
Uppaal - A Verification Tool
Formal Concepts in Computer Science

Marco Carbone

IT University of Copenhagen

April, 2009



Overview, todays lecture

• Motivation

• Communicating Finite Automata (CFAs)

• CFAs extended with variables

• UPPAAL

Marco Carbone 2 April, 2009



Motivation (I)

Errors should be detected as early as possible, i.e. during design.
But, some errors are more subtle than others and hard for humans to
detect. Well known errors are:

• The crash of the Ariane 5 rocket (type conversion leading to an exception)

• The accidents of the Therac-25 radiation therapy machine (operating system
race conditions)

• Mars Rover Pathfinder (mutual exclusion problem)

To let software tools help analyse models we may benefit if the
models have a precise formal meaning.

Marco Carbone 3 April, 2009



Motivation (II)

Suppose two concurrently running processes P1 and P2, working
with a shared object, called shared, under mutual exclusion, i.e.
job1(shared) and job2(shared) may not be carried out
simultaneously.

Is Petterson’s mutual exclusion algorithm defined below correct? We
could ask a tool to check.

P1 P2

---------------------------- ----------------------------

while (true) { while (true) {

req1 = true; req2 = true;

turn = 2; turn = 1;

while (req2 && turn != 1); while (req1 && turn != 2);

job1(shared); job2(shared);

req1 = false; req2 = false;

} }

Marco Carbone 4 April, 2009



Motivation (III)

The tool UPPAAL has successfully been involved in verifying
industrial cases:

• Mutual Exclusion Protocols

• Bang & Olufsen Audio/Video Protocol

• Philips Audio Protocol

• LEGO MINDSTORMS Systems

See the UPPAAL homepage (www.uppaal.com) for more
information.

Marco Carbone 5 April, 2009



Motivation (IV)

Consider a war scene at night with four wounded soldiers, an old
wooden bridge, and a torch. The soldiers must cross the bridge to
be safe.

• At most two soldiers may cross the bridge simultaneously.

• Because it’s night the torch is needed when crossing the bridge.

• The soldiers need 5, 10, 20, and 25 minutes respectively to cross
the bridge.

How long time will it (at least) take the soldiers to be safe?

Marco Carbone 6 April, 2009



Motivation (V)

We may try to solve the riddle ourselves, or we could take a model
oriented view upon the problem and get help that way.

• Specify the problem (in our case as a set of communicating finite
automata)

• Analyse (i.e. simulate or verify) the specification to solve the
problem.

Let’s investigate how the model checker UPPAAL can help simulate
and verify a model of the problem.

Marco Carbone 7 April, 2009



Communicating FAs (I)

Models may consist of several communicating FA’s.

A communicating FA (CFA) is a FA where each transition is either
an output, an input, or an internal transition.

We write q
a!−→ q′ for an output transition, q

a?−→ q′ for an input
transition, and q → q′ for an internal transition.

A CFA is defined by: M = (Q, Σ,→, q0) where Q, Σ, and q0 are as
usual and

→ ⊆ (Q× Σ× {!, ?} ×Q) ∪ (Q×Q)

Marco Carbone 8 April, 2009



Communicating FAs (II)

As an example, an (untimed) soldier may be defined by:

Marco Carbone 9 April, 2009



Communicating FAs (III)
... and the torch may be defined by:

Let’s simulate the system in UPPAAL.

Marco Carbone 10 April, 2009



Communicating FAs (IV)

CFA’s run in parallel and hand-shake synchronize on (dual)
input/output transitions.

Let M1 = (Q1, Σ,→1, q1) and M2 = (Q2, Σ,→2, q2) be CFA’s. The
composition of M1 and M2 is the FA:

M = (Q1 ×Q2, Σ,→, (q1, q2))

where→ is defined by

p
a!−→1 p′ q

a?−→2 q′

(p, q)
a−→ (p′, q′)

q
a!−→2 q′ p

a?−→1 p′

(p, q)
a−→ (p′, q′)

p −→1 p′

(p, q) −→ (p′, q)

q −→2 q′

(p, q) −→ (p, q′)

Marco Carbone 11 April, 2009



Communicating FAs (V)
Composition of CFA’s may be generalized to several CFA’s, the
composition of two or more CFA’s is called a network.

