
1

Unreal Engine 4: Mobile Graphics on ARM

CPU and GPU Architecture

Jesse Barker, Principal Software Engineer, ARM

Marius Bjørge, Graphics Research Engineer, ARM

Niklas “Smedis” Smedberg, Senior Engine Programmer, Epic Games

Brad Grantham, Principal Software Engineer, ARM

Graham Hazel, Senior Product Manager, Geomerics

2

 Programming for ARM®v8-A Technology

 ARM Mali™ GPU Architecture

 Hardware evolution

 The tri-pipe architecture

 Exposing the tile

 Unreal Engine 4 Case Study: Moon Temple

 Enlighten in Unreal Engine 4

Agenda

3

Programming for ARMv8-A Technology

Jesse Barker

Principal Software Engineer, ARM

4

ARM Architecture Evolution

ARM7TDMI ARM1176 Cortex®-A9 Cortex-A57 ARM926EJ

ARMv4

1995 2005 2015

Virtualization

5

 AArch32 maintains full-compatibility with

ARMv7 while addressing emerging

software trends

 AArch32: evolution of 32-bit

 Enhanced floating point support (IEE754-2008)

 Ideal for concurrent programming

 C11, C++ 11, Java5

 More efficient, high-performance thread-safe

software

 Cryptography support (AES, Sha-1, Sha-256)

ARMv8-A AArch32

 Maintaining compatibility

ARMv8-A ARMv7-A

ARMv7-A Compatible

A32+T32 A64

CRYPTO

Scalar FP

Advanced SIMD

AArch32 AArch64

Applications

and software

6

Design Why it Matters

64-bit architecture Efficient access to large datasets

Increased number and size of general

purpose registers
Gains in performance and code efficiency

Large Virtual Address Space
1. Applications not limited to 4GB memory

2. Large memory mapped files handled efficiently

Efficient 32-bit/64-bit architecture
1. Common software architecture (phone, tablet, clamshell)

2. A single software model across the entire portfolio

Double the number and size of

NEON™ registers
Enhanced capacity of SIMD multimedia engine

Cryptography support
1. Over10x software encryption performance

2. New security models for consumer and enterprise

ARMv8-A Architecture
Designed for efficiency

7

AArch64 Performance Over AArch32

 >20% increase on several key

workloads

 Most workloads increase,

some slow down
 Slowdowns are often outliers like

mcf in spec2k with unrealistic data

access patterns

 Overall trend is increasing

performance with 64b
 Will increase further as compilers

mature

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

ARMv8 AArch64 performance vs. AArch32

Cortex-A53

Cortex-A57

8

In the core

ARM NEON
tech/SIMD

API-level
parallelization

OpenMP®,
Renderscript,

OpenCL™, etc.

Multi-thread
programming

Never easy, but
increasingly
necessary

Multi-core ARM big.LITTLE™ Technology
Taking advantage of parallelism

 Platform trending toward multi-cores

 Single thread performance improvements diminishing

 Thermally constrained use cases are now commonplace

 Production differentiation via different CPU combinations

 Modern OSs are supporting multi-core

How to exploit parallelism….

9

 Low cost development platforms available from 96boards.org

 Huge growth in share of 64-bit platforms in smartphone and

tablets in 2015

ARMv8-A and 64-bit Everywhere
Mega trend is the move to ARMv8-A and AARCH64

10

Mali GPU Architecture

Marius Bjørge

Graphics Research Engineer, ARM

11

HARDWARE EVOLUTION
The Midgard Architecture

12

Driving for Efficiency

 The Mali GPU roadmap

13

ARM® Mali™-T880 GPU

Memory Management Unit

Inter-Core Task Management

L2 Cache L2 Cache

AMBA®4 ACE-Lite AMBA®4 ACE-Lite

Advanced Tiling Unit

L2 Cache

AMBA®4 ACE

MMem

Load/Store
Pipeline

Thread Issue

Thread Completion

Arithmetic
Pipeline

Texture
Pipeline

Arithmetic
Pipeline

Arithmetic
Pipeline

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

Mali GPU High-Level Architecture
A breakdown of the Mali-T880

Addresses

translation and

protection

Configurable

cache shared

among all

shader cores

Up to sixteen

shader cores

Distributes

tasks to shader

cores

Maintains

cache

coherency

between

different

processors

Efficient

mapping of

geometry to tiles

14

THE TRI-PIPE ARCHITECTURE
The Midgard Architecture

15

Blender
Tile Buffers

Thread Execution – “Tri Pipe”

