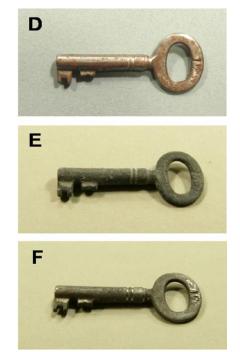


Use of Biocides to Mitigate MIC in Oil & Gas Applications

Presentation Outline

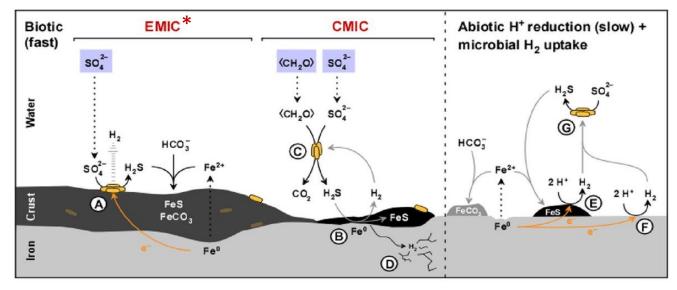
- Introduction
- Biofilm test method
- Results
 - Biocidal activity
 - Biofilm removal activity
- Case history
- Summary


Introduction to MIC

Microbial Corrosion

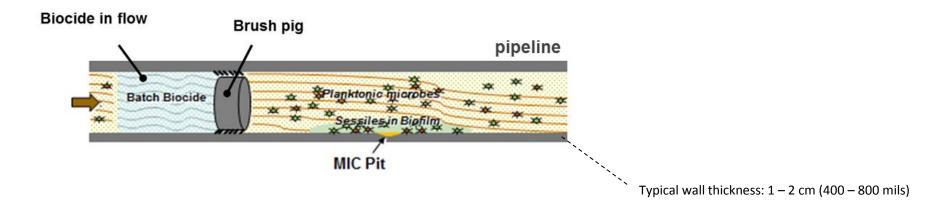
- Can proceed at very high rates
- Can occur under conditions not normally considered corrosive
- Tends to occur localized
- May involve several different species and mechanisms
- Often driven by sulfate-reducing bacteria (SRB)

Sterile


27 months

© American Society of Microbiology [*Applied and Environmental Microbiology*, Vol. 80, 2014, p. 1226 – 1236]

MIC by Sulfate-Reducing Bacteria (SRB)


Stoichiometry of corrosive reactions	
Electrical Microbially Influenced Corrosion (EMIC):	Sulfide Stress Cracking (SSC):
(A) 4 Fe ⁰ + SO ₄ ²⁻ + 3 HCO ₃ ⁻ + 5 H ⁺ \rightarrow FeS + 3 FeCO ₃ + 4 H ₂ O	(D) $2 H_{abs} \rightarrow H_2$
Chemical Microbially Influenced Corrosion (CMIC):	Abiotic:
(B) $H_2S + Fe^0 \rightarrow H_2 + FeS$	(E) $Fe^0 + 2 H^+ \xrightarrow{Fe^3} Fe^{2^+} + H_2$
ⓒ 3(CH ₂ O) + 2 Fe ⁰ + 2 SO ₄ ^{2−} + H ⁺ → 3 HCO ₃ [−] + 2 FeS + 2 H ₂ O	(F) $Fe^0 + 2 H^+ \rightarrow Fe^{2+} + H_2$ (G) Same as (A), but slower

© American Society of Microbiology [Applied and Environmental Microbiology, Vol. 80, 2014, p. 1226 – 1236]

* Not all SRB capable of EMIC mechanism; similar mechanism detected for certain methanogenic archaea

Mitigation of MIC in Oil and Gas Pipelines

Mitigation of internal MIC in petroleum pipelines

- (Mechanical cleaning / 'pigging') + biocide
- Biocide is applied in batch mode, e.g. once a week for a few hours
- Purpose: Reduce <u>corrosion</u> of pipeline

