
Use Cases for a Simple Address Book
In the following, use cases are listed in the natural order that a user would think of them.
In the actual File menu, items that correspond to the various use cases will be listed in the
traditional order, which is slightly different.

(Click on a use case above to go to the flow of events for that use case)

Flows of Events for Individual Use Cases

Add a Person Use Case

The Add a Person use case is initiated when the user clicks the "Add" button in the main
window. A dialog box appears, with title "New Person", containing fields for the user to
fill in the new person's first and last names and other information. The box can be
dismissed by clicking either "OK" or "Cancel". If the "OK" button is clicked, a new
person is added to the end of the address book, and the person's name is added to the end
of the list of names in the main window. If the "Cancel" button is clicked, no changes are
made either to the address book or to the main window.

[Sequence Diagram]

Edit a Person Use Case

The Edit a Person use case is initiated when the user either highlights a name in the list of
names in the main window and then clicks the "Edit" button, or the user double-clicks a
name. In either case, a dialog box, with title "Edit person's name", appears containing
current information about the person selected, (except the person's name, which appears
only in the title). The user can then edit the individual fields. The box can be dismissed
by clicking either "OK" or "Cancel". If the "OK" button is clicked, the entry in the
address book for the selected person is updated to reflect any changes made by the user.
If the "Cancel" button is clicked, no changes are made to the address book.

[Sequence Diagram]

Delete a Person Use Case

The Delete a Person use case is initiated when the user highlights a name in the list of
names in the main window and then clicks the "Delete" button. A dialog box appears,
asking the user to confirm deleting this particular individual. The box can be dismissed
by clicking either "OK" or "Cancel". If the "OK" button is clicked, the entry in the
address book for the selected person is deleted, and the person's name is deleted from the
list of names in the main window. If the "Cancel" button is clicked, no changes are made
either to the address book or to the main window.

[Sequence Diagram]

Sort Entries by Name Use Case

The Sort Entries by Name use case is initiated when the user clicks the Sort by Name
button in the main window. The entries in the address book are sorted alphabetically by
name, and the list in the main window is updated to reflect this order as well.

[Sequence Diagram]

Sort Entries by ZIP Use Case

The Sort Entries by ZIP use case is initiated when the user clicks the Sort by ZIP button
in the main window. The entries in the address book are sorted by zip code, and the list in
the main window is updated to reflect this order as well.

[Sequence Diagram]

Print Entries Use Case

The Print Entries use case is initiated when the user chooses "Print" from the File menu.
A save file dialog is displayed, and the user is allowed to choose a file to print the labels
to. (If the user cancels the file dialog, the Print operation is canceled.) The current
contents of the address book are written out to the specified file (in their current order) in
"mailing label" format. No information maintained by the program is changed.

[Sequence Diagram]

Create New Address Book Use Case

The Create a New Address Book use case is initiated when the user chooses "New" from
the File menu. If the current address book contents have been changed since the last
successful New, Open, Save, or Save As ... operation was done, the Offer to Save
Changes extension is executed. Unless the user cancels the operation, a new empty
address book is then created and replaces the current address book. This results in the list
of names in the main window being cleared, the current file becoming undefined, and the
title of the main window becomes "Untitled". (NOTE: These conditions will also be in
effect when the program initially starts up.)

[Sequence Diagram]

Open Existing Address Book Use Case

The Open Existing Address Book use case is initiated when the user chooses "Open"
from the File menu. If the current address book contents have been changed since the last
successful New, Open, Save, or Save As ... operation was done, the Offer to Save

Changes extension is executed. Unless the user cancels the operation, a load file dialog is
displayed and the user is allowed to choose a file to open. Once the user chooses a file,
the current address book is replaced by the result of reading in the specified address book.
This results in the list of names in the main window being replaced by the names in the
address book that was read, the file that was opened becoming the current file, and its
name being displayed as the title of the main window. (If the user cancels the file dialog,
or attempting to read the file results in an error, the current address book is left
unchanged. If the cancellation results from an error reading the file, a dialog box is
displayed warning the user of the error.)

[Sequence Diagram]

Save Address Book Use Case

The Save Address Book use case is initiated when the user chooses "Save" from the File
menu. (The Save option is grayed out unless changes have been made to the address book
since the last New, Open, Save, or Save As ... operation was done.) If there is a current
file, the current address book is saved to this file. (If attempting to write the file results in
an error, a dialog box is displayed warning the user of the error.) If there is no current
file, the Save Address Book As .. use case is done instead. In all cases, the current
address book and window list are left unchanged.

