take to correctly configure mutual authentication.
To begin, you must generate a Certificate Signing Request (CSR) for the server on which
SAS will run. Once an external signer on Salesforce's list of trusted root certificate
authorities has signed your certificate, you will need to import the certificate and key into
environment. Let's walk through these steps.

Generating a Certificate for Mutual Authentication
To generate a certificate for mutual authentication:

1. Create a Certificate Signing Request (CSR) for the server that needs to be secured. Digicert
provides a wizard that you can use for generating an OpenSSL command, which will then need to
be run on the server to be secured (https://www.digicert.com/easy-csr/openssl.htm). You should
now have a .csr file and a private .key file. It is very important to keep the private key in a
secured location. If you lose the key, you must restart at step 1.

3

 openssl req -new -newkey rsa:2048 -nodes -out <request.csr> -keyout
 <private.key> -subj "/C=US/ST=North Carolina/L=Cary/O=Example Institute
 Inc./CN=example.example.com"

2. Present the CSR to an external signer on Salesforce's list of trusted root certificate authorities
(https://cs32.salesforce.com/cacerts.jsp). You should get back a signed certificate, which is in .p7b
or .pem format. If the certificate is in .p7b format, it should be converted to a .pem file, which you
can do with this command:

 openssl pkcs7 -print_certs -in <certificate.p7b> -out <certificate.pem>

3. Make a copy of the .pem file and change the extension from ".pem" to ".crt". This is the certificate
file you will upload to Salesforce.

4. Create a keystore in PKCS format using the certificate and private key. You can do so by executing
this command:

 openssl pkcs12 -export -out <access_keystore.p12> -inkey <private.key>
 -in <certificate.crt>

You will now have three important files:
• private.key - the SAS server's private key
• certificate.crt - the certificate in a format Salesforce recognizes
• access_keystore.p12 - an encrypted file containing the private key and certificate

Configuring the Salesforce Instance for Mutual Authentication via the Web
Interface
To configure the Salesforce instance for mutual authentication via the Web interface:

1. As an administrator, enter the "Setup" area of the Salesforce website. Under the
sidebar heading "Security," locate "Certificate and Key Management." find the sub-
section titled "Mutual Authentication Certificates." NOTE: If you do not see this sub-
section, contact your Salesforce administrator. This functionality must be enabled by
Salesforce, usually through a request in their support system

Figure 3: Certificate and Key Management

4

2. Upload the signed .crt file to the "Mutual Authentication Certificates" sub-table. Give it a label
and unique name (if these fields are not auto-populated). Click "Save."

Figure 4: Mutual Authentication Certificate

3. You will need a separate profile in Salesforce for the user account that will access Salesforce with
mutual authentication. That profile should have the permissions "API Only" and "Enforce SSL/ TLS
Mutual Authentication" enabled.

Configuring SAS (UNIX) for Mutual Authentication
To configure SAS (UNIX) for mutual authentication:

1. Copy the .p12 keystore file to the server running SAS. Keep it in a secure location with Read
permissions open for the SAS user.

2. When making a LIBNAME connection to SAS, use the option MUTUAL_AUTH=yes. Provide the
location of your keystore containing a certificate and the key. You can also provide a keystore
password if you created yours with one.

libname x sasioslf USER="" PASS="myPass" MUTUAL_AUTH=yes
CERT_PATH="<keystore.p12>" CERT_PASS="oPeNsEsAmE";

Configuring SAS (Windows) for Mutual Authentication
To configure SAS (Windows) for mutual authentication:

1. Copy the .p12 keystore file to the server running SAS.
2. Follow SAS documentation

(http://support.sas.com/documentation/cdl/en/secref/69831/HTML/default/viewer.htm#n12036i
ntelplatform00install.htm) to add the keystore to your Windows Certificate Manager. When
presented with the Certificate Import Wizard, be sure to select "Current User" as the "Store
Location," and select the "Personal" certificate store.

