
Usage–Centric Adaptation of Dynamic E–Catalogs
�

Hye-young Paik, Boualem Benatallah, and Rachid Hamadi

School of Computer Science and Engineering, The University of New South Wales
Sydney, NSW, 2052, Australia�

hpaik,boualem,rhamadi � @cse.unsw.edu.au

Abstract. Although research into the integration of e-catalogs has gained con-
siderable momentum over the years, the needs for building adaptive catalogs have
been largely ignored. Catalogs are designed by system designers who have a pri-
ori expectations for how catalogs will be explored by users. It is necessary to
consider how users are using catalogs since they may have different expecta-
tions. In this paper, we describe the design and the implementation of a system
through which integrated product catalogs are continuously adapted and restruc-
tured within a dynamic environment. The adaptation of integrated catalogs is
based on the observation of customers’ interaction patterns.

1 Introduction

In recent years, integration of e–catalogs has gained considerable momentum because of
the emergence of online shopping portals, increasing demand for information exchange
between trading partners, prevalent mergers and acquisitions, etc [10]. In approaches
that address the problem of e–catalogs organisation and integration, a product catalog
is usually structured in a category–based hierarchy [10, 7]. Catalogs are designed in a
“one–view–fits–all” fashion, by a system designer who has a priori expectations for how
catalogs will be “explored” by customers. However, the customers may have different
expectations. Therefore, it is necessary to take into consideration how the customers are
using the catalogs to continuously minimise the gap between expectations of the system
designer and customers. For example, in a catalog for computer parts, assume that it is
repeatedly observed that many users always use product category RAM right after using
category CPU. If the administrator merges the two categories and creates a new category
CPU&RAM, users now only need to visit this new category once for information of both
products.

In this paper, we describe the design and the implementation of a system, called�����	��

��
��������������
, through which existing online product catalogs can be integrated

and the resulting integrated catalogs can be continuously adapted and restructured
within a dynamic environment. The catalogs integration framework used in this paper
originates from a previous project on integration of Web data, called WebFINDIT [4].
Based on this framework, we propose a usage–centric technique for transforming cat-
alogs organisation. It should be noted that the focus of this paper is not on catalogs
integration. The objective is to continuously improve the organisation of catalogs by
being responsive to the ways customers navigate them in searching for products. The
proposed approach offers the following features: (i) Catalog navigation and access
�

This work is partially supported by the grant URSP-PS00059.

model – this model provides a set of actions, called catalog interaction actions, that
users would perform while accessing catalogs, (ii) Catalog transformation operations
– these operations are used to transform the structure and organisation of catalogs, and
(iii) Predefined sequences of catalog interaction actions – these sequences represent
pre–identified interaction patterns of users. They can be considered as heuristics for
catalog transformations. Discovery of these patterns help administrators decide what
kind of transformations would be desirable to improve the organisation of catalogs.
Transformations of a catalog over time, result in offering improved alternative of its
organisation based on user interaction patterns.

The remainder of this paper is organised as follows. Section 2 overviews the design
of

��� � ��
 ��
�� ��� �������
. Section 3 presents a formal model for integrated catalogs and

user interaction actions. The catalog reorganisation operations, predefined interaction
sequences (PISs), and the confidence of a PIS are introduced in Sect.4, Sect.5, and
Sect.6 respectively. Section 7 presents the results of simulation studies. Finally, Sect. 8
discusses related work and concludes the paper.

2
�������	��
���
������������

: Design Overview

In this section, we give the intuition behind the main concepts that are used in�����	��

��
��������������
, namely, catalog communities and eCatalogs–Net. The formalisation

of these concepts will be presented in the next section.

2.1 Catalog Communities

A catalog community1 is a container of catalogs which offer products of a common
domain (e.g., community of Laptops). It provides a description of desired products
without referring to actual sellers (e.g., a seller of IBM Laptops). We illus-
trate catalog communities with computers and related services domain (see Fig.1).

OS

Components

Memory

VideoCard

Mother

Board

SoundCard

Processors

Hardware

AllCatalog

System
 Storage

Data

Recovery
 RAID
 TapeDrive

Data

Storage

Service

Optical

CableModem

Internet

Peripherals

Modem
 HardDrive
 Display
 Keyboard

Software

Digital

Camera

Printer

SubCommunityOf

PeerCommunityOf

Home

Networking

wrap
 wrap

wrap

HP Printer
 EPSON

CatridgeReplacement

0.7

0.3

0.8

members of Printer

Member of a community

Fig. 1. eCatalogs–Net: Organising catalog communities

There are two types of relationships defined between catalog communities:
SubCommunity–Of and PeerCommunity–Of. SubCommunity–Of relationships repre-
sent specialisation between domains of two catalog communities (e.g., Printer is

1 We use the terms catalog community and community interchangeably.

a sub–community of Peripherals). We assume that, each catalog community has
at most one super–community. PeerCommunity–Of relationships are viewed as a refer-
ral mechanism in that when the user can not find (or is not satisfied with) information
from a catalog community, s/he can refer to other communities that the catalog commu-
nity consider as its peers (e.g., community Display is a peer community of Video-
Card). It should be noted that, we do not assume that the opposite (i.e., VideoCard is
a peer community of Display) systematically holds. A weight (a real value between�

and �) is attached to each PeerCommunity–Of relationship to represent the degree
of relevancy as a peer. Note that communities can also forward queries to each other
via PeerCommunity–Of relationship. We call this organisation of catalog communities
eCatalogs–Net. Any catalog community that is not a sub–community of any other com-
munity is related to AllCatalog via SubCommunity–Of relationship.