[Sequence Diagram]

Save Address Book As ... Use Case

The Save Address Book As ... use case is initiated when the user chooses "Save As ..."
from the File menu. (The Save As ... option is always available.) A save file dialog is
displayed and the user is allowed to choose the name of a file in which to save the
address book. (If the user cancels the file dialog, the Save As ... operation is canceled.)
The current address book is saved to the specified file, and the file to which it was saved
becomes the current file and its name is displayed as the title of the main window. (If
attempting to write the file results in an error, a dialog box is displayed warning the user
of the error, and the current file and main window title are unchanged.) In all cases, the
current address book and window list are left unchanged.

[Sequence Diagram]

Quit Program Use Case

The Quit Program use case is initiated when the user chooses "Quit" from the File menu,
or clicks the close box for the main window. In either case, if the current address book
contents have been changed since the last New, Open, Save, or Save As ... operation was
done, the Offer to Save Changes extension is executed. Unless the user cancels the
operation, the program is terminated.

[Sequence Diagram]

Offer to Save Changes Extension

The Offer to Save Changes extension is initiated from within the Create New Address
Book, Open Existing Address Book, or Quit program use cases, if the current address
book has been changed since the last successful New, Open, Save, or Save As ...
operation was done. A dialog box is displayed, informing the user that there are unsaved
changes, and asking the user whether to save changes, not save changes, or cancel the
operation. If the user chooses to save changes, the Save Address Book Use Case is
executed (which may result in executing the Save Address Book As ... Use Case if there
is no current file). If the user chooses not to save changes, the original operation is simply
resumed. If the user chooses to cancel (or cancels the save file dialog if one is needed),
the original operation is canceled.

[Sequence Diagram]

Analysis
An initial reading of the use cases suggests that the following will be part of the system.

• A single entity object representing the current address book that the program is
working with (AddressBook).

• An arbitrary number of entity objects, each representing one of the people that is
in the current address book (Person).

• A boundary object representing the interface between the address book system
and the human user (AddressBookGUI).

• A boundary object representing the interface between the address book system
and the file system on disk (FileSystem).

• A controller object that carries out the use cases in response to user gestures on
the GUI (AddressBookController). (For a problem of this small size, a single
controller is sufficient.)

The various use cases work with these objects, as follows:

• The Add a Person Use Case involves getting the new information from the user,
and then telling the AddressBook object to add a new person with this
information to its collection

• The Edit a Person Use Case involves displaying the current information about the
desired person (obtained from the AddressBook), then allowing the user to enter
new information for the various fields, then telling the AddressBook object to
make the changes.

• The Delete a Person Use Case involves asking the user to confirm deletion, and
then telling the AddressBook object to remove this person from its collection.

• The Sort Entries by Name Use Case involves telling the AddressBook object to
rearrange its collection in order of name.

• The Sort Entries by ZIP Use Case involves telling the AddressBook object to
rearrange its collection in order of ZIP.

• The Create New Address Book Use Case involves creating a new AddressBook
object.

• The Open Existing Address Book Use Case involves getting a file specification
from the user, and then telling the FileSystem object to read in an AddressBook
object from this file.

• The Save Address Book Use Case involves determining whether or not the
current AddressBook object has a file it was last read from / saved to; if so, telling
the FileSystem object to save the current AddressBook object to this file. (If not,
the Save Address Book As ... Use Case is done instead.)

• The Save Address Book As ... Use Case involves getting a file specification from
the user, and then telling the FileSystem object to save the current AddressBook
object to this file.

• The Print Address Book Use Case involves telling the AddressBook object to
print out its collection in order.

• (The Quit Program Use Case does not involve any of the other objects)
• (The Offer to Save Changes Extension may involve performing the Save Address

Book Use Case.)

CRC Cards for the Address Book Example
Responsibilities are assigned to the various classes based on the use of the model-view-
controller design pattern. The two entity classes (AddressBook and Person) serve as the
model. The GUI class (AddressBookGUI) serves as the view. The controller class
(AddressBookController) serves, of course, as the controller.

The view (AddressBookGUI) needs to be made an observer of the model (specifically,
AddressBook) so that it always reflects the current state of the model - specifically, the
list of names, the title, and its saved/needs to be saved status.

Using CRC cards to assign responsibilities to various classes for the tasks required by the
various use cases leads to the creation of the following cards.

• Class AddressBook
• Class AddressBookController
• Class AddressBookGUI
• Class FileSystem
• Class Person

Class AddressBook

The CRC Cards for class AddressBook are left as an
exercise to the student

[Links for this class]

Class AddressBookController

The basic responsibility of an AddressBookController object is to carry out the various
use cases.

