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Abstract

A core challenge for an agent learning to interact with the world is to predict
how its actions affect objects in its environment. Many existing methods for
learning the dynamics of physical interactions require labeled object information.
However, to scale real-world interaction learning to a variety of scenes and objects,
acquiring labeled data becomes increasingly impractical. To learn about physical
object motion without labels, we develop an action-conditioned video prediction
model that explicitly models pixel motion, by predicting a distribution over pixel
motion from previous frames. Because our model explicitly predicts motion, it
is partially invariant to object appearance, enabling it to generalize to previously
unseen objects. To explore video prediction for real-world interactive agents, we
also introduce a dataset of 59,000 robot interactions involving pushing motions,
including a test set with novel objects. In this dataset, accurate prediction of videos
conditioned on the robot’s future actions amounts to learning a “visual imagination”
of different futures based on different courses of action. Our experiments show that
our proposed method produces more accurate video predictions both quantitatively
and qualitatively, when compared to prior methods.

1 Introduction

Object detection, tracking, and motion prediction are fundamental problems in computer vision,
and predicting the effect of physical interactions is a critical challenge for learning agents acting in
the world, such as robots, autonomous cars, and drones. Most existing techniques for learning to
predict physics rely on large manually labeled datasets (e.g. [18]). However, if interactive agents
can use unlabeled raw video data to learn about physical interaction, they can autonomously collect
virtually unlimited experience through their own exploration. Learning a representation which can
predict future video without labels has applications in action recognition and prediction and, when
conditioned on the action of the agent, amounts to learning a predictive model that can then be used
for planning and decision making.

However, learning to predict physical phenomena poses many challenges, since real-world physical
interactions tend to be complex and stochastic, and learning from raw video requires handling the
high dimensionality of image pixels and the partial observability of object motion from videos. Prior
video prediction methods have typically considered short-range prediction [17], small image patches
[22], or synthetic images [20]. Such models follow a paradigm of reconstructing future frames
from the internal state of the model. In our approach, we propose a method which does not require
the model to store the object and background appearance. Such appearance information is directly
available in the previous frame. We develop a predictive model which merges appearance information
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from previous frames with motion predicted by the model. As a result, the model is better able to
predict future video sequences for multiple steps, even involving objects not seen at training time.

To merge appearance and predicted motion, we output the motion of pixels relative to the previous
image. Applying this motion to the previous image forms the next frame. We present and evaluate
three motion prediction modules. The first, which we refer to as dynamic neural advection (DNA),
outputs a distribution over locations in the previous frame for each pixel in the new frame. The
predicted pixel value is then computed as an expectation under this distribution. A variant on this
approach, which we call convolutional dynamic neural advection (CDNA), outputs the parameters of
multiple normalized convolution kernels to apply to the previous image to compute new pixel values.
The last approach, which we call spatial transformer predictors (STP), outputs the parameters of
multiple affine transformations to apply to the previous image, akin to the spatial transformer network
previously proposed for supervised learning [11]. In the case of the latter two methods, each predicted
transformation is meant to handle separate objects. To combine the predictions into a single image,
the model also predicts a compositing mask over each of the transformations. DNA and CDNA are
simpler and easier to implement than STP, and while all models achieve comparable performance,
the object-centric CDNA and STP models also provide interpretable internal representations.

Our main contribution is a method for making long-range predictions in real-world videos by
predicting pixel motion. When conditioned on the actions taken by an agent, the model can learn
to imagine different futures from different actions. To learn about physical interaction from videos,
we need a large dataset with complex object interactions. We collected a dataset of 59,000 robot
pushing motions, consisting of 1.5 million frames and the corresponding actions at each time step.
Our experiments using this new robotic pushing dataset, and using a human motion video dataset [10],
show that models that explicitly transform pixels from previous frames better capture object motion
and produce more accurate video predictions compared to prior state-of-the-art methods. The dataset,
video results, and code are all available online: sites.google.com/site/robotprediction.

