Updates on Urology Pharmacology: Focus on Antibiotics

Kristen Nichols, PharmD, BCPS (AQ-ID), BCPPS
Assistant Professor, Pharmacy Practice
Butler University College of Pharmacy and Health
Sciences

BUTLER UNIVERSITY

DISCLAIMERS...

I could talk about antibiotic use and resistance ALL day

Evidence-based = challenging

[MANY studies needed]

Objectives

- Design and monitor a therapeutic regimen for a patient with a urinary tract infection caused by a multi-drug resistant organism
- Describe ways to prevent or delay the development of antibiotic resistance
- Compare risks and benefits of continuous antibiotic prophylaxis
- Discuss strategies for optimal surgical prophylaxis in urologic procedures

Kevin: a 5 year old with a complex urologic tract

ESCHERICHIA COLI Extended-spectrum beta-lactamase producer

	MDIL	MINT
Amikacin	<=2	S
Tobramycin	<=1	S
Trimethoprim/Sulfa	>=320	R
Piperacillin/Tazobactam	<=4	S
Meropenem	<=0.25	S
Gentamicin	<=1	S
Ciprofloxacin	<=0.25	S
Ceftriaxone	>=64	R
Ceftazidime		R
Cefoxitin	<=4	S
Cefepime		R
Cefazolin	>=64	R
Ampicillin/Sulbactam	>=32	R
Ampicillin	>=32	R
Levofloxacin	0.5	S

Antimicrobial Resistance

Predictors of antimicrobial resistance in UTIs

- Urinary tract abnormalities (& bladder dysfunction)
- 1 course of antibiotics in past 6 months
- Antibiotic prophylaxis use
- Recent hospitalization

Multi-Drug Resistant Organism (MDRO)

- Typically resistant to ≥ 1 organism from ≥ 3 drug classes
- Resistance genes are often paired

ESBL-producing organisms

- 5-10% of UTIs in children
- Force use of second-line drugs
- Increase hospital length of stay and cost

Antimicrobial choice

Empiric

- Use local antibiogram data
 - Urinary isolates from your population ideal
- Consider risk factors
 - Previous patient cultures

Directed

- Use susceptibility panel
 - Most narrow option
 - Least likely to cause collateral damage
- Patient-specific factors
 - Allergies

Big Names in Resistance

Extended Spectrum Beta-Lactamase (ESBL)

- Hydrolyzes extended-spectrum penicillins & cephalosporins
- Most common in E. coli and K. pneumoniae
- Beta-lactamase inhibitors like tazobactam retain activity

AmpC Beta-Lactamase

- Most common in Enterobacter cloacae, Serratia marcescens, Morganella morganii
- Hydrolyzes piperacillin/tazobactam but not cefepime

Carbapenem-Resistant Enterobacteriaceae (CRE) & Klebsiella Pneumoniae Carbapenemase (KPC)

- Hydrolyzes carbapenems
- Often resistant to other classes as well

Extended Spectrum Beta-Lactamases

Treatment Options

ESCHERICHIA COLI Extended-spectrum beta-lactamase producer

	MDIL	MINT
Amikacin	<=2	S
Tobramycin	<=1	S
Trimethoprim/Sulfa	>=320	R
Piperacillin/Tazobactam	<=4	S
Meropenem	<=0.25	S
Gentamicin	<=1	S
Ciprofloxacin	<=0.25	S
Ceftriaxone	>=64	R
Ceftazidime		R
Cefoxitin	<=4	S
Cefepime		R
Cefazolin	>=64	R
Ampicillin/Sulbactam	>=32	R
Ampicillin	>=32	R
Levofloxacin	0.5	S

Oral: Nitrofurantoin

- Only for cystitis
 - Doesn't reach adequate tissue concentrations for pyelonephritis
 - Not for use if CrCl < 30 mL/min
- Precautions:
 - May lead to hemolytic anemia in patients who are G6PD deficient
 - Not for <1 month of age
- Liquid dosage form has to be given every 6 hours for treatment
- Macrocrystal/monohydrate formulation can be given twice daily

Oral: Fosfomycin Tromethamine

- Only for treatment of "uncomplicated" cystitis
 - Due to concentrations reached with oral therapy
- Spectra of activity:
 - Enterobacteriaceae
 - Pseudomonas
 - MRSA & VRE
- Available as a powder packet (3 grams)
- Well tolerated
 - Potential mild GI distress