Responsibilities Collaborators
Allow the user to perform the Add a Person Use Case AddressBook
Allow the user to perform the Edit a Person Use Case AddressBook
Allow the user to perform the Delete a Person Use Case AddressBook
Allow the user to perform the Sort Entries by Name Use Case AddressBook
Allow the user to perform the Sort Entries by ZIP Use Case AddressBook
Allow the user to perform the Create New Address Book Use
Case AddressBook

Allow the user to perform the Open Existing Address Book
Use Case FileSystem

Allow the user to perform the Save Address Book Use Case AddressBook
FileSystem

Allow the user to perform the Save Address Book As ... Use
Case FileSystem

Allow the user to perform the Print Entries Use Case AddressBook
Perform the Offer to Save Changes Extension when needed
by another Use Case AddressBook

[Links for this class]

Class AddressBookGUI

The basic responsibility of a GUI object is to allow interaction between the program and
the human user.

Responsibilities Collaborators
Keep track of the address book object it is displaying

Display a list of the names of persons in the current address
book AddressBook

Display the title of the current address book - if any AddressBook
Maintain the state of the "Save" menu option - usable only
when the address book has been changed since the last time it
was opened / saved.

AddressBook

Allow the user to request the performance of a use case AddressBookController

[Links for this class]

Class FileSystem

The basic responsibility of a FileSystem object is to manage interaction between the
program and the file system of the computer it is running on.

Responsibilities Collaborators
Read a stored address book from a file, given its file name AddressBook
Save an address book to a file, given its file name AddressBook

[Links for this class]

Class Person

The basic responsibility of a Person object is to maintain information about a single
individual.

Responsibilities Collaborators
Create a new object, given an individual's name, address, city,
state, ZIP, and phone

Furnish the individual's first name

Furnish the individual's last name

Furnish the individual's address

Furnish the individual's city

Furnish the individual's state

Furnish the individual's ZIP

Furnish the individual's phone number

Update the stored information (except the name) about an
individual

[Links for this class]

Sequence Diagrams for the Address Book Example
Each of the use cases discovered in the analysis of the system will be realized by a
sequence of operations involving the various objects comprising the system.

• Sequence Diagram Realizing the Add a Person Use Case
• Sequence Diagram Realizing the Edit a Person Use Case
• Sequence Diagram Realizing the Delete a Person Use Case
• Sequence Diagram Realizing the Sort Entries by Name Use Case

• Sequence Diagram Realizing the Sort Entries by ZIP Use Case
• Sequence Diagram Realizing the Print Entries Use Case
• Sequence Diagram Realizing the Create New Address Book Use Case
• Sequence Diagram Realizing the Open Existing Address Book Use Case
• Sequence Diagram Realizing the Save Address Book Use Case
• Sequence Diagram Realizing the Save Address Book As ... Use Case
• Sequence Diagram Realizing the Offer to Save Changes Extension

Add a Person Use Case Sequence Diagram

Edit a Person Use Case Sequence Diagram

Delete a Person Use Case Sequence Diagram

Sort Entries By Name Use Case Sequence Diagram

Sort Entries By Zip Use Case Sequence Diagram

Print Entries Use Case Sequence Diagram

Create New Address Book Use Case Sequence Diagram

Open Existing Address Book Use Case Sequence Diagram

Save Address Book Use Case Sequence Diagram

Save Address Book As ... Use Case Sequence Diagram

The Sequence Diagram for the Save Address Book As ...
Use Case is left as an exercise to the student

Offer To Save Changes Extension Use Case

Class Diagram for the Address Book Example
Shown below is the class diagram for the Address Book Example. To prevent the
diagram from becoming overly large, only the name of each class is shown - the attribute
and behavior "compartments" are shown in the detailed design, but are omitted here.

The diagram includes the classes discovered during analysis, plus some additional classes
discovered during design. (In a more significant system, the total number of classes may
be about five times as great as the number of classes uncovered during analysis.)

• AddressBookApplication - main class for the application; responsible for creating
the FileSystem and GUI objects and starting up the application.

• MultiInputPane - a utility class for reading multiple values at a single time.
(Design not further documented, but javadoc is included.)

• Person.CompareByName - Comparator for comparing two Person objects by
name (used for sorting by name).

• Person.CompareByZip - Comparator for comparing two Person objects by zip
(used for sorting by name).

The following relationships hold between the objects:

• The main application object is responsible for creating a single file system object
and a single controller object.

• The file system object is responsible for saving and re-loading address books
• The controller object is responsible for creating a single GUI object.
• The controller object is responsible for initially creating an address book object,

but the GUI is henceforth responsible for keeping track of its current address book
- of which it only has one at any time.

• The GUI object and the address object are related by an observer-observable
relationship, so that changes to the address book content lead to corresponding
changes in the display

• The address book object is responsible for creating and keeping track of person
objects, of which there can be many in any given address book.