2 Related Work

Video prediction: Prior work on video prediction has tackled synthetic videos and short-term
prediction in real videos. Yuan et al. [30] used a nearest neighbor approach to construct predictions
from similar videos in a dataset. Ranzato et al. proposed a baseline for video prediction inspired by
language models [21]. LSTM models have been adapted for video prediction on patches [22], action-
conditioned Atari frame predictions [20], and precipitation nowcasting [28]. Mathieu et al. proposed
new loss functions for sharper frame predictions [17]. Prior methods generally reconstruct frames
from the internal state of the model, and some predict the internal state directly, without producing
images [23]. Our method instead transforms pixels from previous frames, explicitly modeling motion
and, in the case of the CDNA and STP models, decomposing it over image segments. We found in
our experiments that all three of our models produce substantially better predictions by advecting
pixels from the previous frame and compositing them onto the new image, rather than constructing
images from scratch. This approach differs from recent work on optic flow prediction [25], which
predicts where pixels will move to using direct optical flow supervision. Boots et al. predict future
images of a robot arm using nonparametric kernel-based methods [4]. In contrast to this work, our
approach uses flexible parametric models, and effectively predicts interactions with objects, including
objects not seen during training. To our knowledge, no previous video prediction method has been
applied to predict real images with novel object interactions beyond two time steps into the future.

There have been a number of promising methods for frame prediction developed concurrently to
this work [16]. Vondrick et al. [24] combine an adversarial objective with a multiscale, feedforward
architecture, and use a foreground/background mask similar to the masking scheme proposed here. De
Brabandere et al. [6] propose a method similar to our DNA model, but use a softmax for sharper flow
distributions. The probabilistic model proposed by Xue et al. [29] predicts transformations applied to
latent feature maps, rather than the image itself, but only demonstrates single frame prediction.

Learning physics: Several works have explicitly addressed prediction of physical interactions,
including predicting ball motion [5], block falling [2], the effects of forces [19, 18], future human
interactions [9], and future car trajectories [26]. These methods require ground truth object pose
information, segmentation masks, camera viewpoint, or image patch trackers. In the domain of
reinforcement learning, model-based methods have been proposed that learn prediction on images [14,
27], but they have either used synthetic images or instance-level models, and have not demonstrated
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Figure 1: Architecture of the CDNA model, one of the three proposed pixel advection models. We
use convolutional LSTMs to process the image, outputting 10 normalized transformation kernels
from the smallest middle layer of the network and an 11-channel compositing mask from the last
layer (including 1 channel for static background). The kernels are applied to transform the previous
image into 10 different transformed images, which are then composited according to the masks. The
masks sum to 1 at each pixel due to a channel-wise softmax. Yellow arrows denote skip connections.

generalization to novel objects nor accurate prediction on real-world videos. As shown by our
comparison to LSTM-based prediction designed for Atari frames [20], models that work well on
synthetic domains do not necessarily succeed on real images.

Video datasets: Existing video datasets capture YouTube clips [12], human motion [10], synthetic
video game frames [20], and driving [8]. However, to investigate learning visual physics prediction,
we need data that exhibits rich object motion, collisions, and interaction information. We propose
a large new dataset consisting of real-world videos of robot-object interactions, including complex
physical phenomena, realistic occlusions, and a clear use-case for interactive robot learning.

3 Motion-Focused Predictive Models

In order to learn about object motion while remaining invariant to appearance, we introduce a class of
video prediction models that directly use appearance information from previous frames to construct
pixel predictions. Our model computes the next frame by first predicting the motions of image
segments, then merges these predictions via masking. In this section, we discuss our novel pixel
transformation models, and propose how to effectively merge predicted motion of multiple segments
into a single next image prediction. The architecture of the CDNA model is shown in Figure 1.
Diagrams of the DNA and STP models are in Appendix B.

3.1 Pixel Transformations for Future Video Prediction

The core of our models is a motion prediction module that predicts objects’ motion without attempting
to reconstruct their appearance. This module is therefore partially invariant to appearance and can
generalize effectively to previously unseen objects. We propose three motion prediction modules:

Dynamic Neural Advection (DNA): In this approach, we predict a distribution over locations in
the previous frame for each pixel in the new frame. The predicted pixel value is computed as an
expectation under this distribution. We constrain the pixel movement to a local region, under the
regularizing assumption that pixels will not move large distances. This keeps the dimensionality of
the prediction low. This approach is the most flexible of the proposed approaches.