Each catalog community has a set of attributes that can be used to query the un-
derlying catalogs. We refer to the set of attributes as community product attributes. For
example, catalog community that represents “CD–Readers and Writers” would have
community product attributes such as Maker, Read-WriteSpeed, Price, etc.

2.2 Catalog Registration

In order to be accessible through a community, product sellers need to register their
catalogs with the community. A catalog provider is known to a community by providing
(i) a wrapper, (ii) an exported interface, and (iii) a mapping between exported interface
and community product attributes. The wrapper translates

��� � ��
 ��
 ����� �������
queries

to local queries, and output of the local queries are translated back to the format used
by

��� � ��
 ��
�� ��� ��� � �
. The exported interface defines the local product attributes for

querying information at the local catalog. A local catalog supplier also should provide
operations, such as ordering or payment for the products. However, the focus of this
paper is not on specifying transactional operations. Detailed description on provisioning
such operations in the context of Web services is presented in [1]. Users may use a
community to express queries that require extracting and combining product attributes
from multiple underlying product catalogs (e.g., price comparison). We refer to this
type of queries as global queries. Global querying is achieved by using community
product attributes which do not directly correspond to product attributes. Therefore,
when a product catalog is registered with a community, the catalog provider should
also define mapping between local product attributes and community attributes. We call
this mapping Source–Community mapping. Note that a community can be registered
with another community. By doing so, the members of the first community also become
members of the second community.

2.3 Searching and Querying Product Information

Users in
�����	��

��
������ ��� � �

will typically be engaged in two–step information–seeking
activity: (i) navigating communities for product catalogs location and semantic explo-
ration (e.g., get communities that are relevant to selling laptops) and (ii) querying se-
lected communities or catalogs for products information (e.g., compare product prices).
Users would have a specific task to achieve (e.g., product items they wish to purchase, a

category of products they want to investigate) when using product catalogs. We assume
that they use the following strategy2 :

1. Start at the root (i.e., AllCatalog), or at a specific community (if they know the
location of the catalog community).

2. While (current community C is not the target community T) do
(a) If any of the SubCommunity–Of relationships of C seems likely to lead to T,

follow the relationship that appears most likely to lead to T.
(b) Else, if any of the PeerCommunity–Of relationships of C seems likely to lead

to T, follow the relationship that appears most likely to lead to T.
(c) Else, either backtrack and follow SuperCommunity–Of relationship of C, or

give up.

Once the user has reached the target, s/he will submit a query to the target. If the user
ends up in the same community again in step 2(a) or 2(b), s/he will follow a different
relationship, since her/his reasoning of which relationship is likely to lead to the target
has changed by then.

3 Modelling Catalog Communities and User Interaction

In this section, we present a model for formally representing communities, eCatalogs–
Net, and consistency of eCatalogs–Net. The model also identifies a set of actions that
users can perform when interacting with the eCatalogs–Net. The proposed model forms
the basis for defining catalog restructuring operations and user interaction patterns (see
Sect. 4 and Sect. 5).

3.1 eCatalogs–Net

We give the definition of a community first and then eCatalogs–Net.

Definition 1 (Catalog Community). A catalog community
�

is a tuple���������
	��
�������������������
������������	�	������

!�"����
#���$%
&� ' ����)(���	�*�����+�,
where:

–
���
	��
�

is the name of the community
�

,
–

���-���'�������
�����
is a set of pairs

�/.0�21�,
, where

.
is a property of the community and1

is a value of
.

(e.g., (Domain, “CD Writers”)),
–

���
	�	����0�
 �!�"����'#'��$% �&' �
�
is a set of attribute-type pairs

�3�' � ��2 �!
.��
,
, where

�' �
is

a community product attribute (i.e., a global attribute) and
 �!
.��

is the type of
�' �

(e.g., (“ModelNumer”, Integer)),
–

(��
	�*��'��+
is a set of members. A member can be either a product catalog or another

catalog community and is defined as a pair
�4	5��#��6	���.�,

where
	5�%#

represents the
identifier of the member and

	��-.
contains the Source–Community mapping. 7

Definition 2 (eCatalogs–Net). An eCatalogs–Net is a labelled directed graph���������28�9:�28�;
�)<0�)=:,
where:

2 [13] uses a similar strategy for browsing and searching Web documents.

–
�

is a finite set of nodes. A single node represents a catalog community,
–

8 9�� ��� �
is a finite set of directed edges (representing SubCommunity–Of),

–
8 ;�� ��� �

is a finite set of directed edges (representing PeerCommunity–Of),
–
<��-8 ;���� 	 ��

�

is a weighting function (initially each edge in
8 ;

receives a neutral
weight of 0.5), and

–
=���� ���

is a naming function where
�

is a set of catalog community names. 7
To be consistent, an eCatalogs–Net must satisfy the conditions given in the definition
below:

Definition 3 (Consistent eCatalogs–Net). The eCatalogs–Net
��� ������8 9 �28 ; �2<��2=:,

is
consistent if and only if the following conditions are satisfied:

1. The naming function
=

is injective (that is, there will not be two communities with
the same name),

2. The graph
��� 9 � �����28�� 99 �)=:,

(generated from the sub-graph
� 9 ��� ����8 9 �2=:,

of
�

by
inverting the edges) is a tree. The root of the tree is

&��������' ����'���
,

3.
8 ;�� � 8 9�� 8�� 99 ,�� ���

(where
8 �

denotes the transitive closure of E, i.e.,�)���"!�,$# 8 �
iff there is a directed path from

�
to
!

in
8

). 7

3.2 Permissible User Actions

The permissible actions, noted % , for exploring eCatalogs–Net are listed in Table 1. By
modelling user interaction actions, the system can capture them for future use.