• A MultiInputPane object is used by the controller to allow the user to enter
multiple items of data about a person.

• A comparator object of the appropriate kind is used by the address book object
when sorting itself.

Click on a class icon for links to further information about it

Detailed Class Design for the Address Book Example

Given below is a "three compartment" design for the classes appearing in the class
diagram. This information was not included in that diagram due to size considerations;
however, it could have been - in which case this document would have been unnecessary.

• Class AddressBook
• Class AddressBookApplication
• Class AddressBookController
• Class AddressBookGUI
• Class FileSystem
• Class Person
• (No detailed design is given for Comparator class Person.CompareByName)
• (No detailed design is given for Comparator class Person.CompareByZip)
• (No detailed design is given for utility class MultiInputPane)

The detailed design of class AddressBookController is
left as an exercise to the student

Code for Simple Address Book Example
As noted in the introduction, the writing of much of the code for this problem is an
assignment in two closed labs and an open lab programming project in one of the courses
I teach. This page includes links to portions of the code that are not assigned (and are, in
fact, given to the students in the course.)

This page also provides access to Complete Javadoc Documentation for all of the classes.

• AddressBookApplication
• AddressBookGUI
• MultiInputPane
• Comparator Classes - inner classes in class Person

Executable

If you see this message, you don't have a Java-enabled
browser. Sorry!

Important notes to the user:

• The Java mechanisms to protect against malicious code limit access to the file
system on the host computer. For this reason, it is not possible to use the "Open",
"Save", or "Save As" features of this demonstration - attempting to do so will
result in an error dialog. (This will also happen if an attempt is made to save a file
when performing a GUI window close or "Quit" operation.)

• "Print" will send its output to the Java console; how to access this depends on the
brower.

• Closing the window or "Quit" will close the window, but will not, of course,
actually quit out of the browser - hence what will be left is a blank page with no
window showing. Reloading the page should restart the program - though this
may be browser dependent.

Maintenance
This page lists various changes that might be made to the system. Modifying the various
documents to incorporate one or more of these changes would make an interesting
exercise for the reader. They are listed in order of estimated increasing difficulty.

• The Print Entries Use Case currently sends printed output to System.out.
Alternately, it could send its output to a file, chosen by the user in response to a
file dialog.

• It was noted in the orginal requirements that the program might be modified to
allow multiple address books to be open at the same time - each in its own
window. This might entail the following changes:

o The Create New Address Book and Open Existing Address Book Use
Cases would no longer close the current address book. Instead, they would
create a new copy of the GUI, with its own address book (either a newly
created, empty one, or one read from a file specified by the user.) There
would thus be two (or more) windows visible on the screen.

o A new Close Address Book Use Case would be added to allow the user to
close a single window (and its associated address book). This could be
initiated by a new Close option in the File menu, or by clicking the close
box for the window. It would offer to save changes, if necessary, and then
close the window. If the window that is closed is the last open window in
the program, then the program should be terminated as well; otherwise,
the program would continue running with the remaining window(s)
visible.

o The code that is activated when the close box for the window is clicked
would be the Close Address Book Use Case described above, instead of
the Quit Program Use Case.

o The Quit Program Use Case (activated from the Quit item in the File
menu) would need to cause all open windows to be closed, with
appropriate offers to save changes, unless the user cancels the operation
for any window. If the user cancels the save for any window, the entire use
case would terminate at once, without attempting to close additional
windows.

• A facility might be created that would allow the user to search for the occurrence
of some character string anywhere in the information about a person. For
example, searching for the string "Buffalo" might find Boris Buffalo or a person
living in Buffalo, NY; searching for the string "0191" might find a person living
in ZIP code 01915 or a person whose phone number is 555-0191, etc. This might
entail adding two new use cases: Find and Find Again.

o The Find Use Case could pop up a dialog asking the user to enter a
character string, and would then search through all the people in the
address book (starting at the beginning) until a person is found for which
the string occurs anywhere in the stored information (in either name, in the
address, etc.) This person would then be selected in the displayed list of
names.

o The Find Again Use Case could look for the next occurrence of the same
string, beginning where the previous Find/Find Again left off.

Of course, this option would not be available when a search is not in
progress - e.g. when an address book is newly created or opened, or when
the previous Find/Find Again did not find anyone. It would also be

reasonable to disable this option when any change is made to the address
book (e.g. by Add, Edit, Delete, or a Sort).

To allow these two new use cases to be initiated, a new Search menu could be
added with two choices, perhaps labelled Find and Find Again. In this case, Find
Again would be grayed out when the Find Again Use Case is not available; and
Find might also be grayed out when the address book is totally empty.

Some good practice in working with UML might come by modifying the various design
documents (beginning with the use cases), not just changing the code.