Formally, we apply the predicted motion transformation m̂ to the previous image prediction Ît−1 for

every pixel (x, y) to form the next image prediction Ît as follows:

Ît(x, y) =
∑

k∈(−κ,κ)

∑

l∈(−κ,κ)

m̂xy(k, l)Ît−1(x− k, y − l)

where κ is the spatial extent of the predicted distribution. This can be implemented as a convolution
with untied weights. The architecture of this model matches the CDNA model in Figure 1, except that
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the higher-dimensional transformation parameters m̂ are outputted by the last (conv 2) layer instead
of the LSTM 5 layer used for the CDNA model.

Convolutional Dynamic Neural Advection (CDNA): Under the assumption that the same mech-
anisms can be used to predict the motions of different objects in different regions of the image,
we consider a more object-centric approach to predicting motion. Instead of predicting a different
distribution for each pixel, this model predicts multiple discrete distributions that are each applied
to the entire image via a convolution (with tied weights), which computes the expected value of the
motion distribution for every pixel. The idea is that pixels on the same rigid object will move together,
and therefore can share the same transformation. More formally, one predicted object transformation

m̂ applied to the previous image It−1 produces image Ĵt for each pixel (x, y) as follows:

Ĵt(x, y) =
∑

k∈(−κ,κ)

∑

l∈(−κ,κ)

m̂(k, l)Ît−1(x− k, y − l)

where κ is the spatial size of the normalized predicted convolution kernel m̂. Multiple transformations

{m̂(i)} are applied to the previous image Ît−1 to form multiple images {Ĵ
(i)
t }. These output images

are combined into a single prediction Ît as described in the next section and show in Figure 1.

Spatial Transformer Predictors (STP): In this approach, the model produces multiple sets of
parameters for 2D affine image transformations, and applies the transformations using a bilinear

sampling kernel [11]. More formally, a set of affine parameters M̂ produces a warping grid between
previous image pixels (xt−1, yt−1) and generated image pixels (xt, yt).

(

xt−1

yt−1

)

= M̂

(

xt

yt
1

)

This grid can be applied with a bilinear kernel to form an image Ĵt:

Ĵt(xt, yt) =

W
∑

k

H
∑

l

Ît−1(k, l)max(0, 1− |xt−1 − k|)max(0, 1− |yt−1 − l|)

where W and H are the image width and height. While this type of operator has been applied
previously only to supervised learning tasks, it is well-suited for video prediction. Multiple transfor-

mations {M̂ (i)} are applied to the previous image Ît−1 to form multiple images {Ĵ
(i)
t }, which are

then composited based on the masks. The architecture matches the diagram in Figure 1, but instead

of outputting CDNA kernels at the LSTM 5 layer, the model outputs the STP parameters {M̂ (i)}.

All of these models can focus on learning physics rather than object appearance. Our experiments
show that these models are better able to generalize to unseen objects compared to models that
reconstruct the pixels directly or predict the difference from the previous frame.

3.2 Composing Object Motion Predictions

CDNA and STP produce multiple object motion predictions, which need to be combined into a single

image. The composition of the predicted images Ĵ
(i)
t is modulated by a mask Ξ, which defines a

weight on each prediction, for each pixel. Thus, Ît =
∑

c Ĵ
(c)
t ◦ Ξc , where c denotes the channel

of the mask and the element-wise multiplication is over pixels. To obtain the mask, we apply a
channel-wise softmax to the final convolutional layer in the model (conv 2 in Figure 1), which ensures
that the channels of the mask sum to 1 for each pixel position.

In practice, our experiments show that the CDNA and STP models learn to mask out objects that
are moving in consistent directions. The benefit of this approach is two-fold: first, predicted motion
transformations are reused for multiple pixels in the image, and second, the model naturally extracts
a more object centric representation in an unsupervised fashion, a desirable property for an agent
learning to interact with objects. The DNA model lacks these two benefits, but instead is more flexible
as it can produce independent motions for every pixel in the image.

For each model, including DNA, we also include a “background mask” where we allow the models
to copy pixels directly from the previous frame. Besides improving performance, this also produces
interpretable background masks that we visualize in Section 5. Additionally, to fill in previously
occluded regions, which may not be well represented by nearby pixels, we allowed the models to
generate pixels from an image, and included it in the final masking step.
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3.3 Action-conditioned Convolutional LSTMs

Most existing physics and video prediction models use feedforward architectures [17, 15] or feedfor-
ward encodings of the image [20]. To generate the motion predictions discussed above, we employ
stacked convolutional LSTMs [28]. Recurrence through convolutions is a natural fit for multi-step
video prediction because it takes advantage of the spatial invariance of image representations, as the
laws of physics are mostly consistent across space. As a result, models with convolutional recurrence
require significantly fewer parameters and use those parameters more efficiently.