- Not FDA-approved in children
- Suggested dosing:
 - <18 yo: 2 grams x 1
 - > 18 yo: 3 grams x 1
 - Principi et al used 1 gram for <1 year old
- Has been used every other day x 6 – 21 days for complicated UTI in adults

Oral: Fluoroquinolones

Well-absorbed (80-100%)

Ciprofloxacin

Levofloxacin

Moxifloxacin: NOT for UTIs

- Save for when absolutely necessary
 - Many adverse effects, some serious
 - Collateral damage rapid development of resistance
- Dose at higher end of range to avoid resistance
 - Renal adjustments needed
- Delafloxacin: new FQ (not yet FDA approved or studied in < 18 years)

Intravenous: Carbapenems

Meropenem

Ertapenem

Doripenem

Imipenem/cilastatin

- Typically considered drugs of choice for ESBLproducing organisms
- Overuse can result in carbapenem-resistant Enterobacteriaceae
- Drug interaction: meropenem and valproic acid
- Very broad spectrum gram-negatives, grampositives, & anaerobes

Intravenous: Piperacillin/Tazobactam

- 80-90% of isolates will demonstrate in vitro susceptibility
- Controversial in the treatment of ESBL+ infections
 - Less effective for invasive infections
 - Majority of infections in studies demonstrating success were UTI or biliary tract infections
- High urine concentrations
- Limited data using in children

Intravenous: Aminoglycosides

- Often resistant in ESBL+ infections
- Not used alone for bacteremia
 - Potential increased mortality
 - Development of resistance
- Ok alone for uncomplicated UTI
 - Very high urine concentrations

- IV only (no oral)
- Once-daily dosing
 - Optimizes
 pharmacokinetic and pharmacodynamic
 properties
- Monitoring:
 - Nephrotoxicity
 - Ototoxicity with repeated or prolonged courses

Intravenous: Cefoxitin (?)

- Will be "susceptible" on the in vitro susceptibility panel
 - Possibly related to inoculum effect?
- VERY limited data for use in ESBL+ infections
 - None in pediatrics
- If using for carbapenem-sparing:
 - Aggressive dose
 - UTI only (or potentially when source control is very good and severity is low)
 - Resistance less like to develop in future with *E. coli* as compared to *K. pneumoniae*
 - Close monitoring

Intravesicular: Sodium oxychlorosene

- OTC as Clorpactin WCS-90
- Topical antiseptic bladder irrigation
 - -0.025 0.02%
- Typically 2 x 10 minute instillations BID
 - For 3 days
- Can cause some burning
- Has also been used for prophylaxis
- Not studied or FDA-approved in children

Kevin: a 5 year old with a complex urologic tract

History of multiple UTIs Culture obtained Daily **Empiric therapy** cephalexin Cloudy urine prophylaxis at Cefixime Increased home accidents Fever

- Ciprofloxacin 15 mg/kg PO Q12H
- Fosfomycin a reasonable option
- If bacteremic or upper tract involved → IV piperacillin/tazobactam

10 year-old with a KPC-UTI and Bacteremia

Susceptibility

		Klebsiella pneumoniae - Carbapenem Resistant	
	BACTERIAL SU	SCEPTIBILITY MIC PANEL	CARBAPENEM RESISTANCE GENE DETECTION - PCR-RT
Ampicillin	>=32 ug/mL	Resistant	
Ampicillin/Sulbactam	>=32 ug/mL	Resistant	
Cefazolin	>=64 ug/mL	Resistant	
Cefepime	>=64 ug/mL	Resistant	
Ceftriaxone	>=64 ug/mL	Resistant	
Ciprofloxacin	>=4 ug/mL	Resistant	
Gentamicin	4 ug/mL	Susceptible	
IMP			Not Detected
KPC			Detected
Levofloxacin MIC	>=8 ug/mL	Resistant	
Meropenem	>=16 ug/mL	Resistant	
NDM			Not Detected
OXA48			Not Detected
Piperacillin/Tazobactam	>=128 ug/mL	Resistant	
Tobramycin	>=16 ug/mL	Resistant	
Trimethoprim/Sulfa	>=320 ug/mL	Resistant	
VIM			Not Detected

Susceptibility

	Enterococcus species BACTERIAL SUSCEPTIBILITY MIC PANEL	
Ampicillin	<=2 ug/mL Susceptible	
Vancomycin	1 ug/mL Susceptible	

