ET\S

31.07.2013

1

Public ETAS-PGA/EAP Humienik 2013-11-04 © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING EMBEDDED EXCELLENCE

INCA Matlab Integration Package

2 **Public** ETAS-PGA/EAP Humienik 2013-11-04 | © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING EMBEDDED EXCELLENCE

ETAS

INCA - Matlab Integration Package

"...application programming interface that controls INCA's functionality from within MATLAB"

widely used in calibration for:

-INCA remote control and automation -online data processing and evaluation -algorithmic calibration

Adressed use cases

■...

•DoE test plan automation:

- collecting data for data driven ASCMO models
- generating repeating step excitation signals for system identification ASCMO-DYNAMIC

•Automation of predefined calibration processes:

- closed-loop problems mainly, e.g. diesel soot peak emission optimization

•Online processing of measurement data:

- complex calculations, e.g. fourier transformation
- detector of undesired behaviour, e.g. combustion instability

•Simple bypass-like functionality (non time synchronous):

- function bypass, e.g. using offline model via continous function output recalibration
- closed loop controller, e.g. engine speed via accelerator pedal look-up-table

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup
- data acquisition using ring buffer
- calibration access

 \rightarrow basis for powerful solutions in automated calibration tasks!

→basic principle: "worksplit" between data acquisition (INCA) and data processing (MATLAB)

5 **Public** ETAS-PGA/EAP Humienik 2013-11-04 © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING EMBEDDED EXCELLENCE

ETVE

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup _
- data acquisition using ring buffer _
- calibration access at breakpoint level

Example of INCA-MIP Matlab code:

IncaOpen('7.1') IncaOpenDatabase; IncaOpenExperiment('My_Project', 'My_Experiment', 'My_Project', 'My_Workspace');

Explanation:

starting INCA 7.1 ... open the current database open the experiment 'My Experiment' in the 'My Workspace'

Benefit

good integration of INCA into an automation toolchain

INCA V7.1.0

6 Public| ETAS-PGA/EAP Humienik| 2013-11-04 | © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING EMBEDDED EXCELLENCE

ETAS

ETV2

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup
- data acquisition using ring buffer
- calibration access at breakpoint level

Example of INCA-MIP Matlab code:

```
signals = textread('Config\measurement_signals.txt', '%s');
```

```
for m = 1:length(signals)
IncaAddMeasureElement('ETKC:1', '100 ms', signals{m});
end
```

measurement_signals.txt ×

- NSC_VLINK.NSC_VLINK_Y.app
- NSC_VLINK.NSC_VLINK_Y.n
- 3 NSC_VLINK.NSC_VLINK_Y.q
- 4 NSC_VLINK.NSC_VLINK_Y.st

1

2

Explanation:

read the text file 'measurement_signals.txt', containing a list all the signals you want to measure

run a loop over the length of this list add each signal from the list to the , 'ETKC:1' in the '100 ms ' time raster end

Benefit

quick experiment setup for automation, based on exchangeable label lists

7 **Public** ETAS-PGA/EAP Humienik 2013-11-04 | © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING EMBEDDED EXCELLENCE

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup
- data acquisition using ring buffer
- calibration access at breakpoint level

Example of	f INCA-MIP	Matlab	code:

IncaStartMeasurement;

```
[time, data] = IncaGetRecords('ETKC:1', '100 ms', 10);
```

Explanation:

start the INCA measurement first to stream data to the ring buffer

now, read the last 10 data points from the ring buffer of the device 'ETKC:1' in the '100 ms' time raster of the previously added 4 measurement signals

Benefit

application of digital filters to process data online, like steady state detection and low pass or moving average filtering of noisy data

8 **Public** ETAS-PGA/EAP Humienik 2013-11-04 © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup
- data acquisition using ring buffer
- calibration access at breakpoint level

Steady-state detection:

means, looking at some past values at each time step and check if they meet certain the criteria...

3

7.7300

7.6000

7.6000

7.5300

7.5300

7.6900

7.8000

7.8000

7.6000

7.6000

4

0

0

0

0

0

0

0

0

0

2

1.7825e+03

1.7825e+03

1779

1785

1785

1782

1780

1780

1.7855e+03

1.7855e+03

9 Public| ETAS-PGA/EAP Humienik| 2013-11-04 | © ETAS GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Features

- control of GUI INCA functions by simple Matlab commands
- remote experiment setup
- data acquisition using ring buffer
- calibration access at breakpoint level

Example of INCA-MIP Matlab code:

IncaAddCalibrationElement('ETKC:1', 'EGR_rBase_MAP');

IncaSetCalibrationValue('ETKC:1', 'EGR_rBase_MAP', 55, [2, 3]);

Explanation:

add tha calibration map 'EGR_rBase_MAP' of the device 'ETKC:1' to the current experiment

Change the maps 2-nd column (x break point axis) and 3-rd row (y break point axis) to the value 55

Tool API - Composed calibration [2]				
	NSC_VLINK.NSC_VLINK_P.ti_MAP_Table <ma< th=""><th>•</th><th>[]</th></ma<>	•	[]	