The model architecture is displayed in Figure 1 and detailed in Appendix B. In an interactive setting,
the agent’s actions and internal state (such as the pose of the robot gripper) influence the next image.
We integrate both into our model by spatially tiling the concatenated state and action vector across a
feature map, and concatenating the result to the channels of the lowest-dimensional activation map.
Note, though, that the agent’s internal state (i.e. the robot gripper pose) is only input into the network
at the beginning, and must be predicted from the actions in future timesteps. We trained the networks
using an l2 reconstruction loss. Alternative losses, such as those presented in [17] could complement
this method.

4 Robotic Pushing Dataset

Figure 2: Robot data collection setup
(top) and example images captured from
the robot’s camera (bottom).

One key application of action-conditioned video prediction
is to use the learned model for decision making in vision-
based robotic control tasks. Unsupervised learning from
video can enable agents to learn about the world on their
own, without human involvement, a critical requirement
for scaling up interactive learning. In order to investigate
action-conditioned video prediction for robotic tasks, we
need a dataset with real-world physical object interactions.
We collected a new dataset using 10 robotic arms, shown in
Figure 2, pushing hundreds of objects in bins, amounting
to 57,000 interaction sequences with 1.5 million video
frames. Two test sets, each with 1,250 recorded motions,
were also collected. The first test set used two different
subsets of the objects pushed during training. The second
test set involved two subsets of objects, none of which
were used during training. In addition to RGB images, we also record the corresponding gripper
poses, which we refer to as the internal state, and actions, which corresponded to the commanded
gripper pose. The dataset is publically available2. Further details on the data collection procedure are
provided in Appendix A.

5 Experiments

We evaluate our method using the dataset in Section 4, as well as on videos of human motion in
the Human3.6M dataset [10]. In both settings, we evaluate our three models described in Section 3,
as well as prior models [17, 20]. For CDNA and STP, we used 10 transformers. While we show
stills from the predicted videos in the figures, the qualitative results are easiest to compare when the
predicted videos can be viewed side-by-side. For this reason, we encourage the reader to examine
the video results on the supplemental website2. Code for training the model is also available on the
website.

Training details: We trained all models using the TensorFlow library [1], optimizing to conver-
gence using ADAM [13] with the suggested hyperparameters. We trained all recurrent models
with and without scheduled sampling [3] and report the performance of the model with the best
validation error. We found that scheduled sampling improved performance of our models, but did not
substantially affect the performance of ablation and baseline models that did not model pixel motion.

2See http://sites.google.com/site/robotprediction
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Figure 3: Qualitative and quantitative reconstruction performance of our models, compared with
[20, 17]. All models were trained for 8-step prediction, except [17], trained for 1-step prediction.

5.1 Action-conditioned prediction for robotic pushing

Our primary evaluation is on video prediction using our robotic interaction dataset, conditioned on
the future actions taken by the robot. In this setting, we pass in two initial images, as well as the
initial robot arm state and actions, and then sequentially roll out the model, passing in the future
actions and the model’s image and state prediction from the previous time step. We trained for 8
future time steps for all recurrent models, and test for up to 18 time steps. We held out 5% of the
training set for validation. To quantitatively evaluate the predictions, we measure average PSNR and
SSIM, as proposed in [17]. Unlike [17], we measure these metrics on the entire image. We evaluate
on two test sets described in Section 4, one with objects seen at training time, and one with previously
unseen objects.

Figure 3 illustrates the performance of our models compared to prior methods. We report the
performance of the feedforward multiscale model of [17] using an l1+GDL loss, which was the best
performing model in our experiments – full results of the multi-scale models are in Appendix C. Our
methods significantly outperform prior video prediction methods on all metrics. The FC LSTM model
[20] reconstructs the background and lacks the representational power to reconstruct the objects in the
bin. The feedforward multiscale model performs well on 1-step prediction, but performance quickly
drops over time, as it is only trained for 1-step prediction. It is worth noting that our models are
significantly more parameter efficient: despite being recurrent, they contain 12.5 million parameters,
which is slightly less than the feedforward model with 12.6 million parameters and significantly
less than the FC LSTM model which has 78 million parameters. We found that none of the models
suffered from significant overfitting on this dataset. We also report the baseline performance of
simply copying the last observed ground truth frame.