Let Mi = (Qi, Σ,→i, qi), i = 1, . . . , k, be CFA’s. Their composition
is M = (Q1 × . . .×Qk, Σ,→, (q1, . . . , qk)) where→ is

pi
a!−→i p′i pj

a?−→j p′j

(p1, . . . , pk)
a−→ (p1, . . . , p′i, . . . , p

′
j, . . . , pk)

i < j

pi
a?−→i p′i pj

a!−→j p′j

(p1, . . . , pk)
a−→ (p1, . . . , p′i, . . . , p

′
j, . . . , pk)

i < j

pi −→i p′i
(p1, . . . , pk) −→ (p1, . . . , p′i, . . . , pk)

Marco Carbone 12 April, 2009



Communicating FAs (VI)

4 soldiers plus

one torch

Marco Carbone 13 April, 2009



Communicating FAs (VII)

Closed Systems Components of a network only communicate

internally. An output,
a!−→, in Mi can be executed only if a

corresponding input,
a?−→, in some Mj, j 6= i, is enabled; and vice

versa.

Non-deterministic If a system in some state has either:

i) one internal and some other transition, or

ii) at least two transitions with the same label, then we say that the
system is non-deterministic.

Exercise Why is the system on the previous slide non-deterministic?

Marco Carbone 14 April, 2009



UPPAAL, Modeling

UPPAAL is a tool in which we can model CFA’s using a graphical
editor. In UPPAAL terminology a CFA is often referred to as a
process.

Essentially a UPPAAL model consists of:

• global declarations of channels,

• a (parameterized) template declaration for each type of CFA,

• a definition of each CFA based on its template, and

• a system definition.

There is substantial online help.

Let’s consider the model of the (untimed) riddle above.

Marco Carbone 15 April, 2009



UPPAAL, Simulation

Start the simulator by clicking on the simulator tab.

You may do either i) a random simulation, ii) choose to step through a
simulation yourself, or iii) replay a previous simulation.

Each enabled transition is listed as either a process name in case of
an internal transition, or as a triple: the resulting action, the output
process, and the input process.

The result of the simulation is displayed as a MSC and the current
state of each CFA is displayed together with a proposed enabled
transition (if any).

Marco Carbone 16 April, 2009



UPPAAL, Verification (I)

Simulation is a manual process where the path of transitions followed
is decided by the user, or perhaps randomly by the simulation tool.

E.g., if we would like to validate if it’s possible for all the four soldiers
to be safe we must (more or less systematically) select a simulation
path where all soldiers is in their safe state.

In real life models it may be an almost impossible task to make sure
by simulation that a certain state in a composed system is reachable.

With the help of a verification tool we can have the states of a model
explored automatically .

Marco Carbone 17 April, 2009



UPPAAL, Verification (II)

The verifier is started clicking the verifier tab. Verification is carried
out issuing queries to the system.

For instance, in our example, we would like to reach a state where the
following proposition holds:

Soldier1.Safe and Soldier2.Safe and Soldier3.Safe and Soldier4.Safe

Stating that a proposition p holds in some state is written E<>p. Lets
ask UPPAAL the query:

E<> Soldier1.Safe and Soldier2.Safe and Soldier3.Safe and Soldier4.Safe

As an option we can have a diagnostic trace shown in the simulator.

Marco Carbone 18 April, 2009



UPPAAL, Verification (III)

We may be interested in checking also if a proposition is true or not in
all states the system can reach.

That p holds in all states is written A[]p.

As an example, we would expect that the torch is on the safe side
only if at least one of the soldiers is also there:

A[] Torch.Safe imply

(Soldier1.Safe or Soldier2.Safe or Soldier3.Safe or Soldier4.Safe)

Not all queries are true, e.g. the one below is false. Why?