5

Figure 5: Certificate Import Wizard

MONITORING API USAGE
Salesforce limits your organization’s API usage. SAS is limited in the number of times that it
can make requests to Salesforce, including requests for data fetches. SAS has optimized
some queries to work around this, but it is important to understand these limitations to
make the best use of your API allocation.

If you want to receive detailed notes in your SAS log explaining API usage against your
organization during execution of SAS statements, you can use the API_TRACE LIBNAME
option. Enabling this option might cause a small number of extra API calls to be made, and
it will result in verbose logging that might slow down SAS processing.

libname x sasioslf user=”” pass=”” API_TRACE=yes;

proc sql;
 SELECT Name, Description, Industry FROM x.Account;
quit;

NOTE: Writing HTML Body file: sashtml.htm
NOTE: API Trace: Received statement off connection. Usage: 51.4%,
41103 calls used out of 80000 allocated.
NOTE: API Trace: Table existence check. Usage: 51.4%, 41104 calls
used out of 80000 allocated.
NOTE: PROCEDURE SQL used (Total process time):
 real time 8.00 seconds
 cpu time 0.78 seconds

Salesforce only provides SAS with information about the overall organization usage, so this
reporting includes usage for any processes connecting to Salesforce at the time the SAS job
is running. If another process is also connected to the same Salesforce organization, the API
calls it consumes will also count toward the reported usage. If you would like to work

6

around this, consider using a Salesforce sandbox instance while isolating the API usage
solely to SAS.

SQL Processing in SAS
When you execute ANSI SQL using PROC SQL or PROC FEDSQL, the query is parsed and
mapped to the corresponding Salesforce SOQL(Salesforce Object Query Language). If an
equivalent match in the Salesforce SOQL language can be found, SAS will take advantage of
it by transforming your query to implicitly pass it down to Salesforce. Here’s a simple
example:

proc sql;
 SELECT COUNT(*) FROM x.Account;
quit;

SAS recognizes that the COUNT() syntax is supported by SOQL, but that the wildcard
symbol is not. SAS will transform your query into an equivalent SOQL statement, “SELECT
COUNT(Id) FROM Account,” and pass it to the database, which returns the result.

The following aggregate functions will be passed implicitly to Salesforce, as they are
supported natively by the SOQL syntax:

AVG(fieldName)
COUNT(), COUNT(*), and COUNT(fieldName)
COUNT(DISTINCT fieldName)
MIN(fieldName)
MAX(fieldName)
SUM(fieldName)

In addition, the following clauses will be implicitly passed to Salesforce:

LIMIT
GROUP BY
WHERE
ORDER BY
OFFSET

Explicit Pass-Through
With explicit pass-through, you can pass SOQL statements directly to Salesforce and
materialize the results natively in SAS. For some queries, this can be the most conservative
method of execution with respect to API consumption. Queries submitted in this way must
match the SOQL syntax guidelines (https://developer.salesforce.com/docs/atlas.en-
us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select.htm).

There are several ways to execute SQL directly using SAS/ACCESS to Salesforce. If you’ve
defined a LIBNAME, for example x, you can use this syntax:

proc sql;
connect using x;
select * from connection to x (<SOQL with data returned>);
disconnect from x;
quit;

proc fedsql iptrace;
select * from connection to x (<SOQL with data returned>);

7

execute (<SOQL without data returned>);
quit;

If you prefer to use a connection string, you can use this syntax:

proc fedsql iptrace nolibs
prompt=”DRIVER=SQL;CONOPTS=(DRIVER=SFORCE;UID=<uid>;PWD=<pwd>)”;
quit;

MAPPING SALESFORCE BEHAVIORS TO SAS

HANDLING CUSTOM OBJECTS AND FIELDS
Salesforce includes several pre-defined “standard” objects with pre-defined fields. It also
enables users to create custom fields and custom objects. These user-defined objects and
fields are suffixed with “__c”. Traditionally, the SOQL syntax requires users to use this suffix
when referencing any custom objects or tables.