Efficacy of Biocides against Biofilm

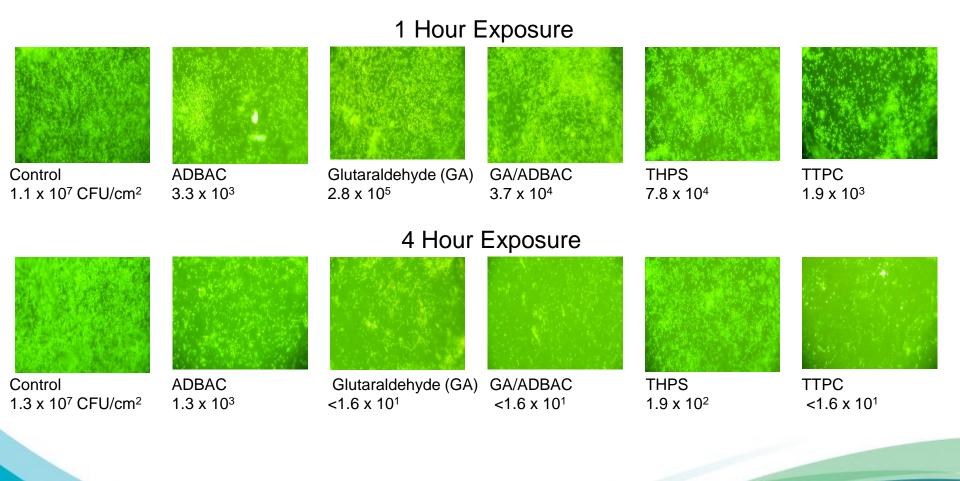
- The effect of biocides on the viability of biofilm organisms has been extensively studied
- Information on the ability of biocides to remove biofilm is limited
 - Eager, et. al. showed that glutaraldehyde was able to remove a *Pseudomonas fluorescens* biofilm
- The biocidal activity *and* biofilm removal properties of common oilfield biocides was investigated

Methodology

Biofilm Test Method

- Biofouled coupons transferred to buffer containing biocide
- At appropriate times coupons removed, rinsed and transferred to sterile saline
- Coupons sonicated to release bacteria
- Viable bacteria determined by plate counting and results reported as CFU/cm²
- Duplicate coupons stained and viewed microscopically to assess biofilm removal

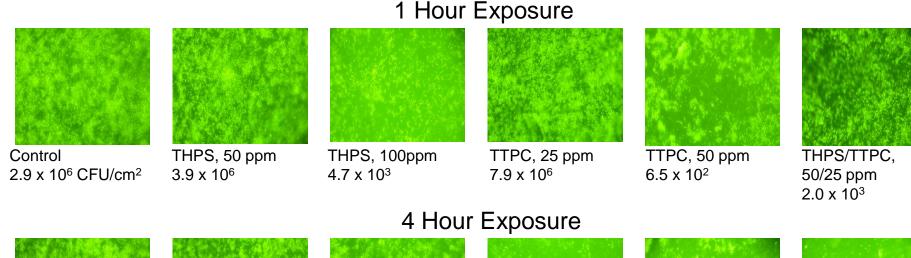
Results



Comparative Biocidal Efficacy against Biofilm

	Concentration,	Viable Count, CFU/cm ²	
Biocide	ppm active	1 hour	4 hours
Control	0	5.3 x 10 ⁶	4.3 x 10 ⁶
ADBAC	25	4.3 x 10 ⁶	9.3 x 10 ⁵
	50	3.3 x 10 ³	1.3 x 10 ³
Glutaraldehyde	25	6.0 x 10 ⁶	3.7 x 10 ⁵
	50	1.1 x 10 ⁴	1.9 x 10 ²
Glutaraldehyde +	25	1.7 x 10 ⁵	2.5 x 10 ⁴
ADBAC	50	6.8 x 10 ²	<1.6 x 10 ¹
THPS	25	1.2 x 10 ⁶	1.2 x 10 ⁵
	50	1.1 x 10 ⁵	3.4 x 10 ²
	100	6.8 x 10 ²	4.7 x 10 ¹
TTPC	25	1.4 x 10 ⁶	1.3 x 10 ⁵
	50	5.1 x 10 ²	3.1 x 10 ¹