In Figure 4, we compare to models with the same stacked convolutional LSTM architecture, but
that predict raw pixel values or the difference between previous and current frames. By explicitly
modeling pixel motion, our method outperforms these ablations. Note that the model without skip
connections is most representative of the model by Xingjian et al. [28]. We show a second ablation in
Figure 5, illustrating the benefit of training for longer horizons and from conditioning on the action of
the robot. Lastly, we show qualitative results in Figure 6 of changing the action of the arm to examine
the model’s predictions about possible futures.

For all of the models, the prediction quality degrades over time, as uncertainty increases further into
the future. We use a mean-squared error objective, which optimizes for the mean pixel values. The
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Figure 4: Quantitative comparison to models which reconstruct rather than predict motion. Notice
that on the novel objects test set, there is a larger gap between models which predict motion and those
which reconstruct appearance.

Figure 5: Ablation of DNA involving not including the action, and different prediction horizons
during training.

model thus encodes uncertainty as blur. Modeling this uncertainty directly through, for example,
stochastic neural networks is an interesting direction for future work. Note that prior video prediction
methods have largely focused on single-frame prediction, and most have not demonstrated prediction
of multiple real-world RGB video frames in sequence. Action-conditioned multi-frame prediction is
a crucial ingredient in model-based planning, where the robot could mentally test the outcomes of
various actions before picking the best one for a given task.

5.2 Human motion prediction

In addition to the action-conditioned prediction, we also evaluate our model on predicting future
video without actions. We chose the Human3.6M dataset, which consists of human actors performing
various actions in a room. We trained all models on 5 of the human subjects, held out one subject for
validation, and held out a different subject for the evaluations presented here. Thus, the models have
never seen this particular human subject or any subject wearing the same clothes. We subsampled
the video down to 10 fps such that there was noticeable motion in the videos within reasonable time
frames. Since the model is no longer conditioned on actions, we fed in 10 video frames and trained
the network to produce the next 10 frames, corresponding to 1 second each. Our evaluation measures
performance up to 20 timesteps into the future.

The results in Figure 7 show that our motion-predictive models quantitatively outperform prior
methods, and qualitatively produce plausible motions for at least 10 timesteps, and start to degrade
thereafter. We also show the masks predicted internally by the model for masking out the previous
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Figure 6: CDNA predictions from the same starting image, but different future actions, with objects
not seen in the training set. By row, the images show predicted future with zero action (stationary),
the original action, and an action 150% larger than the original. Note how the prediction shows no
motion with zero action, and with a larger action, predicts more motion, including object motion.
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Figure 7: Quantitative and qualitative results on human motion video predictions with a held-out
human subject. All recurrent models were trained for 10 future timesteps.

frame, which we refer to as the background mask. These masks illustrate that the model learns to
segment the human subject in the image without any explicit supervision.

6 Conclusion & Future Directions

In this work, we develop an action-conditioned video prediction model for interaction that incorporates
appearance information in previous frames with motion predicted by the model. To study unsupervised
learning for interaction, we also present a new video dataset with 59,000 real robot interactions and
1.5 million video frames. Our experiments show that, by learning to transform pixels in the initial
frame, our model can produce plausible video sequences more than 10 time steps into the future,
which corresponds to about one second. In comparisons to prior methods, our method achieves the
best results on a number of previous proposed metrics.

Predicting future object motion in the context of a physical interaction is a key building block of
an intelligent interactive system. The kind of action-conditioned prediction of future video frames
that we demonstrate can allow an interactive agent, such as a robot, to imagine different futures
based on the available actions. Such a mechanism can be used to plan for actions to accomplish a
particular goal, anticipate possible future problems (e.g. in the context of an autonomous vehicle),
and recognize interesting new phenomena in the context of exploration. While our model directly
predicts the motion of image pixels and naturally groups together pixels that belong to the same object
and move together, it does not explicitly extract an internal object-centric representation (e.g. as in
[7]). Learning such a representation would be a promising future direction, particularly for applying
efficient reinforcement learning algorithms that might benefit from concise state representations.
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