As an added convenience, SAS enables users to reference tables and objects without a
suffix. This behavior can be controlled using the “NATIVE_NAMES” LIBNAME option, which,
when set to “yes”, emulates the SOQL syntax and requires the “__c” suffix. By default, it is
set to “no”, which means you do not need to use the suffix.

NOTE: If you are using explicit SQL to pass SOQL directly to Salesforce, you will need to
fully qualify any custom objects or fields by including the suffix “__c”.

DATA TYPES
SAS handles each of the Salesforce data types by converting them to the closest equivalent
in SAS. If you are using PROC SQL or PROC FEDSQL, your data will be read in using one of
the following conversions:

Salesforce PROC SQL PROC FEDSQL

date DATE DATE

byte DOUBLE TINYINT

address CHAR VARCHAR

base64 CHAR VARCHAR

encryptedstring CHAR VARCHAR

location CHAR VARCHAR

currency DOUBLE DOUBLE

dateTime DATETIME TIMESTAMP

email CHAR VARCHAR

masterrecord CHAR VARCHAR

reference CHAR VARCHAR

multipicklist CHAR VARCHAR

picklist CHAR VARCHAR

8

percent DOUBLE DOUBLE

phone CHAR VARCHAR

combobox CHAR VARCHAR

anyType CHAR VARCHAR

ID CHAR VARCHAR

DataCategoryGroupReference CHAR VARCHAR

double DOUBLE DOUBLE

int DOUBLE INTEGER

JunctionIdList CHAR VARCHAR

textarea CHAR VARCHAR

string CHAR VARCHAR

time TIME TIME

Boolean DOUBLE TINYINT

url CHAR VARCHAR

Table 1: Salesforce Data Type Conversion

SALESFORCE METADATA
Salesforce objects automatically include some fields that contain metadata you might
consider extraneous, especially when creating reports or graphs. SAS has identified many of
these fields, including system fields, and hides them from the default view. If you want to
disable this filtering, you can use the SHOW_METADATA LIBNAME option. This can be
especially useful if you are using SAS in conjunction with the Salesforce Apex language, or if
you are interested in metadata regarding table access or creation and modification
information. The following columns are considered metadata in this first release of SAS/
ACCESS to Salesforce:

CreatedBy
CreatedById
CreatedDate
CurrencyIsoCode
Id
IsDeleted
LastActivityDate
LastModifiedById
LastModifiedDate
LastReferencedDate
LastViewedDate
MasterRecordId
OwnerId
RecordTypeId
SystemModstamp

9

SOFT DELETES
In Salesforce, when a record is deleted, it is not immediately removed from the object.
Instead, a field named "IsDeleted" is set to 1, and the data is hidden. After 15 days, it will
be removed.

If you want to view soft-deleted data, SAS has a LIBNAME option named “SHOW_DELETED”
to show these records:
 libname x sasioslf user="" pass="" show_deleted=yes;

After you run the LIBNAME statement, you will still see columns that are supposed to be
deleted. For example, in the Accounts object, there is a deleted record with the value "SAS
Institute Inc." However, When you run PROC PRINT, you will still see the deleted record.
You will also have access to the metadata column IsDeleted:
 proc print data=x.Account;

 run;

Figure 6: Object Shows Deleted Record With IsDeleted Field Set to 1

Although the first observation was deleted, it is displayed with this option. This can be
useful to quickly recover your data using SAS instead of navigating the Salesforce recycle
bin.

WILDCARD SELECTS
Salesforce does not support wildcard SELECT statements with its SOQL syntax, but SAS
emulates the behavior in both native SQL and PROC SQL. When SAS identifies a query with
a wildcard SELECT, it will identify the relevant Salesforce object and expand the query to
include the full list of fields in it, depending on usage of the SHOW_METADATA option.

This can result in additional API usage for your organization. If you are trying to minimize
this, be sure to narrow your queries down by specifying exact column names.