A[] Soldier1.Safe imply (Soldier2.Safe or Soldier3.Safe or Soldier4.Safe)

Marco Carbone 19 April, 2009



UPPAAL, Verification (IV)

Queries are interpreted relative to the traces the composed CFA’s
can execute. A trace is a finite sequence

q0 −→ . . .
a1−→−→ . . .

a2−→−→ . . .
ak−→−→ . . . q

E means that there exists a trace, and A means for all traces.

<> means for some state in a trace, and [] means for all states in
a trace.

The standard query operators UPPAAL allows are:

• E<> p: p holds in some reachable state.

• A[] p: p holds in every reachable state

• E[] p: p holds in every state along some path

• A<> p: p holds in some state along every path

Marco Carbone 20 April, 2009



Extended CFAs (I)

A CFA may be extended with variables. The execution of a transition
may depend on the value of variables.

q
a!, x>10−−−−−→ q′

means that there is a transition from q to q′ but only if the value of x is
greater than 10. A boolean condition, like x > 10, is called a guard.

The values of variables may be assigned when performing
transitions.

q
a?, x>10, y:=5−−−−−−−−−→ q′

sets the variable y to 5.

In UPPAAL 4.0 assignments may involve user defined functions.

Marco Carbone 21 April, 2009



Extended CFAs (II)

Here is a user of a bank account:

Marco Carbone 22 April, 2009



Extended CFAs (III)

and the account is specified by:

The account must never be negative, i.e. A[] x >= 0.

Marco Carbone 23 April, 2009



Extended CFAs (IV)

Suppose a user requesting for entering a critical section. A template
for such a user could be specified by:

Marco Carbone 24 April, 2009



Extended CFAs (V)

We let the controller (template) for the user be defined by:

Instantiating two users, P1 and P2, with each their controller we
observe that

A[] (P1.CS imply !P2.CS) and (P2.CS imply !P1.CS)

doesn’t hold.

Marco Carbone 25 April, 2009



Extended CFAs (VI)

A template (with parameters: req, enter, cs, leave, r, s, i, j) for
Petterson’s algorithm may be defined by:

Marco Carbone 26 April, 2009



Extended CFAs (VII)

Now, two users, P1 and P2, each controlled by Petterson’s algorithm
may never enter their critical section simultaneously.

Let’s study the model and let’s check

A[] (P1.CS imply !P2.CS) and (P2.CS imply !P1.CS)

Marco Carbone 27 April, 2009



Exercises

1. If UPPAAL is not installed on your computer go to the UPPAAL
homepage, www.uppaal.com, follow the instructions for
downloading UPPAAL and install it.

2. Define two CFAs, one being a vending machine selling coffee and
one being a customer. Let the coffee machine require 7 DKK pr.
cup of coffee. The input to the machine should be coins of size
DKK 1, 2, and 5. Simulate your model.

3. Check relevant queries to your system in UPPAAL. For instance, it
should be possible for the user to get a cup of coffee.

4. Let your system from above now consist of two customers, make
sure that buying coffee is carried out under mutual exclusion. How
to validate the last property?

Marco Carbone 28 April, 2009


	Title slide
	Overview, todays lecture
	Motivation (I)
	Motivation (II)
	Motivation (III)
	Motivation (IV)
	Motivation (V)
	Communicating FAs (I)
	Communicating FAs (II)
	Communicating FAs (III)
	Communicating FAs (IV)
	Communicating FAs (V)
	Communicating FAs (VI)
	Communicating FAs (VII)
	UPPAAL, Modeling
	UPPAAL, Simulation
	UPPAAL, Verification (I)
	UPPAAL, Verification (II)
	UPPAAL, Verification (III)
	UPPAAL, Verification (IV)
	Extended CFAs (I)
	Extended CFAs (II)
	Extended CFAs (III)
	Extended CFAs (IV)
	Extended CFAs (V)
	Extended CFAs (VI)
	Extended CFAs (VII)
	Exercises