Table 1. Permissible User Actions & in eCatalogs–Net

Action Name Description

NavigateToSub(Community c) The user goes from the current catalog community
to one of its sub–communities c.

NavigateToSuper() The user goes from the current catalog community
to its super–community.

NavigateToPeer(Community c) The user goes from the current catalog community
to one of its peer communities c.

LeaveCatalogCommunity() The user leaves the current catalog community.
The user is taken to AllCatalog.

ShowMembers(Constraint s) The user requests to show members of the current
catalog community satisfying the constraint s.

SubmitQuery(Query q) The user submits the query q to the current catalog
community. It could be a global query which uses
the community product attributes, or a source
query which concerns one member of the community.

Every time a user invokes one of the permissible actions at a catalog community,�����	��

��
��������������
keeps that event in the system log file. The log file is, later, organ-

ised into sessions and for each SubmitQuery action in a session, all of the product

attributes selected by the query are identified. A session in
��� � ��
 ��
 ����� �������

is an
ordered sequence of actions performed by a single user, where the time difference be-
tween any two consecutive actions in the sequence should be within a time threshold,����������	
����
��

defined by an administrator.

4 Restructuring eCatalogs–Net

We now describe a set of restructuring operations on eCatalogs–Net. These operations
are used, for example, to change the relationships between catalog communities, re-
move a catalog community, or merge catalog communities. They can be performed
at an administrator’s own discretion. In the next section, we will introduce predefined
interaction sequences which provide means to observe the user’s interaction patterns.
The observation will help decide which operation to perform in order to improve the
organisation of the eCatalogs–Net.

An operation is applied to a consistent eCatalogs–Net
� ��� ����8 9 �28 ; �)<0�)=:,

and pro-
duces a consistent eCatalogs–Net

� ��� �����3�28 � 9 ��8�� ; �2< �3�)=
� , . For space reasons, we do not
give detailed description of each operation. We only describe operations for merging
and splitting catalog communities. It should be noted that each high level operation is
defined as a sequence of primitive operations. The primitive and high level restructuring
operations are summarised in Table 2.

Moving a Community. The operation moveCatComm()moves a community c from
one place to another, by changing its super–community. This operation is used, e.g.,
when an administrator is convinced that the current super–community of � does not
represent the domain of products in � properly. For example, in Fig.1, assume that the
community HardDrive is sub–community of Peripherals and the user naviga-
tion behaviour shows that community Storage is more suitable super–community for
HardDrive. This may suggest that it is beneficial to move HardDrive to Stor-
age. When a community c is moved, all of its sub–communities are moved with it.
Having this assumption creates less overhead, since sub–communities of c do not get
affected by the change. The effects of this operation are described in Fig.2.

A

B
 C

D
 E

G
 I
H

F

Move

Z
Y
 A

B
 C

D
 E

G
 I
H

F

Z
Y
 A

B
 C

D
 E

G
 I
H

F

Z
Y
 A

B
 C

D
 E

G
 I
H

F

Z
Y

Inconsistency

Fig. 2. Moving a catalog community

The community E is moved from its super–community B to the new super–
community C. E’s sub–communities, i.e., G and H remain as sub–communities of E.

Table 2. eCatalogs–Net Restructuring Operations

Primitive Operations
setCatalogName(Community � , String �) : Set the name of � to � .
addPeer(Community ��� , Community ���): Add PeerCommunity–Of from ��� to ��� .
delPeer(Community ��� , Community ���): Delete PeerCommunity–Of from ��� to ��� .
updatePeer(Community ��� , Community ��� , Weight �): Update the weight of

PeerCommunity–Of from ��� to ��� by � .
addSub(Community ��� , Community ���): Add SubCommunity–Of from ��� to ��� .
delSub(Community ��� , Community ���): Delete SubCommunity–Of from ��� to ��� .
createCatComm(Name � , GeneralInfo 	�
 , Members � , CommunityPro-
ductAttr 	�
): Create a new catalog community with the information given. create-

CatComm must be followed by addSub operation.
superCatComm(Community �): Return the super–catalog community of � .
subCatComm(Community �): Return a set of catalog communities which directly have
SubCommunity–Of relationship with � (direct sub–communities).
indSubCatComm(Community �): Return a set of catalog communities which, directly
or indirectly, have SubCommunity–Of with � (indirect subcommunities).

