
Silicon Laboratories, Inc. Rev 1.0 1

USB Audio Simplified

The rapid expansion of the universal serial bus (USB) standard in consumer electronics products has
extended the use of USB connectivity to propagate and control digital audio. USB provides ample
bandwidth to support high-quality audio; its ease of use has been well accepted by consumers and has
made USB a popular audio interface. However, extracting the audio data from a USB port is not a simple
task. USB itself is a complex protocol that requires considerable domain expertise. In addition, other
audio-related challenges, such as synchronization of data streams and programming codec and digital-to-
analog converter (DAC) configurations, can challenge even the most experienced embedded and audio
designers. USB bridge devices are now available that not only eliminate USB software development
complexity but also provide a novel standard audio configuration interface and methods to synchronize
audio data streams in a low-cost, highly-integrated single-chip solution.

USB is a versatile interface that provides many ways to propagate and control digital audio; however, it is
important for the industry to follow a standardized mechanism for transporting audio over USB to secure
interoperability, which has been the cornerstone for the adoption of USB. To respond to this fundamental
request, the USB organization has developed the Audio Devices Class, which defines a very robust
standardized mechanism for transporting audio over USB. The USB audio class specification is available
to the public from the USB Implementers Forum (www.usb.org).

One of the major issues with streaming audio over USB is the synchronization of data streams from the
host (source) to the device (sink); this has been addressed by developing a robust synchronization
scheme on “isochronous transfers,” which has been incorporated into the USB specification. The Audio
Device Class definition adheres to this synchronization scheme to transport audio data reliably over the
bus. However, the implementation of this synchronization mechanism is not a trivial task, and legacy
implementations have required high-end embedded systems with complex data rate converters or
expensive phase-locked loops (PLLs) to support the clock accuracy demanded by the system.

In a system with a sampling rate of 48 kHz, the host sends a frame containing 48 analog output samples
every millisecond. The sink must buffer the audio output data so it can be sent to the DAC one sample at
a time. Any clock mismatch between host and device (however slight) will result in an overrun or underrun
condition. The USB specification defines several methods for accommodating host/device clock
mismatch.

USB defines modes that govern the operation of sources and sinks according to Table 1. (For audio-out,
the host is the source and the device is the sink. For audio-in, the device is the source and the host is the
sink.)

http://www.usb.org/

Silicon Laboratories, Inc. Rev 1.0 2

Table 1. USB Audio Synchronization Modes

Asynchronous Mode
For asynchronous operation, the sink provides explicit feedback to the source. Based on this feedback,
the source adjusts the number of samples that it sends to the sink. Figure 1 illustrates asynchronous
mode with an analog output device.

Figure 1. Asynchronous Mode

This feedback mechanism accommodates source/sink clock mismatch without requiring the sink device to
implement PLL hardware to synchronize with the host clock.

Figure 2. Buffered System to Support Asynchronous Mode

 Host
Source

Target
Sink

Audio Stream

 Explicit Feedback

Silicon Laboratories, Inc. Rev 1.0 3

Figure 2 shows a buffered system for a 48 kHz sampling rate. Initially, the host starts streaming data at 48
samples every USB start-of-frame (SOF) operation, which occurs each millisecond. However, if the
device’s buffer begins to approach the full or empty condition due to clock mismatch, the device can
request that the host send more (49) or fewer (47) samples so that buffer overrun or underrun does not
occur. This method is implemented in Silicon Labs’ CP2114 USB-to-I2S digital audio bridge device. The
Audio Device Class is supported by the CP2114 device without any additional software development.

Synchronous Mode
For synchronous operation, the source and the sink use implicit feedback, and clocks are locked to the
USB SOF. The sink device must synchronize with the USB SOF as shown in Figure 3.

Figure 3. Synchronous Mode

A simple yet robust implementation of synchronous mode can be accomplished by a closed-loop control
that can correct any mismatches from the USB SOF and the internal oscillator of the sink device. This
implementation is shown in Figure 4.

Figure 4. Closed-Loop Control to Support Synchronous Mode Using Internal Oscillator

The USB SOF that is sent by the host every millisecond is used to calibrate the internal oscillator. For this
method to work properly, the internal oscillator of the sink device must be adjustable through a calibration
register that can move the internal oscillator frequency up or down in very small steps. The CP2114
digital audio bridge device is able to implement this functionality due to the dynamic trim capability of its
internal oscillator.

The CP2114 audio bridge enables the developer to select between synchronous and asynchronous
modes depending on the host capabilities available in the system design. All popular platforms (Windows,
Linux, Mac OS and iOS for the Apple iPad) now support asynchronous mode.

Host

Source

Target
Sink

Audio

= SOF

Silicon Laboratories, Inc. Rev 1.0 4

Standard Codec/DAC Configuration Interface
Today’s leading codec and DAC suppliers provide unique ways to configure the capabilities of their
devices. However, this variability in device configuration increases the complexity of software design for
developers needing to support multiple codec/DAC platforms across their product lines.

A solution to this design challenge is to offer a standard codec/DAC configuration interface that can group
the most typical capabilities to configure a codec or DAC. This interface would enable a smooth transition
among codecs and DACs, and would enable quick evaluation of multiple codec/DAC options.

An example of this interface can be found in the CP2114 audio bridge, which supports a wide range of
codecs/DACs using a standard configuration interface. Table 2 lists a portion of the CP2114 standard
audio configuration programming interface.

Table 2. CP2114 Standard Audio Configuration Programming Interface

The standard programming interface of the CP2114 device enables the most common capabilities found
in codecs and DACs, such as DAC register sizes, audio format, volume control and audio clock ratio. In
addition, the interface offers open fields for custom programming and an abstraction layer encapsulating
the most typical configuration capabilities in an easy-to-understand format. Once the developer is familiar
with this interface, switching between codec and DAC devices becomes a simple task.

Silicon Laboratories, Inc. Rev 1.0 5

The CP2114 digital audio bridge provides access to this interface via USB to allocate all needed values to
configure codecs or DACs. The configuration is applied once and resides in EPROM memory. Dynamic
changes are also allowed from the host to dynamically access the codec/DAC and change its
configuration values.

Conclusion
The popularity of USB is extending its use to applications for propagating and controlling audio. However,
streaming audio over USB is a complex and time-consuming design task. Major design issues, such as
synchronization of audio data streams and codec/DAC configurations, can challenge even the most
expert embedded and audio designers. Digital audio bridges, such as the CP2114 device, minimize this
complexity by providing a plug-and-play solution that does not require software development. Next-
generation digital audio bridge solutions implement novel methods of supporting a wide range of codecs
and DACs through a standard configuration interface, support asynchronous and synchronous modes of
operation with minimal external components, and eliminate the need for external components, such as
crystal oscillators and EEPROM.

Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small
size, analog intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and
world-class engineering team. Patent: www.silabs.com/patent-notice

© 2012, Silicon Laboratories Inc. ClockBuilder, DSPLL, Ember, EZMac, EZRadio, EZRadioPRO, EZLink, ISOmodem, Precision32,
ProSLIC, QuickSense, Silicon Laboratories and the Silicon Labs logo are trademarks or registered trademarks of Silicon
Laboratories Inc. ARM and Cortex-M3 are trademarks or registered trademarks of ARM Holdings. ZigBee is a registered trademark
of ZigBee Alliance, Inc. All other product or service names are the property of their respective owners.

http://www.silabs.com/patent-notice

