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Introduction

The main goal of this work was to improve the data acquisition software
(APVDAQ) used to test PCB hybrids with APV25 readout chips. These
chips are used in the new Silicon Vertex Detector (SVD) in the Belle-II ex-
periment currently under construction at the KEKb collider in Japan.

The KEKb particle collider is located at the High Energy Accelerator Re-
search Organization (KEK) in Tsukuba, Japan. It is an asymmetric electron-
positron collider. Asymmetric means, that the accelerated electrons and
positrons have different energies. In KEKD, electrons have an energy of 8
GeV, while positrons have an energy of 3.5 GeV. At the Super KEKb, the
successor experiment, this energy asymmetry will be reduced to electrons
having an energy of 7 GeV and positrons having an energy of 4 GeV.
KEKD has a circumferential length of 3016 meters and holds the record for
being the accelerator with the world’s highest luminosity of 2.11x1034em=2s~1.
In Super KEKD, this factor will be increased even further to achieve a lumi-
nosity of 8 x 103%¢m=1s~ L.

Due to the energy asymmetry, copious amounts of B-mesons are produced.
These particles are an important tool for studying CP-violation, as it is es-
pecially distinct and well observable in the decay of these mesons. It also is
the reason why KEKD is called a B-factory.

The experiment designed for observing the CP-violation is the Belle detector,

Figure 1: The KEKb collider with the preceding linear accelerator (LINAC)



Figure 2: Construction of the Belle Detector

which is located at the single collision point of the KEKD collider. The Belle
experiment is a multilayer particle detector arranged cylindrically around the
beam axis. The whole detector (except the muon detectors) is built within
a solenoid coil providing a 1.5 Tesla magnetic field, forcing the particles on
circular trajectories and making it possible to determine charge and momen-
tum of the particles.

Each of its subdetectors is designed for a specific purpose: a silicon ver-
tex detector for determining the location of particles with precision of the
order of tens of micrometers, drift chambers for measuring trajectories, mo-
menta and energy loss of particles, an electromagnetic calorimeter comprised
of scintillator crystals for determining a particle’s total energy, Time-of-
Propagation counters that reconstruct the light cones emitted from particles
passing through radiator crystals through the Cherenkov-Effect, as well as
K} meson and muon detectors outside of the solenoid coil.

Figure 3: Illustration of the Silicon Vertex Detector



APV25 chips

Figure 4: APV25 Readout chips on a PCB

The Vienna Institute for High Energy Physics has been assigned with the
task of building the third layer of the Silicon Vertex Detector (SVD). This
task includes development, construction, assembly and testing. The SVD
layers consist of double-sided silicon strip detectors, where the strips on the
two sides are perpendicular to each other, creating a spatial resolution in the
micrometer range.

When a particle passes through a silicon strip, it creates a very small current,
too small to be processed. APV25 chips, mounted on either a PCB or an
Origami flex structure, are used to amplify the incoming signal. Each chip
has 128 input channels, one channel per strip.

After a PCB hybrid is assembled, it needs to be tested to ensure that all
APV25 chips operate reliably. For this purpose, the APV Data Acquisition
(APVDAQ) system has been developed at the HEPHY.



APVDAQ

The APVDAQ test system and software has been developed at the Vienna In-
stitute for High Energy Physics in order to test APV25 chips. The APVDAQ
software is a Windows application programmed in C in LabWindows?™
/CVI from National Instruments. In the following section, the main run
types are explained briefly, while the next section focuses on the changes
being made during the time of this thesis.

More detailed information on the APVDAQ software and test system can be
found in the reference manual [1], as well as in [2] and [3].

The following tests are used in order to test the functionality of a hybrid
board:

ADC Delay Scan

Readout chips provide an analog output signal, which has to be converted by
an analog to digital converter (ADC). Its sampling phase depends on clock
frequency and cable length. To allow easy timing configuration, it comes
with an adjustable delay. The ADC Delay Scan was developed to find the
optimal delay settings. This run type scans all possible delay settings of an
APV25 tick mark with a time resolution of 1 ns. Fig. 5 shows the result of
an ADC Scan. The optimal delay setting can be obtained from the x-axis.