High Level Operations
mergeCatComm(Community ��� , Community ��� , Name �): Merge two existing
communities ��� and ��� and set the name of the new catalog community to � .
splitCatComm(Community � , GeneralInfo 	�
�� , Name � , GeneralInfo

	�
 , CommunityProductAttr ����� , Query � , setOfCommunities
����):
Split catalog community � into two separate communities. 	�
�� contains new specification of��� � ��� ����������� for � . � , 	�
 , and ����� contain specification of the new community (����� � ,��� � ��� ����������� , and ��!�������"
�#�$�% � ��&��"��#�'�#�# � respectively). � is a query which will be used by
the operation to select members to be moved from � to the new community.
���� is a set of
sub–communities to be moved to the new one.
delCatComm(Community �): Remove the catalog community � from eCatalogs–Net.
Used, for example, when a community becomes obsolete (e.g., has no useful existence
inside the eCatalogs–Net).
moveCatComm(Community ��� ,Community ���): Move ��� to new super–community ��� .

However, since a catalog community cannot be a peer of its super–community, the
PeerCommunity–Of relationship from H to C has to be deleted.

Merging Communities. The operation mergeCatComm()merges two communities
c and

$ �
which have the same super–community3. It is used, e.g., when it is observed

that the two catalog communities c and
$ �

are always accessed together. Hence, it is
beneficial that these two catalog communities are merged, so that the majority of users
do not have to visit two separate communities each time. Figure 3 illustrates the effects
of mergeCatComm().

It shows that a new community is created from merging communities B and C. The
super-community of the new community is the super-community of B and C (i.e., A). All

3 Note that, in this paper, we only consider merging of two communities, but the operation can
be generalised to more than two communities.

A

B
 C

D
 E
 F

M
 N

Merge

Z
Y

A

B
 C

D
 E
 F

M
 N

Z
Y

B&
 C

All these cause inconsistency

 when B and
 C
 are merged

A

B
 C

D
 E
 F

M
 N

Z
Y

B&
 C

A

B
 C

D
 E
 F

M
 N

Z
Y

B&
 C

A

B
 C

D
 E
 F

M
 N

Z
Y

B&
 C

A

D
 E

M
 N

Z
Y

B&
 C

F

Fig. 3. Merging two catalog communities of the same super–community

sub–communities of B and C (i.e., D, F and G) are sub-communities of the new commu-
nity. All PeerCommunity–Of relationships between B and C, as well as between B and
all of C’s sub–communities, C and B’s sub–communities should be deleted to maintain
the consistency of the eCatalogs–Net. Also, all PeerCommunity–Of relationships com-
ing from other communities into B and C need to be updated, i.e, the PeerCommunity–
Of relationships would refer to the name of the new community, instead of B and C.

Splitting a Community. The operation splitCatComm() splits an existing cata-
log community into two separate communities. This operation is used, e.g., when it is
observed that the community represents a domain (described by community product
attributes) which can be divided into smaller sub-domains. This situation is illustrated
in Fig.4. Note that as a result of split, one new community is created out of an existing
one. The definition of the existing community is updated to reflect this change (e.g.,
remove community product attributes, or members that have been moved to the new
community).

Figure 4 illustrates that when the community B is split, a new community �
�

is
created out of B. All incoming and outgoing PeerCommunity–Of relationships of B are
inherited by �

�
. Also, if it is necessary, some of the sub communities of B can be moved

to �
�
.

A

D
 E
 F

M
 N

Sp
lit

Z

B

H

I

A

B

D
 E
 F

M
 N
 Z

H

I

B'

A

B

D
 E
 F

M
 N

Z

H

I

B'

A

B

D
 E
 F

M
 N

Z

H

I

B'

F
 Moved to B'

Fig. 4. Splitting a catalog community

The split of an existing catalog community needs careful consideration about “how”
each element in the community should be treated. It is an administrator’s responsibility

Table 3. Other Predefined Interaction Sequences
Predefined Interaction Sequences

Deleting a community : Identify a community from which users are constantly leaving
without performing any further action.
%�������������	�
�

��� ��� � ��� � ������� � ��� � ���#�������	� ��!�������"
�#�$�� � ����� , where � ��� � ��� � ,
� ��� � ��� ���! #"%$& (' "" , and � � �

������
�	���# ��) ������� � ������
�	���# ��) ������� ��� � .
Merging communities (Case 1): Identify two sub–communities of the same
super–community which are always accessed together (not via PeerCommunity–Of).
%����
��+*�,�� " ���-�������
�#/.�� ��� $(� ��� � � "���� ������
�	���# ��) �0����� ��� � ��� � �21 ��� ������
�	���# ��) �0�����-� �21 � ��� ���
�������
�#3.�� ��� $�� � ��� ��4 �%� , where � ��� � �5� � 1�� � and � � �6� � 1���� � � �5� � 16�7�8 " .
Merging communities (Case 2): Identify a catalog community and its super comm-
unity are always queried together.
%����
��+*�,���4 ���-�������
�#/.�� ��� $(� ��� � � "���� �#� ��� � ��� ��� �������
�#/.�� ��� $(� ��� � � 4 �9� , where
� � �

������
�	���# ��) �0����� ��� � ������
�	���# ��) �������
� , � ��� � ��� � , and � � �5� � ���:�; " $< (' "" .
Merging communities (Case 3): Same as %"���
��+*�,�� " , but uses ������
�	���# ��) ��% �����
%�����
��+*�,���=>���-�������
�#/.�� ��� $(� � ��� � " ��� ������
�	���# ��) ��% ����� � � ��� � ����� �������
�#/.�� ��� $(� � ��� �04 �9�
where ��� � ��� � � and � ��� � ��� �7�; 4 .

to decide how the attributes GeneralInfo, CommunityProductAttr, Mem-
bers and SubCommunity–Of relationships should be initialised. This information is
specified via the operation parameters (see Table 2).