Klebsiella pneumoniae Carbapenemase

- NO beta-lactams
- Fosfomycin (cystitis only)
- Colistin
 - Dosing guidance limited
- Combination options:
 - Double carbapenem
 - Meropenem + ertapenem
 - Recent study demonstrated improved mortality vs tigecycline, colistin, or gentamicin
 - Extended-infusion meropenem (3-4 hours) +
 aminoglycoside, fluoroquinolone, or colistin

Newer Therapies

Ceftazidime/ avibactam

- Approved in adults 2015
- Ceftazidime is wellstudied in children
- Avibactam isn't
 - Most BLI aren't
- Active against ESBLs and many carbapenemases
 - No Ambler class B

Meropenem/ vaborbactam

- Approved in adults last week
 - Complicated UTI
- Not yet available
- Will be reserved for patients/isolate in true need

10 year-old with a KPC-UTI and Bacteremia

Susceptibility

		Klebsiella pneumoniae - Carbapenem Resistant	
	BACTERIAL SU	SCEPTIBILITY MIC PANEL	CARBAPENEM RESISTANCE GENE DETECTION - PCR-RT
Ampicillin	>=32 ug/mL	Resistant	
Ampicillin/Sulbactam	>=32 ug/mL	Resistant	
Cefazolin	>=64 ug/mL	Resistant	
Cefepime	>=64 ug/mL	Resistant	
Ceftriaxone	>=64 ug/mL	Resistant	
Ciprofloxacin	>=4 ug/mL	Resistant	
Gentamicin	4 ug/mL	Susceptible	
IMP			Not Detected
KPC			Detected
Levofloxacin MIC	>=8 ug/mL	Resistant	
Meropenem	>=16 ug/mL	Resistant	
NDM			Not Detected
OXA48			Not Detected
Piperacillin/Tazobactam	>=128 ug/mL	Resistant	
Tobramycin	>=16 ug/mL	Resistant	
Trimethoprim/Sulfa	>=320 ug/mL	Resistant	
VIM			Not Detected

Susceptibility

	Enterococcus species BACTERIAL SUSCEPTIBILITY MIC PANEL	
Ampicillin	<=2 ug/mL Susceptible	
Vancomycin	1 ug/mL Susceptible	

Preventing Development of Resistance:

Antibiotics are a shared resource – and becoming a scarce resource

Strategies to Save our Antibiotics

- 1. Use antibiotics only when necessary
 - a) Don't treat asymptomatic bacteruria
 - b) Narrowest spectrum possible
- 2. Avoid high-impact agents (FQs, cephalosporins) when possible
- 3. Limit to minimum effective duration
- 4. Optimize doses based on PK/PD
- 5. Use prophylaxis wisely

Cephalosporins

- Association with:
 - Vancomycin-resistant Enterococci (VRE)
 - ESBL-producing *K. pneumoniae*
 - Multidrug resistant Acinetobacter
 - Clostridium difficile infections
- Most data with 3rd generation cephalosporins
 - Ceftriaxone, cefotaxime (IV)
 - Cefdinir, cefixime, (oral)
 - Narrower options like cephalexin likely have less impact

Fluoroquinolones

- Risks to patient
 - New FDA Boxed Warning
 - Disabling and potentially irreversible adverse effects
 - Neuropsychiatric effects—CNS, peripheral neuropathy
 - Fluoroquinolone-Associated Disability
 - Musculoskeletal adverse effects
 - Tendinopathy, arthritis, arthralgia, gait abnormality
- Risks to resistance & collateral damage
 - Resistance to fluoroquinolones develops more rapidly than with other antibiotic classes
 - Association with:

Probability of gram-negative bacteria remaining susceptible as a function of duration of treatment days

Overview of Prophylaxis

Makes a lot of sense

- Historically a good alternative to surgery
- Association between UTI & scarring
- Some evidence does indicate decreased UTIs and renal scarring
- Makes us feel like we're doing something

Some serious downsides

- Does it truly prevent UTIs or renal scarring? (mixed results & varied populations)
- Increase in resistance due to impact on bowel and periurethral flora
- Adverse effects to patient
- Can't prevent everything

Antibiotic Prophylaxis

Anti-infectives are the only drugs where use in one patient can impact their efficacy in others