Comparative Biofilm Removal Activity

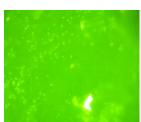

Comparative Biocidal Efficacy against Biofilm of Phosphonium Biocides

	Concentration,	Viable Count, CFU/cm ²	
Biocide	ppm active	1 hour	4 hours
Control	0	2.9 x 10 ⁶	5.7 x 10 ⁶
THPS	50	3.9 x 10 ⁶	7.8 x 10 ³
	100	4.7 x 10 ³	1.1 x 10 ²
TTPC	25	7.9 x 10 ⁶	4.8 x 10 ⁴
	50	6.5 x 10 ²	1.4 x 10 ²
THPS/TTPC	50/25	2.0 x 10 ³	<1.6 x 10 ¹

Comparative Biofilm Removal Activity of Phosphonium Biocides

Control 5.7 x 10⁶ CFU/cm²

THPS, 50 ppm 7.8 x 10³



THPS, 100 ppm 1.1×10^{2}

TTPC, 25 ppm 4.8×10^4

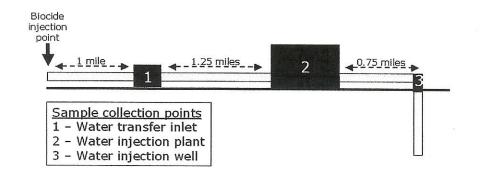
TTPC, 50 ppm 1.4×10^{2}

THPS/TTPC, 50/25 ppm <1.6 x 10¹

Case History

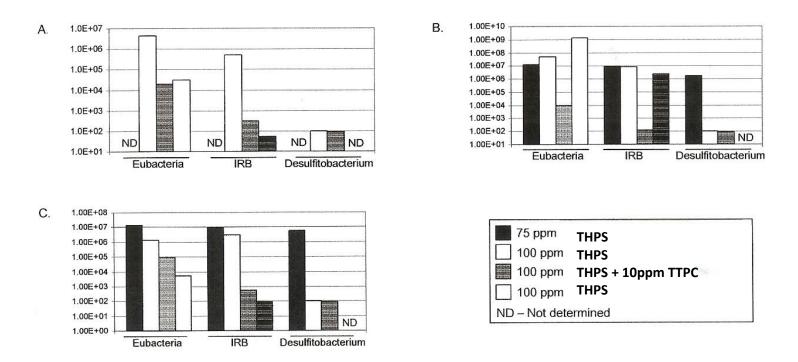
Bakken Water Injection Well Trial*

- <u>Problem</u>: Using THPS to control bacteria, but observing incomplete kill and high corrosion rates
- <u>Solution</u>: Use low levels of TTPC to secure both additional kill <u>and</u> lower corrosion rates
- <u>Results</u>: Improved kill and lower corrosion rates



*Keasler, V.; et.al. SPE 121082, 2009 International Symposium on Oilfield Chemistry

Trial Set-Up



Injected Biocide	Biocide Dose	Contact Time	Duration of Treatment
THPS	75 ppm	4 hrs/wk	7 months
THPS	THPS 100 ppm 4 hrs/w		4 months
THPS plus TTPC	100 ppm + 10 ppm	4 hrs/wk	1 month
THPS	100 ppm	4 hrs/wk	3 months

Corrosion coupons pulled at the end of each treatment and replaced with new ones

Efficacy Results

Panel A: Bacterial Counts at Sample Point 1 (Water Transfer Inlet)Panel B: Bacterial Counts at Sample Point 2 (Water Injection Plant)Panel C: Bacterial Counts at Sample Point 3 (Water Injection Well)

Corrosion Coupon Results

Corrosion Coupons from SP 2: (I to r), 75 ppm THPS, 100 ppm THPS, 100 ppm THPS + 10 ppm TTPC

	75 ppm THPS	100 ppm THPS	100 ppm THPS + 10 ppm TTPC	100 ppm THPS
Sample Point 1	1.68	1.60	0.79	1.19
	GC/P	GC	GC	GC
Sample Point 2	2.60	3.09	1.16	2.65
	GC/P	GC	GC	GC
Sample Point 3	0.30	1.15	0.79	1.05
	GC/P	GC	GC	GC

GC = General Corrosion; P = Pitting. MPY results are time-normalized

Summary

- Biofilm control essential for the mitigation of MIC
- Biocides vary in their ability to kill and remove biofilm
- Biocide combinations which include a surface active biocide (ADBAC, TTPC) have improved activity compared to the individual biocides alone
- Biocide treatments which display both biocidal activity and biofilm removal properties would be expected to offer the best potential for MIC control