5 Predefined Interaction Sequences

Predefined interaction sequences represent foreseeable user’s interaction behaviour,
therefore can be predefined. In our approach, we use these sequences of actions to
help identify situations where the organisation of an eCatalogs–Net may be improved
through restructuring operations. Any particular sequence of actions with prevalent oc-
currences should be recognised as a recurring user interaction pattern. Each interaction
pattern identified suggests a restructuring operation. A Predefined Interaction Sequence
(PIS) is formally defined as follows:

Definition 4 (Predefined Interaction Sequence (PIS)). A predefined interaction se-
quence PIS of length ? � ?A@ � ,

is a vector of ordered user actions
"��/B �

C
ED �
�F ��GHG�G4�
(IKJ
where

(L # % (see Table 1)
��M � � ��G�G4� ? , . 7

For a given PIS, there may exist a session N such that the exact order of actions
in PIS can be found in N . A predefined interaction sequence is matched against each
session in the processed log file to check whether the sequence exists in the session. We
refer to the number of occurrences of a PIS in the log file as Frequency (see Sect. 6).

In the following subsections, we present a set of predefined interaction sequences.
We describe some of the PISs in details. The rest are listed in Tables 3 and 4. We
use the action

B��
*�	5�� KO%���'��!
as the most appropriate action in indicating user’s strong

interests in a community. However, an administrator may decide to choose other actions
(or define new ones, e.g., PurchaseItem) for the same purpose.

Table 4. More PISs (on PeerCommunity–Of relationship)

Predefined Interaction Sequences

Upgrading the weight of a PeerCommunity-Of: Consolidates the relevancy of
the relationship. Consider that many users navigate from community ��� , via PeerCommunity-Of
relationship, to community � � , and submit a query to � � . This indicates that the PeerCommunity
–Of relationship from ��� to ��� positively contributed in finding the target community.
%"������� ,�*������ ��� ������
�	���# ��) ��% ����� � ��� � ��� ��� �������
�#/.�� ��� $(� ��� � � �9� , where ��� � ��� � � ,
� ��� � ��� �:�! 4 , and � is global query attributes.
Downgrading the weight of a PeerCommunity-Of: Consider that many users
who followed a PeerCommunity–Of relationship and arrived at a community � � , ultimately
leave the community without performing any further action. This may indicate that ��� is not
relevant to these users. To leave ��� , use LeaveCatalogCommunity or NavigateToPeer.
%"��� ��	������
	����
����� ��� ������
�	���# ��) ��% ����� � ��� � ��� ����� � ��� � ���#�������	� ��!��������
�#�$(� ��� �%� ,
where � ��� � � � � , and � � �6� � � �:�; 4 .
%"��� ��	������
	�
����+* � ��������
�	���# ��) ��% ����� � ��� � ��� ��� ������
�	���# ��) ��% ����� � ��� � ��� � � , where
��� � ��� � � , and � ��� � ��� ��� � ��� � ��� �:�; 4 .
Creating a new PeerCommunity--Of: Identify communities that are constantly used
as stop-overs. It may be beneficial to create direct PeerCommunity–Of relationship so that
users can by-pass them. %"����� *���������
����+* represents a situation where there are one or more naviga-
tional actions between NavigateToPeer and SubmitQuery. This suggests the creation of Peer-
Community–Of between ��� and �21 .
%"��� �+*��
�����

����+* � ��������
�	���# ��) ��% ����� � ��� � �21 ��� � "6����� � � � � �������
�#/.�� ��� $(� ��� � � � � , where��� � � ������
�	���# ��) �0����� � ������
�	���# ��) �0����� ��� � ������
�	���# ��) ��% ����� � (�!��� ����� ���),
��� � ��� � �51 � � , � ��� � �21 �:�! 4 , and � ��� � ��� ����! #" $& ' "" $& 4 .
Deleting a PeerCommunity-Of: No pattern specifically defined. We consider
%"��� ��	������
	����
����� , and %"��� ��	������
	

�����* . When it is observed that the weight of a PeerCommunity–Of
in a community reaches the lower threshold (given by an administrator), the relationship is con-
sidered to be irrelevant and can be removed.

5.1 Merging Communities

Here, we introduce a generic sequence that describes situations where merging of com-
munities may be beneficial. We identify some interesting sequences which represent
special cases of the generic sequence4.

Definition 5 (�! #"%$ � I � � L'&�(� �*) �). "��/B,+ �.- � �0/21.3�� �54��
which represents the situations

where two communities are always queried together is:

"��/B + �6-�� �0/2163 � �54�� � C B���*�	5�
 KO-���'�
!0�)$ / �07 9 , � � 9 ��G�GHG � � - ��B��
*�	5�� KO%���'��!0� $98 �*7 ; , J

where
$ / � $ 8 # �

,
�;:�#=<:���'1�� ���' �� � �(B���*��2���'1������' �� � �(B���.��'�'�2���'1������' �� � �'"������,> ��? �

� ��GHG4� ? , , and
7�9:�07�;

are global query attributes (i.e., community product attributes). 7
"��/B + �6-�� �0/2163 � �54��

captures interaction sequences where users, within a catalog com-
munity

$ /
, first submit a query then perform several navigation actions to reach a com-

4 Note that, even though actions in Table 1 do not include source catalog community parameters,
we add them when defining PIS for clarity reasons.

munity
$98

from where they finally submit another query. Figure 5 presents three partic-
ular cases of

"��/B + �.- � �0/21.3�� �54��
.