BUTLER UNIVERSITY

UTI Prophylaxis in VUR

- Studies that demonstrate benefit of prophylaxis
 - PRIVENT trial: modest benefit (19% to 13%)
 - Swedish reflux trial: prevented renal damage
- Studies that demonstrate lack of benefit or harm
 - Clarke et al: increased infections in children who catheterize (CIC)
 - Garin et al: more recurrences in antibiotic group vs prophylaxis group
 - 2011 AAP UTI Guidelines: meta-analysis of 6 studies
 - Hari et al: prophylaxis group had an increased risk of developing UTI; similar scarring; increased resistance

RIVUR Study

- 607-patient randomized placebo-controlled study
- >90% females; median age 12 mos; mostly grade II & III

Results:

- Febrile or symptomatic UTI recurrence reduced by half (HR 0.5; 95% CI 0.34-0.74)
 - 14.8% vs 27.4% (missing data excluded)
 - 16 antibiotic patient-years to prevent 1 case
- Renal scarring was not impacted (11.9% vs 10.2%)
- Resistance to TMP/SMX: 63% vs 19%
 - Of patients with UTI recurrences caused by *E.coli*
- Effect lost when no initial febrile episode or bowel/bladder dysfunction
 - See figure 3 in article

The Problem with Data

Studied populations vary drastically

Adherence to therapy should be considered

Bacteria are constantly evolving

The "holy grail" study is unlikely to be completed

- Prophylaxis should be decided on a patient-by-patient basis
 - Slant towards minimization
- Considerations:
 - Potential risk stratification?
 - Patients who are difficult to diagnose or present with severe UTI
 - Febrile on initial presentation
 - Degree of reflux/dilatation
 - Presence of bladder or bowel dysfunction

Prophylaxis in Hydronephrosis

Easterbrook et al: Updated Systematic Review 2017

11 studies →3909 patients; 10 non-randomized Significant heterogeneity

UTI rates: 9.9% in prophylaxis group vs 7.5% in noprophylaxis group

Surgical Prophylaxis

Optimal peri-operative prophylaxis

Prevents infection & therefore antibiotic use

Avoids antibiotic exposure when unnecessary

Pediatric Health Information System Database Studies

- Sandora et al: evaluated variability in prophylaxis across all surgical procedures 2010 2013
 - Urologic procedures had greatest variability
- Chan et al: evaluated variability in prophylaxis in clean and clean-contaminated urologic procedures 2012 2014

Chan KH et al. *J Urol*. 2017;197 :944-950.

Rank of Non-Antibiotic Use for Clean Procedures at PHIS Hospitals

Chan KH et al. *J Urol*. 2017;197 :944-950.

Rank of Antibiotic Use for Clean-contaminated Procedures at PHIS Hospitals

Prophylaxis in Outpatient Circumcision

- Evaluated 84,226 outpatient circumcisions (>30 days to <18 years) in PHIS database
- Surgical prophylaxis did not prevent:
 - Surgical site infection (0.1% vs 0.2%)
 - Penile reoperation (0.01% vs 0.04%)
 - Hospital visit (5.5% vs 5.5%)
- Surgical prophylaxis did result in:
 - More allergic reaction (3.5% vs 2.9%, p<0.05)
 - More hospital visits (multivariate analysis)

Surgical Prophylaxis in Hypospadias Repair

- ~76% of pediatric urologists reported using antibiotic surgical site infection (SSI) prophylaxis for stented hypospadias repair
- Overall very low SSI rate

224 patients retrospectively evaluated

Pre-op antibiotics
vs none
(SMX/TMP while
stent in place)

No difference in: SSI (1 vs 0) Complications (5.2 vs 6.7%)

Key Takeaway Points

 Resistant isolates often require use of less-studied, more harmful, or IV-only medications

 There are a variety of strategies to help delay development of resistance, including avoiding use of FQs, optimizing doses, and minimizing duration

- Continuous antibiotic prophylaxis should be limited to a small population at highest risk
- Risks and benefits of prophylaxis should be considered

Updates on Urology Pharmacology: Focus on Antibiotics

Kristen Nichols, PharmD, BCPS (AQ-ID), BCPPS
Assistant Professor, Pharmacy Practice
Butler University College of Pharmacy and Health
Sciences

BUTLER UNIVERSITY

More Good Articles

- Hsu J, Tamma PD. Treatment of multidrug-resistant gram-negative infections in children. *Clin Infect Dis.* 2014;58(10):1439-48.
- Greenfield SP et al. Vesicoureteral reflux and antibiotic prophylaxis: why cohorts and methodologies matter. *J Urol*. 2016;196:1238-43.