# Urea Formaldehydes and Triazones: What We Know





KOCH AGRONOMIC SERVICES, LLC

# **Overview**



ES LLC

KOCH AGBONOMIC SERVI

- The agronomic case
- What it is
- How it works
- How it is used
- Results



- N is the most widely limiting nutrient for non-legume crops
- N is a building block for protein and part of chlorophyll
- Adequate levels required for optimal growth and seed production
- Nitrogen can be lost through volatilization, leaching and denitrification

### **Nitrogen Uptake Demand**





© 2013 Koch Agronomic Services, LLC

KOCH AGRONOMIC SERVICES, LLC

### NITROGEN UPTAKE AND APPLICATION TIMING





Generalized nitrogen uptake pattern in corn.

Adapted from: Soil and Water Conservation Unit, USDA, ARS and Univ. of Nebraska

#### **GROWER ECONOMICS OF N FERTILIZER APPLICATIONS**

#### KOCH AGRONOMIC SERVICES, LLC

#### **CORN RESPONSE TO N APPLICATIONS IN KENTUCKY - 2011**



Source: Grove, 2011

### SEASONAL AFFECT ON FERTILIZER

EXAMPLES OF CROP RESPONSE



Enhanced efficiency fertilizers reduce the influence of weather on nitrogen loss.

KOCH AGRONOMIC SERVICES, LLC

#### FERTILIZER RATE



© 2013 Koch Agronomic Services, LLC

KOCH AGRONOMIC SERVICES, LLC

#### CUMULATIVE NITROGEN LOSS VIA VOLATILIZATION





#### Compilation of university lab and field volatilization studies

Sources: North Dakota State University, Oregon State University, Auburn University, University of Florida

### **Leaching and Denitrification**





## Nitrification: Ammonium $(NH_4^+)$ transforms to Nitrate $(NO_3^-)$



Microbes

NH<sub>4</sub><sup>+</sup> NH<sub>4</sub><sup>+</sup>NH<sub>4</sub><sup>+</sup>

© 2013 Koch Agronomic Services, LLC

Nitrate can move below the root zone with water because it does not adsorb to soil.



#### Sandy soil: leaching

()

0

In heavy clay soils that are flooded with water, microbes convert nitrate to  $N_2O$  gas, which floats away into the air.



Clay soil: Denitrification



- Optimal year "top off the tank"
- Wet year Nitrogen loss needs to be replaced
- Moderate drought foliar is a direct path
- Other stresses cold, pests, delay maturity
- CPC activity
- Uptake of other nutrients



# Untreated



# **Overview**



- The agronomic case
- What it is
- How it works
- How it is used
- Results

# UF's and triazones – batch process











Urea Formaldehyde

#### CONVERSION OF UF AND TRIAZONE POLYMERS TO PLANT-AVAILABLE FORMS OF NITROGEN



© 2013 Koch Agronomic Services, LLC

nitrate.



#### TRIAZONE



© 2012, Koch Agronomic Services, LLC.



#### TRIAZONE



© 2012, Koch Agronomic Services, LLC

#### **Release Curves for Various Methylene Urea Chains**



- Slow Release Nitrogen
  - Delay N availability
  - N available through chemical/biological breakdown
  - Release rate determined by:
    - Chemical structure
    - Molecular weight
    - Environmental conditions



# Nitamin<sup>®</sup> enhanced efficiency fluid N fertilizer

- o Liquid, slow-release N fertilizer
- Patented urea-based polymer
- o Clear water soluble solution
- Nitrogen released by methylene urease enzyme
- Release rate is dependent on temperature and biological activity



• 
$$Q_{10} = 2$$

# **Overview**



- The agronomic case
- What it is
- How it works
- How it is used
- Results

# **Fluid foliar applications**



KOCH AGRONOMIC

- Low rates
- Aerial or high-clearance equipment
- Typically combined with fungicide application
- Stress recovery or supplemental N

# Drip fertigation – high value crops









© 2013 Koch Agronomic Services, LLC

### FOLIAR UPTAKE MECHANISM





### FOLIAR UPTAKE MECHANISM



- Foliar applied fertilizers uptake is through leaf cuticle
- Nonpolar molecules (e.g., UF and Triazones) pass easier through leaf cuticle than polar molecules (e.g., NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>)
- Leaf cuticle pores diameter range between 1–5 nm while urea molecule has a diameter of 0.42 nm
- Methylene urea and Triazones have diameter ranging at 0.84–1.26 nm