Shader Core Architecture

Texturing

Arith / LUT /

Branch

Load / Store /

Varying

Thread Issue

Thread Completion

Arith / LUT /

Branch

R
e

g
 f

il
e

R
e

g
 f

il
e

Compute

Thread

Creator

Rasterizer

Early Z

Triangle

Setup
Unit

Tiler Data

Structures

Tile Buffers
Frame

Buffer

Late Z

Compute

Data and
Results

Z/Stencil

Buffer

Textures

16

Tri-pipe Architecture

 Unified shader architecture

 Fragment and vertex shaders

 Compute shaders

 Very high throughput graphics

 Multiple parallel pipelines

 Two low-latency arithmetic pipes

 256 simultaneous threads

 Low-latency for computation

Texturing

Arith / LUT /

Branch

Load / Store /

Varying

Thread Issue

Thread Completion

Arith / LUT /

Branch

R
e

g
 f

il
e

R
e

g
 f

il
e

17

EXPOSING THE TILE
The Midgard Architecture

18

The Tilebuffer

 Mali-T600/T700/T800 Series GPU

 Tile-based rendering

 16x16 tile size

 Fast on-chip memory

 16 bytes of per-pixel color data

 Raw bit access

 More recent GPU architectures allow

more flexible tile sizes and open up

more per-pixel color data

Tilebuffer pixel

Depth Stencil

128-bit pixel data

Sample Sample

Sample Sample

19

 Shader Framebuffer Fetch

 Access previous fragment color, depth and stencil

 Programmable blending, soft particles, etc.

 Shader Pixel Local Storage (PLS)

Exposing the Tilebuffer

20

Pixel Local Storage (PLS)

 Exposed as EXT_shader_pixel_local_storage

 Per-pixel scratch memory available to fragment shaders

 Automatically discarded once a tile is fully processed

 No impact on external memory bandwidth

 Shader declares an interface block of PLS memory

 Re-interpret PLS between different passes

 Can have separate input and output views

 Independent of framebuffer format

21

Pixel Local Storage

__pixel_localEXT FragDataLocal

{

 layout(r32f) highp float_value;

 layout(r11f_g11f_b10f) mediump vec3 normal;

 layout(rgb10_a2) highp vec4 color;

 layout(rgba8ui) mediump uvec4 flags;

} pls;

 See the extension spec for more information!

 https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt

 http://malideveloper.arm.com

https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://malideveloper.arm.com/

22

Pixel Local Storage

 Rendering pipeline changes slightly when

PLS is enabled

 Writing to PLS bypasses blending

 Note

 Fragment order

 Fragment tests still apply

 PLS and color share the same memory

location

Memory

Position data

Varyings

Textures

Uniforms

Framebuffer

Tile execution

Primitive Setup

Rasterization

Fragment shading

Blending

Tilebuffer

PLS/color

Writeback

23

Why Pixel Local Storage?