FIR Calculation

When transmitting analog signals over long cables, one faces two problems:
the transfer function of the cable is dependent on frequency and, if the
impedance changes, reflections occur, in particular at both ends of the trans-
mission line. The latter can in principle be avoided by terminating the line
with its impedance. In reality, however, there are always imperfections.

To solve these problems, a digital FIR (finite impulse response) filter was
implemented on the receiving end of the transmission, i.e. in the APVDAQ
firmware, just after the ADC.

A FIR filter convolves the (distorted) incoming signal v(n) with filter coef-
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Figure 5: Result of an ADC Delay Scan

ficients f(k) in the following form:

s(n) = f(kjo(n— k) (1)

k=0

The number of filter coefficients, i.e. m+1, is called the filter order. In
APVDAQ), a FIR filter of the order 8 is used. The output signal after the
convolution is ideally identical to the detector signal.

However, before a FIR filter can be used, the filter coefficients need to be
calculated. This is done in the FIR calculation run. More information on
this FIR filter can be found in [2].

Pedestal Run (Software)

In this run type, periodical software triggers cause the software to read out
data from the APV25 chips randomly, i.e., there is no correlation between
data acquisition and particle hits (given that there are any). This run type
is used to determine pedestals and noise of each APV channel. It is also
suitable to check the functionality of a setup in the lab. Fig. 6 shows the
result of a noise calculation.

Calibration Scan

In calibration scan mode, the shape of the calibration pulse of each APV25
chip is recorded by using its internal calibration functionality. Several cali-
bration requests with different timing are sent to the chips in order to scan
the whole shaping curve with a time resolution of 1/8 clock period. This run
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Figure 6: Result of a noise calculation

type is suitable to check the peaking time and obtain calibration constants
for each channel. The APVDAQ software provides plots of each channel sep-
arately as well as an overlay plot of all channels of one APV chip. In these
plots, shortened channels are detected, as their calibration signal is signifi-
cantly lower. Channels not connected to the sensor, on the other hand, are
characterized by a slightly higher calibration signal. Both, however, can be
identified easily in the calibration scan plot. Fig. 7 shows the result of a
calibration scan. Several shortened channels are clearly visible.
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Figure 7: Result of a Calibration Scan



New Features of Version 0.95

This section is about the changes implemented in the APVDAQ software
during the time of this thesis. Most of them are minor improvements making
the life of the software’s user a little easier. Some of them, however, were
important fixes of bugs that would otherwise affect the functionality of the
software. The list of improvements reads as follows:

e Until now, the whole file name including current date and time had to
be entered and updated with every measurement. In the latest version,
all that is required is the Object-ID. The software automatically adds
date and time, as well as the combination "ped" or "cal" for Pedestal
Run or Calibration Scan, respectively.

e Files can now only be saved in Hardware Run, Pedestal Run and Cal-
ibration Scan.

e In the previous version, if the Online Analysis Display was set on Cal-
ibration Scan Overlay during a measurement, it produced a warning,
claiming that the display would be very slow in named setting, as a lot
of CPU capacity would be required. For being written within a loop,
this warning was produced continuously during a measurement. As
modern computers can handle the required CPU capacity with ease,
the warning was erased and Calibration Scan Overly can now be safely
used during measurements.

e In the latest version, an Operator ID has to be entered before any
measurement can be started. Any combination of characters can be
used, except "-" and " ", as it is the initial combination. The Operator
ID is written into the saved CVS files.

e Until now, APVDAQ could be opened multiple times, causing commu-
nication problems with the corresponding hardware. Version 0.95 can
only be opened once. Attempting to start another instance will merely
foreground or maximize it, if it’s minimized.

e Up to now, if APVDAQ was running in multi-peak mode and a signal
was spread out across several subevents, the software produced mul-
tiple entries in both the Sum and SNR Histogram, as each subevent



was counted separately. In the latest version, only that subevent, in
which the signal amplitude is highest, is processed and thus each event
is counted only once despite of having multiple samples.