PUTTING EVERYTHING TOGETHER
Once you have a Salesforce account, you can now connect to Salesforce using SAS. For
example, you can create a LIBNAME connection using the following:

libname x sasioslf user=”<username>” pass=”<password>”;

Remember that when you use your password, you will need to append the API token to the
end of your password.

Now you can use a sample table, Account, to quickly create a chart in SAS.

10

You can quickly see the benefits of using SAS/ACCESS to Salesforce in being able to use a
wildcard statement in SELECT. After submitting the following statements, the data shown in
Figure 8 is displayed:

proc sql;
 select * from x.Account;
quit;

Figure 8: PROC SQL Results Using SELECT *

There are many more columns in this table, but they are irrelevant for now.

Now we can do whatever SAS supports with the data. Here a simple pie chart is created
showing employee numbers for the two accounts.

proc gchart data=x.Account;
 pie Name / sumvar=NumberOfEmployees Coutline=black;
run;quit;

Figure 9: Pie Chart Showing Employee Numbers
As of now, SOQL is supported with SAS. To submit direct SOQL statements, you can use
FedSQL.

Below is an example of an inner join using FedSQL to explicitly pass-through some SOQL to
Salesforce.
proc fedsql;
select * from connection to x (SELECT Account.Name, (SELECT Contact.Name
FROM contacts) FROM Account);

quit;

11

As you can see, the SOQL statement is included in the parenthesis after the “x”. Here are
what the results look like in the Salesforce Developer Console:

Figure 10: Results Shown in Salesforce Developer Console

And here is what it looks like in SAS:

Figure 11: Results Shown in SAS

Once the data is in SAS, one option is to treat the data relationally if you don’t want to
create relationships in Salesforce for your objects. For example, if the Account and Contact
tables both had the same Names, you could use the following code to create an inner join:
proc sql;
 select * from x.Account, x.Contact
 where Account.Name=Contact.Name;
quit;

CONCLUSION
The SAS/ACCESS Interface to Salesforce is a versatile product that lets you interact with
Salesforce using the traditional SAS methods and mechanisms. Now you can manipulate
and analyze your data using the traditional SOQL methods and the full suite of procedures
and applications that SAS offers. This paper highlights the biggest quirks and advantages
that apply to SAS/ACCESS Interface to Salesforce that will allow you to comfortably connect
with your data. For a bigger picture and more details, be sure to read the SAS/ACCESS
Interface to Salesforce documentation for a more comprehensive guide.

12

REFERENCES
Salesforce.com Inc. April 2018. SOQL SELECT Syntax.Available
https://developer.salesforce.com/docs/atlas.en-
us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select.htm.

Patterson, Pat. “Salesforce Mutual Authentication – Part 1: The Basics”. Available
https://blog.superpat.com/2018/01/25/salesforce-mutual-authentication-part-1-the-
basics/. Last modified January 25, 2018. Accessed February 28, 2019.

Pidikiti Praneel. ” Mutual Authentification Salesforce”. Available
https://www.aboveandbeyondcloud.com/mutual-authentification-salesforce/. Last Modified
June 10, 2015. Accessed February 28, 2019.

 ACKNOWLEDGMENTS
The authors extend their thanks and gratitude to everyone who contributed in the
development, support, documentation, and enablement of SAS/ ACCESS Interface to
Salesforce. In addition, they would like to extend thanks to the following individuals who
provided their time and expertise for this paper:

Aparna Amin, SAS Institute Inc.

Salman Maher, SAS Institute Inc.

Joel Odom, SAS Institute Inc.

Bill Oliver, SAS Institute Inc.

Julia Schelly, SAS Institute Inc.

Joe Schluter, SAS Institute Inc.

Julian Taylor, SAS Institute Inc.

Brad Thompson, SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Mason Morris
500 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Mason.Morris@sas.com
http://www.sas.com

Kevin Kantesaria
500 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Kevin.Kantesaria@sas.com
http://www.sas.com

13

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