 An alternative approach is to use multiple render targets (MRT) with framebuffer fetch

 …if the driver can prove that render targets are not used later, it can avoid the write-back

 PLS is more explicit than MRT

 Harder for the application to get it wrong

 Driver doesn’t have to make guesses

 PLS is more flexible

 Re-interpret PLS data between fragment shader invocations

 Not limited to OpenGL® ES 3.x framebuffer formats

24

Deferred Shading

 Popular technique in PC and console games

 Very memory bandwidth intensive

 Traditionally not a good fit for mobile

Diffuse (RGBA8) Depth (D32F) Normals (RGBA8)

25

Order Independent Transparency

 “Unsolved” problem

 Depth peeling

 Approximate approaches

 Multi-Layer Alpha Blending

 [Salvi et al, 2014]

 Adaptive Range

26

Pixel Local Storage

Opaque phase OIT phase

Fill gbuffer
Light

accumulation
Resolve Init OIT

Transparent

rendering

Resolve +

Tonemap

Pixel Local Storage

RGB10A2 RGB10A2 RGB16F RGB16F R32UI R32UI R32UI R32UI Color

At this point we change the layout

of the PLS

27

Performance Comparison of Approaches

100%

122%

100%

93%

0%

20%

40%

60%

80%

100%

120%

140%

MRT + AB PLS + AB PLS + Adaptive Range PLS + MLAB3

Relative performance

AB = Alpha Blending

MLAB3 = 3 layer Multi-Layer Alpha Blending

28

Unreal Engine 4

Niklas “Smedis” Smedberg

Senior Engine Programmer, Epic Games

Brad Grantham

Principal Software Engineer, ARM

29

Compress, Compress, Compress!

25

30

35

40

45

50

8 5.12 3.56 2 1.28 0.89

P
S

N
R

 (
d

B
)

Compression Rate (bpp)

 ASTC = Adaptive Scalable Texture Compression

 Texture compression standard developed by ARM, adopted by Khronos

 KHR_texture_compression_astc_ldr for OpenGL ES and Open GL®

 Increased quality and fidelity at low bit-rates

 Expansive range of input formats offers complete flexibility

 Choice of base format, 2D and 3D plus addition of HDR formats

30

Compression in the Pre-ASTC World

L

LA

X+Y

HDR L

RGB

XY+Z

RBGA

RGB+A

HDR X+Y

HDR RGB

HDR XY+Z

HDR RGBA

HDR RGB+A

1 2 3 4 5 6 7 8
Compressed bits/pixel

In
p
u
t

C
o
lo

r
Fo

rm
at

s

8

16

16

16

24

24

32

32

32

48

48

64

In
p
u
t

b
it
s/

p
ix

e
l

ETC, BC5

ETC, BC4

BC7

All Major Players

PVRTC PVRTC

ETC, BC1

BC6

ETC, BC2

BC3, BC7

31

ASTC Choices

L

LA

X+Y

HDR L

RGB

XY+Z

RBGA

RGB+A

HDR X+Y

HDR RGB

HDR XY+Z

HDR RGBA

HDR RGB+A

1 2 3 4 5 6 7 8
Compressed bits/pixel

In
p
u
t

C
o
lo

r
Fo

rm
at

s

16

24

24

32

32

32

48

48

64

In
p
u
t

b
it
s/

p
ix

e
l

All ASTC

8

16

16

32

ASTC for Mobile Games

 ASTC is widely supported by all major hardware vendors

 It’s free to use

 Finally a good texture format that can work everywhere!

 Avoids separate SKUs per hardware manufacturer: PVRTC, ATC, DXT, …

 <supports-gl-texture android:name="GL_AMD_compressed_ATC_texture" />

 Support for ASTC is also required by Google’s Android Extension Pack

 GL_ANDROID_extension_pack_es31a

33

ASTC Support in Unreal Engine 4

34

 2048x2048 RGB Normal Map, with mips – 17 MB uncompressed

Game Texture Comparison

ETC: 3 MB Original: 17 MB ASTC 6x6: 2.5 MB

35

 Same texture – zoomed in for Truth

Game Texture Comparison

ETC: 3 MB Original: 17 MB ASTC 6x6: 2.5 MB

36

 Made specifically

for ARM

 Unreal Engine 4

 Goals:

 64-bit Android

 ASTC

 PLS

Unreal Engine 4 Demo: Moon Temple

37

 Read & write custom data

for each pixel

 E.g. Depth

 Blend particles softly

against the background

Unreal Engine 4 – Pixel Local Storage

38

Unreal Engine 4 – Pixel Local Storage

39

Moon Temple Demo

40

 Android NDK r10c

 64-bit AArch64 compilers

 Android SDK 21

 Required for Lollipop, 64-bit

 UE4 Engine changes – collaboration between ARM and Epic Games

 Patches submitted

 Available in future release – packaging considerations to resolve

 New Android platform “arm64”, 64-bit libUE4.so

 Results: 8% Sun Temple FPS uplift just from compiling 64-bit

Enabling 64-bit Android in Unreal Engine 4

41

 Streamline tool, part of ARM® Development Studio 5 (DS-5)

 to know more https://ds.arm.com

 Capture CPU and GPU parameters during runtime for analysis

 ASTC requires less memory, so bandwidth use should drop

 We should see that reflected in L2 cache external R+W beats

 Example image from Streamline

Measuring ASTC Benefit

https://ds.arm.com/

42

 Result of Streamline L2 counters:

 ETC2 over 30s: 1.29 GB/s

 ASTC 6x6 over same 30s: .98 GB/s

 24.4% less bandwidth used per frame

 … And ASTC OBB is 12% smaller than ETC2 OBB (179MB versus 203MB)

Measuring ASTC Benefit

43

Enlighten in Unreal Engine 4

Graham Hazel

Senior Product Manager

44

 Enlighten is global illumination middleware, available pre-integrated into UE4

 Runtime is lightweight and optimised for a wide range of platforms, including

 Android 64-bit

 iOS 64-bit

 Windows PC

 Mac OS X

 PlayStation 4

 Xbox One

 Find out more Thursday 10AM, West Hall 3014, and at the ARM Booth 1624

Enlighten in Unreal Engine 4

45

Enlighten in Unreal Engine 4

46

 ARM Booth #1624 on Expo Floor

 Live demos

 In-depth Q&A with ARM engineers

 More tech talks at the ARM Lecture Theatre

 Epic Games: Live Session with Unreal Engine 4 for Mobile Devices

 Geomerics Enlighten session

 ARM tools Live Sessions

 http://malideveloper.arm.com/GDC2015

 Revisit this talk in PDF and video format post GDC

 Download the tools and resources

To Find Out More….

http://malideveloper.arm.com/GDC2015

47

 Unreal Engine 4 mobile graphics and the latest ARM CPU and GPU architecture - Weds 9:30AM; West Hall 3003

 This talk introduces the latest advances in features and benefits of the ARMv8-A and tile-based Mali GPU architectures on Unreal Engine 4, allowing

mobile game developers to move to 64-bit’s improved instruction set.

 Unleash the benefits of OpenGL ES 3.1 and Android Extension Pack (AEP) – Weds 2PM; West Hall 3003

 OpenGL ES 3.1 provides a rich set of tools for creating stunning images. This talk will cover best practices for using advanced features of OpenGL ES

3.1 on ARM Mali GPUs using recently developed examples from the Mali SDK.

 Making dreams come true – global illumination made easy – Thurs 10AM; West Hall 3014

 In this talk, we present an overview of the Enlighten feature set and show through workflow examples and gameplay demonstrations how it enables

fast iteration and high visual quality on all gaming platforms.

 How to optimize your mobile game with ARM Tools and practical examples – Thurs 11:30AM; West Hall 3014

 This talk introduces you to the tools and skills needed to profile and debug your application by showing you optimization examples from popular

game titles.

 Enhancing your Unity mobile game – Thurs 4PM; West Hall 3014

 Learn how to get the most out of Unity when developing under the unique challenges of mobile platforms.

More Talks from ARM at GDC 2015
Available post-show online at Mali Developer Center

48

Ask the best question and win a PiPO P4 tablet!

 Rockchip RK3288 processor

 ARM Cortex-A17 MP4 CPU

 ARM Mali-T760 MP4 GPU

Any Questions?

49

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