The raw mode file output was adapted to the new file format by chang-
ing a header file to match other modes.

Files and Plots can now optionally be saved to a specifically created
subfolder named after the Object ID.

The bug causing a calibration measurement to be conducted with in-
verted polarity, after an error was detected in an APV, was fixed.

It is now possible to pause running measurements.

In previous versions, Common Mode Correction (CMC) was performed
by dividing the strips into groups of 32, discarding the 5 highest and
lowest readings and then averaging the 22 remaining values. This
CMC-value was then subtracted from the reading. In the latest ver-
sion, a switch was created to change the way the groups are formed. In
its default -or 32- setting, the groups are composed of 32 consecutive
stripes, while in the "4" setting the groups are built modulo 4, i.e. the
first group consists of the first, the fifth, the ninth strip, the second
group of the second, the sixth, the tenth strip and so on.

A TCP socket was created, making it possible to control APVDAQ
remotely via a number of commands listed below. As APVDAQ au-
tomatically closes the connection after each command, it is possible

for any number of computers to control the program simultaneously.
APVDAQ listens on TCP port 2001.

TCP socket commands

The TCP input has to have the following syntax:

[command] or [command],[option]

— st: start run

— pause: pause run

— end: stop run

— save: save all plots

— m: enter max. events
— o: enter object ID

— n: enter operator name

— p: enter path name of destination folder



— c: enter path name of configuration file

— I: write content into log file

t: select runtype

options: (0) Hardware Run, (2) Pedestal Run, (3) IntCal vs. Vsep
Scan (as of V0.96), (4) Internal Calibration Scan, (5) FIR Cal-
culation, (6) ADC Delay Scan

— cmc: CMC switch options: (0) 32, (1) 4
— f: FIR switch

options: (0) OFF, (1) ON
— w: write file

options: (0) OFF, (1) ON

— s: write files into subfolder
options: (0) OFF, (1) ON

for example: If one wants to select a maximum of 10.000 events, one
types "m,10000". If one wants so enter a certain path name, one types
"p,C:\|..." (when entering path names, double backslashes are neces-
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Measurements

During the time this thesis was written, 75 APV25 hybrids were tested with
the APVDAQ software. Two of them have been found to be defective, so
they were excluded from the tests and have been set aside for repair.

In the following section, the result of these tests, as well as the results of the
chips tested in [4] creating a total of 190 tested chips, were combined into
histograms.

For more information on the ROOT software creating these histograms and
the initial results, see [4].

For this thesis, the ROOT software was upgraded to the effect that it now also
creates histograms picturing the temporal evolutions of pedestal, noise, raw
noise, CMC (common mode noise), calibration peak and calibration time. In
these histograms, the x-axis represents the day of the measurement, starting
from July 15 2014. I.e., day 54 is August 23" and so on.

In the following, the results of [4] are briefly reviewed and new histograms
are explained.

ADC Delay

No major changes in ADC delay tests have been noted between the newly
tested chips and those tested in [4], although in [4], there are outliers at 5,
9 and 16 nanoseconds, which don’t occur in the latest measurements. The
mean value of the ADC delay is 11.77 ns if only the latest chips are considered
and 11.66 ns in general.