### **FOLIAR APPLICATION**







#### MU/Triazone fertilizer 30-0-0

Liquid Urea 20-0-0

#### 30 minutes after application

\*Only nutrients in solution can be absorbed by leaf surface



Nitamin® 30L fertilizer vs. urea solution From day 3 to 14 Nitamin fertilizer treated leaves had up to a 33% increase in total N



© 2013 Koch Agronomic Services, LLC

**KOCH AGRONOMIC SERVICES, LLC** 

#### WINTER WHEAT YIELD IN WASHINGTON





- •115 lbs N/acre was deep banded at planting through conventional fertilizer
- •Within time of application, bars followed by the same letter are not statistically different
- •Source: Washington State University, 2009.



## **Corn Yields in Missouri**





### Corn Yield (bu/acre)



Source: Dr. Kelly Nelson, U of Missouri

© 2013 Koch Agronomic Services, LLC

### Foliar on corn - Iowa



© 2013 Koch Agronomic Services, LLC

Source: Dr. Robertson, Iowa State University, 2008

### **Cotton Defoliation Trial**

Treatments:

- 1. Mepiquat Cl alone at 3.2 fl oz/acre, or
- 2. Mepiquat CI combined with Nitamin® 30L at 8 or 16 fl oz/acre

Measurements:

- Defoliant applied Sept. 7, 2006
- Defoliation % measured 6 and 11 dat
- Regrowth evaluated 18 dat
- Harvested 19 dat (9/26/06)



| Treatment                                                                              | Defoliation<br>(%)<br>6 DAT | Defoliation<br>(%)<br>11 DAT | Regrowth<br>(%)<br>18 DAT | Yield<br>Ib./acre<br>19 DAT |
|----------------------------------------------------------------------------------------|-----------------------------|------------------------------|---------------------------|-----------------------------|
| Mepiquat Cl<br>3.2 fl oz/ac                                                            | 43.3                        | 66.7                         | 31.7                      | 924                         |
| Mepiquat Cl<br>3.2 fl oz/ac +<br>NITAMIN <sup>®</sup> 30L<br>8 fl oz/ac                | 60.0                        | 76.7                         | 25                        | 1023                        |
| Mepiquat Cl<br><b>3.2 fl oz/ac +</b><br>NITAMIN <sup>®</sup> 30L<br><b>16 fl oz/ac</b> | 66.7                        | 88.3                         | 28.3                      | 1020                        |

Source: Dr. Charles Burmester, Auburn University, 2006

### **Improved Nutrients Absorption of**



Foliar treatments applied on snap beans at R1



© 2013 Koch Agronomic Services, LLC

Nitamin<sup>®</sup> 30L Valencia Orange Trial: Foliar Lake Alfred, FL, 2005 - 2007

Nitrogen Fertilizer Program: 180 lbs N/A



Nitamin<sup>®</sup> 30L – 60 lb. N foliar applied from 30L in two equal sprays at bloom and five weeks later. Plus 120 lb. N was applied using a conventional fertilizer source (8-2-8) in two ground applications (Feb & Oct.). A total of 180 lb. N/acre/year was applied.

Conventional program - 8-2-8 was ground applied in three equal split applications (Feb, April & Oct.) to supply a total of 180 lb. N/acre/year. Location: Flatwoods grove

© 2013 Koch Agronomic Services, LLC

Nitamin<sup>®</sup> 30L Valencia Orange Trial: Foliar Lake Alfred, FL, 2005 - 2007

Boxes/acre



Nitamin<sup>®</sup> 30L – 60 lb. N foliar applied from 30L in two equal sprays at bloom and five weeks later. Plus 120 lb. N was applied using a conventional fertilizer source (8-2-8) in two ground applications (Feb & Oct.). A total of 180 lb. N/acre/year was applied.

Conventional program - 8-2-8 was ground applied in three equal split applications (Feb, April & Oct.) to supply a total of 180 lb. N/acre/year.