3.SubmitQuery

Merge ?

2.NavigateToPeer

1.SubmitQuery

j
C

k
C

i
C

2.NavigateToSuper

3.NavigateToSub

1.SubmitQuery

Merge ?

4.SubmitQuery

 < Merge 1 >

3.SubmitQuery

Merg

e ?

1.SubmitQuery

2.NavigateToSub

< Merge 2 >

j
C
i
C

k
C
 j
C

i
C

< Merge 3 >
SubCommunityOf

Fig. 5. Three particular cases of %"����� �'� �+* � �����+*�,��

5.2 Splitting a Community.

A catalog community may be split if a subset of community product attributes are al-
ways queried together and the subset can represent a specific domain by itself. One
way to detect this situation is to observe the way the community product attributes are
queried. The following pattern is used to identify a subset of attributes that are always
queried together. In this pattern, an administrator has a specific catalog community in
mind (

$ /
) that s/he wants to examine for possibility of splitting and a set of attributes

s/he predicts to be queried together.

Definition 6 (�! #" ����� L	�). "��/B 	�

5/ � which represents the pattern for splitting a catalog
community is:

"��3B 	�

5/ � � C B���*-	5�� KO-���'��!0� $ / ��� �'
 ���9 ��GHG � �� � �� -�
 , J
, where

$ / # �
,

and
�� � �� 9 ��GHG � �'
 �� -

are community product attributes in
$ /

that are likely to be queried
together. 7

6 Confidence of Patterns

In this section, we provide two definitions, namely frequency and confidence of a PIS.
They are used to decide whether a PIS can be considered as a pattern for which a
restructuring operation is suggested.

Definition 7 (Frequency). A frequency of a PIS, denoted by � ���#7'������$%!0� "��/B
, , is num-
ber of occurrences of PIS in the processed log file. 7

The frequency of a predefined interaction sequence is used to decide whether the
result of the match is significant enough to consider performing eCatalogs–Net restruc-
turing operations. We discuss some of the issues that arise from using the patterns.

First, there is an issue of conflicting patterns where discovery of one pattern suggests
a certain restructuring operation, whereas another pattern leads to a different operation
on the same relationships or communities. For instance, it is possible that the pattern"��/B��
*4��������

shows that the weight of PeerCommunity–Of relationship between commu-
nity A and B needs to be upgraded, but at the same time, the pattern

"��/B ������-������������
may

suggest that the same relationship should be downgraded.

On the other hand, there is an issue of knowing patterns that can consolidate each
other. We refer to these patterns as consolidating patterns. These patterns, when used
together, can reinforce each other’s findings. For example, suppose that the pattern"��/B �����2-��������������

suggests that PeerCommunity–Of relationship between community A
and B should be downgraded. When

"��/B ������-���������� �
pattern also suggests downgrading

of the same relationship, it helps choosing a restructuring operation with much more
assurance. Table 5 lists the identified conflicting and consolidating patterns among the
predefined interaction patterns presented in this paper.

Definition 8 (Confidence). A confidence of a PIS denoted by Confidence(PIS) is de-
fined as:

���������%#�����$-����"��/B�, � � ���#7'������$%!0� "��/B
,�� &
� � ���,7'������$�!0��"��/B�,�� &�,��

�
w � �
	 �

A is sum of frequency of all consolidating patterns of PIS and B is sum of frequency of
all conflicting patterns of PIS. 7

For a PIS to be considered, (i) its frequency should be greater than a frequency
threshold and (ii) its confidence should be greater than a confidence threshold. Those
two thresholds can be defined by an administrator.

Table 5. Conflicting and Consolidating Patterns
Name of PISs downBy downBy create del merge1 merge2 merge3 split

Leave Peer Peer Comm

upgrade � � � � � � � �
downByLeave
 � � � � � � �
downByPeer

 � � � � � �
createPeer

 � � � � �
delComm

 � � � �
merge1

 � � �
merge2

 � �
merge3

 �
split

Legend: � =no conflict, � =conflict, � =consolidation

7 Evaluation

The eCatalogs–Net (see Fig.1) used in the experiments represents an integrated view of
27 catalog communities in computers and related services domain. Overall, all compo-
nents in

��� � ��
 ��
 ����� ��� � �
have been implemented using Java, JSP/Servlets, and JDBC.

For persistent storage (log data and metadata repository), an XML-supported repository
(Oracle 8i database) is used. The metadata repository stores information about commu-
nity attributes, relationships, members, etc. It should be noted that our initial studies

were conducted under simulated scenarios, in which, we restricted the users’ interac-
tions in terms of number of moves (e.g., mouse clicks) they can make. We show any
measurable improvement by comparing the number of users who find the target (what
they were looking for) before restructuring and after restructuring. The primary goal
of this simulation study is to demonstrate that given the same constraint (i.e., limited
number of moves), more users find targets after restructuring.