FIR Coefficients

The mean values of the FIR coefficients changed only negligibly, as can be
seen in table 1, as well as in fig. 11, 12 and 13:
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FIR coefficient mean old mean new mean total

FIRO 0.9171
FIR1 0.0775
FIR2 0.00869

0.9134
0.0817
0.00846

0.9156
0.0792
0.0086

Table 1: Mean value of FIR coefficients
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Figure 13: Histograms of the FIR2 and FIR2 vs. chip distributions

13

FIR2 [ADC]

1,

0.04

0.02

-0.02

-0.04

FIR2 vs. Chip

|

LI B B B N B

Entries 992
Meanx  2.153 +0.05085

Mean y0.008598 + 8.459-05

o
N;
|
[«2)

|
8 10
# of Chip

(b) FIR2 vs. chip

80

70

60

50

40

30

20



Pedestal Pedestal vs. Strips

= ~ 500
é 2400 F Entries = 126976 (D) Entries 126976
S 2200 < Meanx 635+ 0.1037 |8 10
5 F Mean 374 +0.06323 K Meany 374 +0.06323
% 2000~ 8 450
1800 &
1600
1400~ 400
1200
1000 — 350 -
800
600 —
C 300
400 —
200
By o) .| ., ool Lo bu v b b1
250 300 350 400 450 500 0 20 40 60 80 100 120
Pedestal [ADC] # of Strip
(a) Pedestal (b) Pedestal vs. strips

Figure 14: Pedestal and pedestal vs. strips histograms

Pedestal, Noise, Raw Noise and CMN

In [4], a characteristic tail towards greater values is noticed in the raw noise
and CMN histograms. If only the newly tested chips are evaluated, this
tail can be reproduced, even though it is not quite as distinct as in was in
the previous measurements. This means, that the newly tested chips are
behaving similarly to the older ones regarding raw noise and CMN. The
histograms in fig. 16, 17 and 18 give a comparison of the raw noise, fig. 19,
20 and 21 a comparison of CMN behavior of the old and the new chips, as
well as all chips together.

old new total

Pedestal 374.6 373.2 374

Noise 1.263  1.25 1.258
Raw Noise 5.468 5.49 5477
CMN 5.258 5.304 5.277

Table 2: Mean values of pedestal, noise, raw noise and CMN measurements

Looking at the time evolution histograms, one can clearly see that the values
of the pedestal, calibration pulse and calibration time don’t vary much in
time. This is a good sign, as it indicates that both hybrid boards and
APVDAQ test setup are operating steadily and no temporal dependency
needs to be taken into consideration.

14
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Figure 17: Raw noise and raw noise vs. strips histograms of the newly
bonded chips
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Figure 18: Raw noise and raw noise vs. strips histograms of all chips
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Figure 19: CMN and CMN vs. strips histograms of the old chips
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Figure 20: CMN and CMN vs. strips histograms of the newly bonded chips
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Figure 21: CMN and CMN vs. strips histograms of all chips

The noise, raw noise and CMN values, however, show a temporal dependency.
These dependencies turned out the be minor and were a consequence of an
imperfectly configured APVDAQ system, which caused the noise, raw noise
and CMN values to be higher at the beginning of the measuring process.

Calibration Pulse and Time

The mean values of calibration pulse and time again don’t differ much from
the values achieved in [4]. Also, they seem to be virtually constant in time.
The areas far off the mean value in the 2D histograms originate from the
two faulty chips mentioned in [4].

mean value

Calibration Pulse 95.02
Calibration Time 130.6

Table 3: Mean values of calibration pulse and time
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Figure 22: Pedestal and noise vs. date histograms
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Figure 23: Raw noise and CMN vs. date histograms
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Figure 24: Calibration pulse and calibration pulse vs. strips histograms
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Figure 25: Calibration time and calibration time vs. strips histograms
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Figure 26: Calibration pulse and time vs. date histograms

Conclusions

Now that there is a second set of measurements, one can compare current
measurements with older ones (i.e. measurements conducted in [4]) and, as
the measurements were conducted over a period of four months, study the
temporal development of hybrid boards.

It appears that both the hybrid boards and the APVDAQ testing system
are running steadily. The minor temporal dependencies of noise, raw noise
and CMN can be ascribed to imperfect calibration of the APVDAQ system
at the beginning of the measuring process.

Ultimately, the APVDAQ testing system can ensure that the manufactured
hybrid boards have a high quality standard and are suitable for the Belle 11
Detector.
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