Year to year change: Hurricane recovery and biennial yield cycle (Albrigo and Syvertsen)

#### Source: Dr. Albrigo and Dr. Syvertsen, UF/IFAS, 2005-2006

**N-Leaching Study** 



Bermudagrass leaching trial results:  $NH_4 + NO_3$ 



Total applied: 88 lb N per acre

Source: Dr. John Cisar, UF/IFAS, 2006

© 2013 Koch Agronomic Services, LLC

### Ammonia Volatilization Study



Source: Dr. Miguel Cabrera, University of Georgia, 2006

### Fletcher, NC – Sept 15, 2005 Prior to 2<sup>nd</sup> harvest



Nitamin<sup>®</sup> 30L left

grower standard right

(both applied at 200 lb. N/acre)

Source: Dr. Doug Sanders and Dr. Luz Reyes, NC State U., 2005

Tomato yields, Clinton, NC 2005 (25# boxes/Acre)



| Treatment  | Total | Marketable |
|------------|-------|------------|
| 200 Std    | 1621  | 1441       |
| 300 Std    | 2004  | 1766       |
| 150 30L    | 1995  | 1789       |
| 200 30L    | 2121  | 1857       |
| 250 30L    | 1984  | 1779       |
| LSD < 0.05 | 265   | 302        |

Std – NaNO<sub>3</sub> injected in weekly applications providing 150 or 250 lb. N per acre during the growing season

Source: Dr. Doug Sanders and Dr. Luz Reyes, NC State U., 2005

Tomato Nutrient Removal NC State Trial, Fletcher, NC, 2005



### Nitrogen

| TMT.     | g/plant | lb./acre |
|----------|---------|----------|
| 200 Std  | 6.4     | 70.5     |
| 300 Std  | 6.9     | 76.1     |
| 175 30L  | 10.1*   | 111.3    |
| 250 30L  | 10.0*   | 110.2    |
| 175 Dry  | 10.9*   | 120.1    |
| 250 Dry  | 10.4*   | 114.6    |
| LSD 0.05 | 2.2     |          |



Nitamin<sup>®</sup> 30L

**Grower Standard** 

Source: Dr. Doug Sanders and Dr. Luz Reyes

KOCH AGRONOMIC SERVICES, LLC

### Fletcher, NC – Sept 15, 2005 Before 2<sup>nd</sup> harvest top, after harvest bottom





© 2013 Koch Agronomic Services, LLC

# Nitamin<sup>®</sup> Foliar Fertilizer on Corn



- Replicated research results from two years of trials at four Midwestern universities show
  - Foliar application of 2 gallons per acre at tasseling increased corn yield an average of 7 bushels per acre



Average of a study conducted at four Midwestern universities over two years.

Trial conducted by lowa State University the labeled rate of a strobilurin fungicide.



Benefits of Foliar Applications of Methylene Urea

- Higher N concentration than liquid urea
- Lower leaf burn potential
- Humectant properties (keeps leaf wetter longer)
- Good tank mix partner for other CPC's
- Effective nitrogen delivery at critical growth stages

### **BLENDING "WATCH-OUTS"**



- Jar blends should always be performed at the customer site and monitored for required stability
- Do not make UF & Triazone blends that are below pH 5
- Blends with a pH below 7 will not be stable for extended periods (depends on pH)
- Blends with pH 5-7 should be used quickly

# Thank You

© 2013 Koch Agronomic Services, LLC; NITAMN<sup>®</sup>, NITAMIN NFUSION<sup>™</sup>, and the NITAMIN<sup>®</sup> logo, are trademarks of Koch Agronomic Services, LLC. Owners of other trademarks referenced herein retain their respective rights. The data and material contained herein are provided for informational purposes only. No warranty, express or implied, is made including, but not limited to, implied warranties of merchantability and fitness for a particular purpose, which are specifically excluded. Results may vary based on a number of factors, including environmental conditions. Before use, consult the product packaging and labeling for information regarding the product's characteristics, uses, safety, efficacy, hazards and health effects. Certain of the studies referred to in this presentation were funded in whole or in part by Koch Agronomic Services, LLC or its predecessors.

# KOCH AGRONOMIC SERVICES, LLC