7.1 Experiment Framework

We used task agents that played the role of customers who wanted to find out infor-
mation about the products. A Java class called AgentFactory was used to create agents.
More precisely, the class AgentFactory implements a software component made up of
a container and a pool of objects which represent agents. The container is a process
that, once created, runs continuously, listening to a socket, through which an instanti-
ation message from a predefined script (used to create an agent) is received. An agent
interacts with a module called Community Manager (implemented as JavaBean) which
provides various methods for exploring the community relationships (e.g., getSubCom-
munityOf(), getPeerCommunityOf() etc.). The agent’s search and query behaviour is
based on the same search and query strategy which is presented in Sect. 2.3. The agents
are equipped with two kinds of information for autonomous interaction with commu-
nities. First, the agents have access to the relationships (i.e., Sub, PeerCommunity–Of)
between communities. The second information provided to the agents is called Likeli-
hood Table. In the likelihood table, for a given a target community, every community
in eCatalogs–Net is assigned a number value, which represents a degree of “closeness”
(i.e., relevance) of the community to the target community. Hence, the higher the value,
the more likely the community will lead the agent to the target. We will refer to this
value as a likelihood and the list of likelihood values as a likelihood table.

Having the likelihood values fixed in the table makes the agents’ interaction se-
quence to be always predictable. Agents should be able to make spontaneous and ir-
regular decisions, resulting in unpredictable behaviour. We introduced a variant factor
which would diverge a likelihood value. Each time, when an agent is given the likeli-
hood values, the agent dynamically recalculates all likelihood values according to the
factor before starting navigation.

The agent takes the following inputs to run; (1) name of the file that contains like-
lihood table, (2) name of the target community to find, (3) maximum number of moves
an agent can make before giving up. For the purpose that stated earlier in Sect. 7, we
limited the MaxMove to 14 for all experiments. The parameter VF (Variant Factor) rep-
resents the value of the variant factor for likelihood table. We asked four people who are
familiar with the domain to produce the likelihood tables. The actual likelihood values
used in the experiments took the average values of the four. The VF has three settings,
5%, 10% and 15%. Higher the VF, bigger the deviation from given likelihood values5.

5 Note that other experimental parameters related to likelihood table have been defined, such as
number of the tables participated in the experiment, range of likelihood values, etc. However,
we only present the experiments with VF.

7.2 Experiments and Results

We now describe the results of experiments that investigated the effect of two restructur-
ing operations (addPeer, moveCatComm) and the experiment parameter VF. The
experiments carried out were based on two simulation scenarios. In the first scenario,
we experimented on a PeerCommunity–Of relationship. For initial runs, 3000 agents
were created and given the task of finding the community CableModem (see ‘Before’
in Fig.6). From the initial runs, observation showed that about 28% of the agents who
found target followed the PeerCommunity–Of relationship from Modem to Inter-
net, and Internet, HomeNetworking were used as stop-overs. We performed
addPeer operation to create a new PeerCommunity–Of relationship from Modem to
CableModem. Then we ran the 3000 agents again (see ‘After’ in Fig.6).

Fig. 6. Varying VF: First Scenario Fig. 7. Varying VF: Second Scenario

Varying VF: We measured the improvement made by the restructuring and study the ef-
fect of different values of the variant factor. We varied VF from 15% to 10%, and then to
5%. As shown in Fig.6, there were visible improvements in the number of agents found
target. Irrespective of creation of the relationship, as VF decreases the more agents were
able to find targets. VF randomises the likelihood values from a given table. This result
demonstrates that agents are likely to find the target if their likelihood values are less
deviated from the given likelihood values. Given the fact that the likelihood values used
described the relationships of communities in relatively precise manner, this result can
be interpreted that the user whose understanding does not deviate much from that of
domain experts is more likely to find targets easily. Also, the biggest improvement was
made when VF was 15 (i.e, having the highest deviation from given likelihood values).
This indicates that the restructuring of eCatalogs–Net can benefit the most when the
user’s understanding deviates much from the expert.

In the second scenario, we experimented on moving a community to a new super–
catalog community. In the initial structure of eCatalogs–Net (Fig.1), HardDrive is
sub catalog community of Peripherals. The likelihood values used reflected the
Storage as the expected location of the target. In the initial runs, 3000 agents were
created and given the task of finding the community HardDrives. For the second
runs, we performed moveCatComm() operation to move HardDrives from Pe-
ripherals to Storage and ran 3000 agents again. As shown in Fig.7, clear im-
provements were made after the restructuring.

Overall, we saw obvious improvements made after restructuring of eCatalog–Net
across various experiment settings. This demonstrates that adaptive structuring of e–
catalogs can help users have more streamlined and easier navigation/search experience.
The experiments with VF parameter showed that for the users whose understanding
deviates very much from the experts, can benefit the most from having communities
restructured.

8 Related Work and Conclusions

We identify two major areas to discuss related work, namely building adaptive Web
sites and navigation mining techniques in Web content personalisation. [11] automati-
cally constructs index pages that supplement an existing organisation by looking at co–
occurring pages, so that users can easily locate pages that are conceptually and strictly
related to one topic. In [9], a technique that discovers the gap between Web site de-
signer’s expectation and user’s behaviour is proposed. The technique uses inter page
conceptual relevance vs. inter page access co–occurrence. [13] developed an algorithm
to identify “expected locations” of a Web page and create a link from the expected lo-
cation to the page. [14] extract related pages from a given page, then investigate the
relationships between two Web pages based on how each page drives other pages as re-
lated page. It is worth noting that, while basic principles of this area are complementary
to our work, most approaches only deal with Web pages, which is quite different from
the concept of communities we proposed. In our work, communities are individual and
autonomous entities (rather than network of Web pages) with which users and mem-
bers of the community can have various interactions (submitting a query to, invoking
operations from, register with, etc.).

In the area of mining access patterns, [6] uses Web usage mining concept to dynam-
ically predict user’s next behaviour and to make a recommendation. [3] uses Hypertext
Probabilistic Grammar also to predict the user’s navigation path. [5, 8] discuss issues
and processes involved in preparation/transformation of data from Web server logs to
a format suited for purpose of mining. In typical sequence or Web usage mining, an
access pattern is a sequence of visited Web documents which have a large occurrence
frequency. It extracts frequently visited nodes, or nodes that are visited together, but
these kind of access pattern does not reflect how users navigate the imposed structure.
[12, 2] proposed a Web Usage Mining (WUM) system to evaluate effectiveness of the
Web site organisation. It uses a concept of g-sequence to model sequence of navigation
of users. We use a similar concept to model sequence of user interaction actions.

Another work worth mentioning is [15], in which decision trees are used to auto-
matically construct catalogs based on popularity of product items (i.e., frequency of
visits) and weighted product attributes. The algorithm of construction is designed in
a way that the depth of product hierarchy (which is a tree) is minimised, pushing the
popular product items/attributes to upper levels so that customers can find them easily
(with fewer clicks). However, it does not discuss the ongoing adaptivity of the catalogs.
Also, WebFINDIT [4] considers addition and deletion of links between communities.
However, the mechanism is based on link-monitoring agents, which is different from
mining user access patterns.

In summary, in this paper, we presented a usage-centric approach for transform-
ing and improving integrated catalogs structure and organisation. We proposed catalog
restructuring operations as well as predefined interaction sequences that help decide
which operation to perform. We also illustrated the viability of the proposed approach
and demonstrated that restructuring increase the chances of the user finding his/her tar-
gets through simulated experiments. Ongoing work includes case studies to evaluate�����	��

��
��������������

in a distributed environment. We also plan to extend the proposed
approach by grouping people with similar interaction patterns.

References

[1] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu. Declarative Composition and
Peer-to-Peer Provisioning of Dynamic Web Services. In Proc. of the International Confer-
ence on Data Engineering, San Jose, California, February 2002.

[2] B. Berendt and M. Spiliopoulou. Analysis of Navigation Behaviour in Web Sites Integrat-
ing Multiple Information Systems. The VLDB Journal, 9(1):56–75, 2000.

[3] J. Borges and M. Levene. Data Mining of User Navigation Patterns. In Proc. of the Work-
shop on Web Usage Analysis and User Profiling (WEBKDD’99), San Diego, CA, August
1999.

[4] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Beard. Supporting Dynamic
Interactions among Web-based Information Sources. IEEE Transaction on Knowledge and
Data Engineering, 12(5):779–801, Sept/Oct 2000.

[5] R. Cooley, B. Mobasher, and J. Srivastava. Data Preparation for Mining World Wide Web
Browsing Patterns. Journal of Knowledge and Information Systems, 1(1), 1999.

[6] A. Datta, K. Dutta, D. VanderMeer, K. Ramamritham, and S. B. Navathe. An Architec-
ture to Support Scalable Online Personalization on the Web. In Proc. of the 2nd ACM
Conference on Electronic Commerce (EC’00), Minneapolis, Minnesota, October 2000.

[7] J. Jung, D. Kim, S. Lee, C. Wu, and K. Kim. EE-Cat: Extended Electronic Catalog for
Dynamic and Flexible Electronic Commerce. In Proc. of the IRMA2000 International
Conference, Anchorage, Alaska, May 2000. IDEA Group Publishing.

[8] B. Mobasher, R. Cooley, and J. Srivastava. Automatic Personalization Based on Web Usage
Mining. Communications of the ACM, 43(8), August 2000.

[9] T. Nakayma, H. Kato, and Y. Yamane. Discovering the Gap Between Web Site Design-
ers’ Expectations and User’s Behaviour. In Proc. Of 9th International World Wide Web
Conference, Amsterdam, May 2000.

[10] S. Navathe, H. Thomas, M. Satits Amitpong, and A. Datta. A Model to Support E-Catalog
Integration. In Proc. of the IFIP Conference on Database Semantics, Hong Kong, April
2001. Kluwer Academic Publisher.

[11] M. Perkowitz and O. Etzioni. Adaptive Web Sites. Communications of the ACM, 43(8),
August 2000.

[12] M. Spilopoulou. Web Usage Mining for Web Site Evaluation. Communications of the
ACM, 43(8), August 2000.

[13] R. Srikant and Y. Yang. Mining Web Logs to Improve Website Organization. In Proc. of
10th International World Wide Web Conference, Hong Kong, May 2001.

[14] M. Toyoda and M. Kitsuregawa. A Web Community Chart for Navigating Related Com-
munitie. In Proc. of 10th International WWW Conference, Hong Kong, May 2001.

[15] D. Yang, W. Sung, S. Yiu, D. Cheung, and W. Ho. Construction of Online Catalog Topolo-
gies Using Decision Trees. In Proc. of Second International Workshop on Advance Issues of
E-Commerce and Web-Based Information Systems (WECWIS 2000), Milpitas, California,
June 2000.

